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Abstract—
While the concept of collaboration provides a natural defense

against massive spam emails directed at large numbers of recip-
ients, designing effective collaborative anti-spam systems raises
several important research challenges. First and foremost, since
emails may contain confidential information, any collaborative
anti-spam approach has to guarantee strong privacy protection
to the participating entities. Second, the continuously evolving na-
ture of spam demands the collaborative techniques to be resilient
to various kinds of camouflage attacks. Third, the collaboration
has to be lightweight, efficient, and scalable. Towards addressing
these challenges, this paper presents ALPACAS - a privacy-
aware framework for collaborative spam filtering. In designing
the ALPACAS framework, we make two unique contributions.
The first is a feature-preserving message transformation tech-
nique that is highly resilient against the latest kinds of spam
attacks. The second is a privacy-preserving protocol that provides
enhanced privacy guarantees to the participating entities. Our
experimental results conducted on a real email dataset shows
that the proposed framework provides a 10 fold improvement in
the false negative rate over the Bayesian-based Bogofilter when
faced with one of the recent kinds of spam attacks. Further,
the privacy breaches are extremely rare. This demonstrates the
strong privacy protection provided by the ALPACAS system.

I. INTRODUCTION

Statistical filtering (especially Bayesian filtering) has long
been a popular anti-spam approach, but spam continues to
be a serious problem to the Internet society. Recent spam
attacks expose strong challenges to the statistical filters, which
highlights the need for a new anti-spam approach.
The economics of spam dictates that the spammer has

to target several recipients with identical or similar email
messages. This makes collaborative spam filtering a natural
defense paradigm, wherein a set of email clients share their
knowledge about recently received spam emails, provides a
highly effective defense against a substantial fraction of spam
attacks. Also, knowledge sharing can significantly alleviate the
burdens of frequent training stand-alone spam filters.
However, any large-scale collaborative anti-spam approach

is faced with a fundamental and important challenge, namely
ensuring the privacy of the emails among untrusted email
entities. Different from the email service providers such as
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Gmail or Yahoo mail, which utilizes spam/ham classifications
from all its users to classify new messages, privacy is a major
concern for cross-enterprise collaboration, especially in a large
scale. The idea of collaboration implies that the participating
users and email servers have to share and exchange infor-
mation about the emails (including the classification result).
But, emails are generally considered as private communication
between the senders and the recipients, and they often contain
personal and confidential information. Therefore, users and
organizations are not comfortable sharing information about
their emails until and unless they are assured that no one
else (human or machine) would become aware of the actual
contents of their emails. This genuine concern for privacy
has deterred users and organizations from participating in any
large-scale collaborative spam filtering effort.
To protect email privacy, digest approach has been proposed

in the collaborative anti-spam systems to both provide en-
cryption for the email messages and obtain useful information
(fingerprint) from spam email. Ideally, the digest calculation
has to be a one-way function such that it should be compu-
tationally hard to generate the corresponding email message.
It should embody the textual features of the email message
such that if two emails have similar syntactic structure, then
their fingerprints should also be similar. A few distributed
spam identification schemes, such as Distributed Checksum
Clearinghouse (DCC) [1], Vipul’s Razor [2] have different
ways to generate fingerprints. However, these systems are not
sufficient to handle two security threats: 1) Privacy breach as
discussed in detail in section II; 2) Camouflage attacks, such
as character replacement and good-word appendant, make it
hard to generate the same email fingerprints for highly similar
spam emails.
To simultaneously achieve the conflicting goals of ensuring

the privacy of the participating entities and effectively and
resiliently harnessing the power of collaboration for countering
spam, we design a particular framework and name it “A
Large-scale Privacy-Aware Collaborative Anti-spam System”
(ALPACAS )
In designing the ALPACAS framework, this paper makes

two unique contributions: 1) We present a resilient fingerprint
generation technique called “feature-preserving transforma-
tion” that effectively captures the similarity information of the
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Fig. 1: ALPACAS System Overview

emails into their respective encodings, so that it is possible
to perform fast and accurate similarity comparisons without
the actual contents of the emails. Further, this technique also
ensures that it is computationally infeasible to reverse-engineer
the contents of an email from its encoding. 2) For further
enforcing the privacy protection, a privacy-preserving protocol
is designed to control the amount of information to be shared
among the collaborating entities and the manner in which the
sharing is done.
We evaluate the proposed mechanisms through series of

experiments on a real email corpus. The results demonstrate
that the ALPACAS framework has a comparable overall fil-
tering accuracy to the traditional stand-alone statistical filters.
Furthermore, ALPACAS resists various kinds of spam attacks
effectively. For good-word attack, ALPACAS has 10 times
better false negative rates than both DCC and BogoFilter [3], a
well known Bayesian-based spam filter. For character replace-
ment attack, ALPACAS shows a 30 times better false negative
rate than DCC and 9 times better false negative rate than
BogoFilter. ALPACAS also provides strong privacy protection.
The probability of a ham message to be guessed correctly by
a remote collaborating peer is well controlled below 0.001.

II. PRIOR WORK

Prior efforts on coordinated real-time spam blocking in-
clude distributed checksum clearinghouse (DCC) [1], Vipul’s
Razor [2], SpamNet [4], P2P spam filtering [5], [6] and
SpamWatch [7]. We discuss the drawbacks of the existing
collaborative anti-spam schemes using DCC as a representative
example.
The DCC system attempts to address the privacy issue

by using hash functions. Here, the participating servers do
not share the actual emails they have received and classified.
Rather they share the emails’ digests, which are computed
through hashing functions such as MD5 over the email body.
When an email arrives at a mail server, it queries the DCC
system with the message digest. The DCC system replies
back with the recent statistics about the digest (such as
the number of instances of this digest being reported as

spam). DCC suffers from two major drawbacks: First, since
hashing schemes like MD5 generate completely different hash
values even if the message is altered by a single byte, the
DCC scheme is successful only if exactly the same email is
received at multiple collaborative servers. DCC develops fuzzy
checksums to improve the robustness by selecting parts of the
messages based on a predefined dictionary. But, spammers can
get around this technique by attaching a few different words
to each email.
Second, the DCC scheme does not completely address the

privacy issue. A closer examination reveals that the confiden-
tiality of the emails can be compromised during the collabora-
tion process of DCC. Thus, it violates the privacy requirement
from the email sender for maintaining the confidentiality of
the recipients when he wants to deliver emails to multiple
recipients by using ‘Bcc:’. In particular, one DCC server can
possibly infer who else receives the same email by comparing
the querying fuzzy checksum. Assuming DCC uses perfect
hash function, consider the scenario wherein an email server
EAi received a ham email Ma. Suppose another email server,
say EAj , receives an identical email later, and sends its fuzzy
checksum to EAi. Since EAi had seen this email before, it
immediately discovers that EAj too has received the same
email Ma. We refer to this type of privacy compromise as
inference-based privacy breaches.
These two drawbacks, namely vulnerability toward camou-

flage attacks and potential risk of privacy breaches, highlight
the need for better collaborative mechanisms that are not only
resilient towards minor differences among messages, but are
also robust against inference-based privacy compromises.

III. THE ALPACAS ANTI-SPAM FRAMEWORK

We present ALPACAS framework to address the design
challenges of the collaborative anti-spam system.

• Challenge 1: To protect email privacy, it is obvious that
the messages have to be encrypted. However, in order for
the collaboration to be effective, the encryption mecha-
nism has to satisfy two competing requirements: a) The



Hello,

We tried contacting you a while ago about  your low interest mortgage rate.
you have been selected for our lowest rate in years… You could get over
$420,000 for as LOW as $400 a month! Bad credit, Bankruptcy? Doesn’t
matter, low rates are fixed no matter what! To get a no cost, no obligation
consultation click below:
http://www.re-f1nanc3.com/signs.asp

Best Regards,
Kathie Banks
To be remov(ed: http://www.re-f1nanc3.com/deletion.asp )

SPAM Sample Message No. 1

ALPACAS Feature Set: (297475 384769 555671 743293 798044 1085012 1107317 
1243401 1701456 1783248)
DCC Digest:

Body: f23a4d65 f6513269 2ec02108 18de6efe
Fuz1: 81e889e3 63967036 de719a24 6c65a635
Fuz2: abd336ae 2d6fbc1b 69bdc0a6 792389f9

Vipul’s Razor Fingerprint:
1) hHdm8wvQnv8tt44O8_2cmnW-Y1UA 2) QB0M4cGx1qEA

Hello,

We tried contacting you awhile ago about  your low interest mort(age rate.
you have been selected for our lowest rate in years… You could get over
$420,000 for as little as $400 a month! Ba(d credit, Bank*ruptcy? Doesn’t
matter, low rates are fixed no matter what! To get a free, no obli,gation
consultation click below:
http://www.nxshrq.com/i/LzMvaW5kZXgvYXJuLzdhOWoyaTQ0ZGFn

Best Regards,
Elsa Simons
To be remov(ed: http://www.nxshrq.com

SPAM Sample Message No. 2

ALPACAS Feature Set: (153049 297475 384769 555671 650358 743293 798044 
1085012 1107317 1243401)
DCC Digest:

Body: ac02a0a8 703ba1ff 1a226388 ba345cc3
Fuz1: efacfdc1 a3b1de56 66d9245b 4b69dcd0
Fuz2: effdb71e 7212829e 6e4184d6 d61e5339

Vipul’s Razor Fingerprint:
1) SGvtcOqKomr8QCghbTrUzilRFX0A  2) YJG-Dgei1qEA

Fig. 2: ALPACAS Feature Sets, DCC and Razor Digests for 2 spam emails (Texts in bold font indicate differences)

encryption mechanism has to hide the actual contents for
privacy protection. b) It should retain important features
of the message so that effective similarity comparison can
still be performed on the encrypted messages.

• Challenge 2: To avoid inference-based privacy breaches,
it is necessary to minimize the information revealed
during the collaboration process. However, the lesser
the information conveyed, the harder it is to perform
meaningful similarity comparisons.

Accordingly, the ALPACAS framework includes two
unique components, namely feature-preserving fingerprint and
privacy-preserving protocol to address the above challenges
respectively. In addition, in the interests of scalability, we
design a DHT-based architecture for distributing ham/spam
information among the collaborating entities.

The ALPACAS framework essentially consists of a set of
collaborative anti-spam agents. An email agent can either be an
entity that participates in the ALPACAS framework on behalf
of an individual end-user, or it may represent an email server
having multiple end-users. Without loss of generality, in this
paper, we assume that the email agents represent individual
end-users. Each email agent of the ALPACAS framework
maintains a spam knowledgebase and a ham knowledgebase,
containing information about the known spam and ham emails.
Figure 1(a) shows the email agent EA4 querying two other
collaborative agents with partial information of an incom-
ing message for the purpose of classification. Figure 1(b)
illustrates the internal mechanism of each email agent: Upon
receiving an email, the respective email agent transforms the
message into a feature digest. It then uses part of the feature
digest to query a few other email agents to check whether they
have any information that could be used for classifying the
email. Based on the responses from these agents and its local
knowledgebase, a simple method to classify email is presented
in section III-B.

A. Feature-Preserving Fingerprint

In our approach, the fingerprint of an email is a set of digests
that characterize the message content. The set of digests is
referred to as the transformed feature set (TFSet) of the email.
The individual digests are called the feature elements. The
transformed feature set of a message Ma is represented as
TFSet(Ma). In the following sections, we will discuss how
to generate TFSet and how to further enforce the privacy
preservation.
1) Shingle-based Message Transformation: Our feature-

preserving fingerprint technique is based upon the concept of
Shingles [8], which has been used in a wide variety of web
and Internet data management problems, such as redundancy
elimination in web caches and search engines, and template
and fragment detection in web pages [9], [10].
Shingles are essentially a set of numbers that act as a

fingerprint of a document. Shingles have the unique property
that if two documents vary by a small amount their shingle
sets also differ by a small amount.
Figure 2 presents an example to illustrate the strength of

this feature-preserving fingerprint technique. The figure shows
two real spam emails that are very similar to each other. The
spammers have deliberately mutated one of the emails through
word and letter substitutions to obtain the other. The figure
shows the TFsets of the two emails. For comparison purposes,
we also indicate the results of the MD-5 , Vipul’s Razor and
the DCC transformations on the two emails. For MD-5, Vipul’s
Razor and DCC, the hash digests of the two emails are totally
different from each other whereas the shingle sets of the two
emails retain a high degree of similarity that 80% of the TFsets
of both spam emails are the same.
To generate a TFset of a message M , we use a sliding

window algorithm, in which a window of some pre-determined
length (W ) slides through the message. At each step the
algorithm computes a Rabin fingerprint [11] of W consecutive
tokens (a token could be either a single word or character,



and we use character-based token throughout this paper) that
fall within the window. Each fingerprint is in the range (0,
2K − 1), where K is a configurable parameter. For a message
with X tokens, we obtain a set of X − W + 1 fingerprints.
Of these, the smallest Y are retained as the (W,Y) TFset of
M , because using a subset of the fingerprints that represent
partial information of M provides more privacy protection
than using the entire set of fingerprints. We represent (W, Y )
TFset of a message M as TFSet(W,Y )(M). The similarity
between two messages Ma and Mb can be calculated as
|TFSet(W,Y )(Ma)∩TFSet(W,Y )(Mb)|
|TFSet(W,Y )(Ma)∪TFSet(W,Y )(Mb)| .
In consideration of the privacy preservation, the message

transformation uses a Rabin fingerprint algorithm, which is a
one-way hash function such that it is computationally infeasi-
ble to generate the original email from its TFset. However,
it is possible to infer a word or a group of words from
an individual feature value. The privacy protection requires
multiple levels of defenses. In the next subsection, we present
our privacy enhancement.
2) Term-level Privacy Preservation: Term-level privacy

breach is defined as a feature element uniquely identifies a
word or a group of words, and an email agent could infer
a phrase or a sentence out from a feature with a reasonable
probability if the agent had come across a previous message
whose TFset contained the same feature value. For example,
a term “$99,999” corresponds to a shingle value 16067109.
If a recipient of message Ma knows that the encryption of
message Mb contains a common shingle value 16067109,
he can immediately infer that Mb also contains the term
“$99,999”.
One approach to mitigate the possibility of inferring a word

or a group of words is to shuffle the tokens of the original
email and compute TFset on the shuffled email. Though this
is expected to accomplish term-level privacy compromise, ar-
bitrary and large-scale shuffling can destroy the email features
thereby affecting the spam filtering accuracy.
To shuffle the email content in an acceptable manner,

our feature-preserving fingerprint scheme adopts a controlled
shuffling strategy wherein the tokens are shuffled in a pre-
determined format. Further, the position of a token after
shuffling is always within a fixed range of its original position.
Specifically, the controlled shuffling scheme works as fol-

lows. The email text is divided into consecutive chunks of
tokens. Each chunk consists of z consecutive tokens of the
email text, where z is a configurable parameter. The tokens in
each chunk are shuffled in a pre-determined manner, whereas
the ordering of the chunks within the email text remains
unaltered. Concretely, each chunk is further divided into y sub-
chunks (we assume that y is a factor of z). The tokens within
an arbitrary chunk CKh are shuffled such that the token at rth

position in the sth sub-chunk (this is the token at the index
(s × z

y ) + r) in the chunk CKh) is moved to (r × y + s)th

position within CKh.
Suppose two messages contain an identical term, by shuf-

fling the term, the rendered text could be different. Thus, it
could make the feature element generated from the shuffled

(0 – 131071)

(131072 – 262143)

(262144 – 393215)

(393216 – 524287)

(524288 – 655359)

(655360 – 786431)

(786432 – 917503)

(917504 – 1048575)
EA1

EA2

EA8

EA3

EA7

EA6

EA5
EA4

815033
Query

[ 815033, 982, 182635, 797240]
[ 815033, 176, 5608, 762102]
...

[ 815033, 632, 88521,739211]
[ 815033, 981,2259, 992365]
…

Ham Knowledge for EA 7 Spam Knowledge for EA 7

Fig. 3: ALPACAS Protocol: Query and Response

text different. We expect this controlled shuffling scheme to
reduce the term-level privacy breach. A comprehensive study
on this subject will be done in our future work.

B. Privacy-preserving Collaboration Protocol

Feature-preserving fingerprint is just one level of privacy
protection, the amount of information exchanged during col-
laboration can be further controlled for stronger privacy
protection. In particular, we design the collaborative anti-
spam system equipped with privacy-aware message exchange
protocol based on the following spam/ham dichotomy that
revealing the contents of a spam email does not affect the pri-
vacy or confidentiality of the participants, whereas revealing
information about a ham email constitutes a privacy breach.
Our protocol works as follows: When an agentEAj receives

a message Ma, EAj computes its TFSet: TFSet(Ma). It
then sends a query message to other email agents in the system
to check whether they can provide any information related to
Ma. However, instead of sending the entire TFSet(Ma) as
a part of the query message to all agents, EAj sends very
small subsets of TFSet(Ma) to a few other email agents (the
email agents to which the query is sent is determined on the
basis of the underlying structure (please see Section III-C)).
The subsets of TFSet(Ma) included in the queries sent
to various other email agents need not be the same (our
architecture optimizes the communication costs by sending
non-overlapping subsets to carefully chosen email agents).
An email agent that receives the query, say EAk, checks its

spam and ham knowledgebases looking for entries that include
the feature subset that it has received. A feature set is said
to match a query message if the set contains all the feature
elements included in the query. Observe that there could be
any number of entries in both spam and ham knowledgebases
matching the partial feature set. For each matching entry in the
spam knowledgebase, EAk includes the complete transformed
feature set of the entry in its response to EAj . However, for
any matching ham entries, EAk sends back a small, randomly
selected part of the transformed feature set. Figure 3 illustrates
our privacy preserving collaboration protocol. In this figure,
the agent EA4 sends a query with the feature element 815033



to EA7, which responds with a complete feature set of a
matching spam email and a partial feature set of a matching
ham email.
At the end of the collaboration protocol, EA j would have

received information about any matching ham and spam emails
(containing the feature set of the query) that have been
received by other members in the collaborative group. For
each matching spam email, EAj receives its complete TFSet.
For each matching ham email, EAj receives a subset of
its transformed feature set. EAj now computes the ratio of
MaxSpamOvlp(Ma) to MaxHamOvlp(Ma) and decides
whether the Ma is spam or ham. MaxSpamOvlp is the
maximum overlaps between the TFSet of the query mes-
sage and the TFSets of all the matching spam emails, and
MaxHamOvlp is similarly defined. In this paper, we use a
simple classification strategy that is described in equation 1.

Score =
1 + MaxSpamOvlp(Ma) − MaxHamOvlp(Ma)

2
(1)

If the score is greater than a configurable threshold λ, Ma is
classified as spam. Otherwise it is classified as ham.

C. System Structure
We design an efficient and scalable structure for the

ALPACAS prototype which also minimizes the chances of
inference-based privacy breaches. Our prototype structure is
based upon the following design principle: A query should be
sent to an email agent only if it has a reasonable chance of
containing information about the email that is being verified.
Contacting any other email agent not only introduces ineffi-
ciencies but also leads to unnecessary exposure of data.
The proposed prototype structure is based on the

distributed hash table (DHT) paradigm [12], [13]. In this
DHT-based structure, each email agent is allocated a
range of feature element values. An email agent EA j is
responsible for maintaining information about all the emails
(received by any email agent in the system) whose TFSet
has at least one feature element in the range allocated
to it. Specifically, if there are N email agents in the
collaborative group, the range (0, 2K − 1) (recall that
the all feature elements lie within this range) is divided
into N non-overlapping consecutive regions represented as
{(MinF0, MaxF0), (MinF1, MaxF1), . . . , (MinFN−1, 2K−
1)}, where (MinFj , MaxFj) denotes the sub-range allocated
to the email agent EAj . EAj maintains information about
every spam and ham email that has at least one feature
element between MinFj and MaxFj (inclusive of both
end-points). For each such spam email, EAj stores the entire
TFSet in its spam knowledgebase. For ham emails, EAj

stores a subset of the email’s TFSet. If the feature element
value Ft falls within the sub-range allocated to EAj (i.e.,
MinFj ≤ Ft ≤ MaxFj), then EAj is called the rendezvous
agent of Ft. The set of rendezvous agents of all the feature
elements of Ma is called Ma’s rendezvous agent set. The
spam and ham knowledgebases at a rendezvous agent is
indexed by the feature element that falls within the agent’s

sub-range. Figure 3 illustrates a ALPACAS prototype with
eight agents and feature elements in the range of (0,1048575).
The presented DHT structure is only for proof of concept.

This paper focuses on the feasibility of collaboration with
transformed messages and we expect that a more sophisticated
and robust P2P structure is applied in a real deployment.

IV. EXPERIMENTS AND RESULTS
In this section, we compare ALPACAS with two popular

spam filtering approaches, namely Bayesian filtering and sim-
ple hash-based collaborative filtering. We use BogoFilter [3]
and DCC as the representatives of these two approaches
respectively. As most other Bayesian filters, BogoFilter calcu-
lates a score (spamminess) for each message. The message is
classified as a spam if its spamminess is greater than or equal
to a preset threshold (µ), and vice-versa. On the other hand,
the DCC bases its decision on the number of times the email
corresponding to a particular hash value have been reported
as spam. If this spam count of the hash value corresponding
to in-coming email exceeds a threshold, the email is classified
as spam, and otherwise it is classified as ham.
We conduct a comprehensive study on the accuracy compar-

ison between ALPACAS and BogoFilter for the entire range
of the threshold. For other performance measurements, the
default threshold for both is set to 0.5. Since DCC is strongly
bias to a low false positive rate, we set the DCC threshold to 1,
which gives the best false negative rate as shown in Figure 5.

A. Experimental Setup
The datasets used in our experiments are derived from

two publicly available email corpus, namely TREC email
corpus [14] and the SpamAssassin email corpus [15]. To
simulate the collaboration among recipients, we categorize the
emails in the TREC corpus, which are the real emails from
Enron Corporation according to their target addresses (‘To:’
and ‘cc:’ fields) to obtain 67 email sets, each corresponding
to the emails received by one individual. Half of each email
set including ham and spam are used for training, and the
remainder is used for testing. In the experiment, we also
assume that each individual can have a pre-classified email
corpus (spamAssassin corpus) as the initial knowledgebase.
Each individual incrementally feeds the knowledgebase with
a fraction of his email set (TREC) categorized for the training
purpose. We apply BogoFilter, DCC and ALPACAS on each
individual’s email set and measure the overall accuracy results.

B. Performance Metrics
We use the standard metrics to measure the spam filtering

accuracy. A ham email that is classified as spam by the
filtering scheme is termed as a false positive. The false positive
percentage is defined as the ratio of the number of false
positive emails to the total number of actual ham emails in
the dataset used during the testing phase. The false negative
percentage is analogously defined.
Currently there are no available metrics to measure the

privacy of collaborative anti-spam systems. In this paper,
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we first define the message-level privacy breach percentage
as follows. A ham email Ma is said to have suffered a
privacy compromise if an email agent that is not a recipient
of Ma discovers its contents. Message-level privacy breach
percentage is defined as the ratio number of test ham messages
suffering privacy compromises to the total number of test ham
messages.
The communication overhead of the system is quantified

through the per-test communication cost metric, which is
defined as the total number of messages circulated in the
system during the entire experiment.

C. SPAM Filtering Effectiveness

The first set of experiments we study the effectiveness of
ALPACAS approach in filtering traditional spam messages (as
captured by the testing datasets). Figure 4 shows the false
positive percentages of the BogoFilter, the ALPACAS and the
DCC schemes when the size of the training set employed by
each agent increases from 10% to 50% of the total messages
in its email set. Figure 5 indicates the false negative rates for
the same experiment.
In general, as we expect, ALPACAS has a strong feature

preserving capabilities and demonstrates a better accuracy than
BogoFilter when there are enough email resources shared in
the network. Figure 4 shows that ALPACAS always performs
a better false positive percentage than the BogoFilter. For the
false negative percentage shown in Figure 5, ALPACAS is
better than BogoFilter after around 27% of the messages in
the email sets are employed during the training phase. And
ALPACAS shows about 60% lower false negative percentage
than that of the BogoFilter when 50% of the messages in the
email sets are used for training.
The results also indicates that the essence of the collabora-

tion is knowledge sharing. When the size of the training sets
employed at the individual agents is small, ALPACAS doesn’t
demonstrate a better false negative rate than the BogoFilter. It
is also natural that transformed message is less effective than
the original message. Furthermore, DCC performs much worse
for the false negative percentage than the other two schemes.
Note that the false negative percentages of DCC is an order

of magnitude higher than our approach.
All the ALPACAS, DCC and Bayesian schemes are

threshold-based approaches, so finding the appropriate thresh-
old to achieve both low false positive and false negative rates
is the key to the success of these approaches. We obtain results
from previous experiment when 50% of the emails in its email
set are used during the training phase. We vary the threshold
parameters of the two schemes and collect the false positive
and false negative percentages. In Figure 6 we plot the results
of the experiment with false positive percentages on the X-axis
and the false negatives on the Y-axis.
The results show that neither of the approaches outperforms

the other at all false positive percentage values. However,
ALPACAS approach yield significantly better false negative
results than the BogoFilter for the normally preferred false
positive range. Generally, users have a much lower tolerance
of false positives than false negatives, and anything more than
1% percent false positives is usually considered unacceptable.
In summary, ALPACAS has an overall comparable accuracy

to the current approaches such as BogoFilter. It has advantages
over BogoFilter when low false positive is preferred. Notice
that, even with the same accuracy results, a collaborative filter
is often preferred because of its resistance to the camouflage
attacks, which is presented in the next subsection.

D. Robustness Against Attacks

In this section we evaluate the robustness of the ALPACAS
approach against two common kinds of camouflage attacks,
one is good-word attack and the other is character replacement
attack. We compare the results with those of Bayesian and
DCC approaches.
In the first experiment of this series, we emulate the good-

word attack by appending words that generally appear in ham
messages in the test set. The good words are selected randomly
from a good word database created from the labeled ham data.
We vary the amount of appended words in the range of 0% to
100% of the original emails’ word count and we call it degree
of attack. The experimental setup consists of 67 agents with
each agent employing 50% of the messages in its email set
during the training phase.
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Good-Word Attacks
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Character Replacement Attacks

Figure 7 shows the false negative rate of BogoFilter, DCC
and the ALPACAS approach at various degrees of attack. False
positive results are not presented because they are not affected
by the attacks. The false negative percentages of the AL-
PACAS and BogoFilter are very low when the degree of attack
is less than 5%. However, the performance of the BogoFilter
degrades drastically as the degree of attack increases, whereas
the false positive percentage of the ALPACAS approach in-
creases by very small amounts. For example, when the amount
of good words introduced is around 80%, the false negative
rate of BogoFilter is close 100%, whereas it is around 7%
for the ALPACAS scheme. The performance of DCC is very
bad for all its different forms of checksums even at very low
degrees of attack. This is because of the nature of its hashing
mechanism which maps similar (but not identical) messages
into two totally different hash values.
In the second experiment of this series, we study the

resilience of the ALPACAS, BogoFilter, and DCC schemes
towards another common type of attack, which we call char-
acter replacement attack. In this attack the spammer replaces
a few characters of certain fraction of words that are highly
likely to be present in spam emails (henceforth, we refer to
these words as “spammy words”). The spammer attempts to
reduce the spam weight (weight indicating the probability that
the email is a spam) assigned by filters to the email. Emails
containing “Vi@gra” instead of “Viagra” are examples of
character replacement attacks. In order to emulate this attack,
we first create a spam dictionary. For each email in the corpus,
we extract the words that appear in the spam dictionary. We
then replace a few characters of a certain randomly selected
fraction of the words in the spam list. The ratio of the number
of changed words to the total number of words in the email that
appear in the spam dictionary is called the degree of attack.
We then measure the filtering effectiveness of the three anti-

spam schemes. The setting is similar to that of the previous
experiment. Figure 8 shows the false negative percentage of
the three schemes when the percentage of spam words that
modified in each email varies from 0% and 100%. As the
degree of attack increases, the effectiveness of BogoFilter
deteriorates. When 100% of spammy words are modified, the

false negative percentage is as high as 27%. In contrast, the
false negative percentage of the ALPACAS system is 3% even
when 100% of spammy words are modified. The DCC again
performs very poorly even at low degrees of attack.

E. Privacy Awareness of ALPACAS Approach

One major design consideration of the ALPACAS approach
is preserving the privacy of the emails and their recipients. To
measure the privacy breaches, we emulate the following model
for privacy compromises. When a rendezvous agent EA i gets
a part of the transformed feature set of an emailMa (either for
querying or for publishing), EA i collects all the ham emails
received by it that match the part of the feature set that has
been sent to it. In the absence of any further information EA i

selects one of these matching ham emails, sayMb as its guess.
In other words, EAi guesses the contents of the email Ma to
be similar to that of Mb. If the guess is correct (the contents
ofMa are indeed similar to thoseMb) then we conclude that a
privacy breach has occurred. We count such privacy breaches
to calculate the message-level privacy breach percentage.
The privacy breach also relates to how much information is

conveyed during the collaboration. We consider three different
query policies in our experiment: 1) query with minimal
feature set, 2) query with full feature set, 3) query with partial
feature set. To further reduce the content breach possibility, we
only share spam knowledge across the collaborative network.
Figure 9 shows the message-level privacy breach percent-

ages of the ALPACAS approach as the number of collaborat-
ing agents vary from 100 to 600 for the three query policies.
Since the TREC dataset only contains emails received by 67
individuals, we split the email set corresponding to each user
into 10 equi-sized trace files. Each of these trace-files drives
an email agent. The number of feature elements in the TFSet
of each email is 50, and 50% of the emails in each trace is
used during the training phase.
The results show that the privacy breaches are very rare for

all three modes of the ALPACAS approach. We only show
result for the query with 4% partial TFSet, because the results
for the query with other percentages of TFSet are very close
to each other. Further, the privacy breach percentages go down
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as the number of agents in the system increases. This can be
explained as follows. When the number of email agents in the
system increases, the range of DHT values allocated to each
email agent decreases. Thus, the probability of a rendezvous
agent that has received a similar email in the recent past
decreases.
Although with an overall low privacy breach for all three

policies, the reduction of privacy breach by using smaller sets
is not as significant as we expected. We ascribe this behavior
to the small number of email instances in our testing set when
compared to the large feature set space. We plan to further
study this topic by two means: one is to experiment with
various sizes of datasets and feature set spaces; the other is
to use feature range in the query rather than the exact feature
value, with the hope to further hide the real feature value for
the purpose of privacy protection.

F. Communication Overheads of the ALPACAS approach

Communication overhead is a major factor affects the
performance of collaborative anti-spam systems. We compare
the ALPACAS approach with the replicated DCC approach.
Figure 10 indicates the per-test communication cost of both
schemes when the number of agents in the system increases
from 67 to 600. We conducted experiments with the size
of TFSet being set to 10, 50, and 100. The training phase

employed 50% of the emails in the trace files.
The graph indicates that the per-test communication costs of

the DCC approach increases rapidly with increasing number
of email agents, whereas the per-test communication costs of
the ALPACAS approach essentially remains constant. This
result can be explained as follows. In the DCC system, the
spam digest database is replicated at each participating agent.
Hence, any update to this database has to be reflected at all
replicas, which results in high communication overheads. In
the ALPACAS approach, the query and publish messages are
sent to only the rendezvous nodes of the corresponding emails.
The number of rendezvous nodes is directly dependent upon
the cardinality of the transformed feature set being employed.
Thus, in this scheme the per-test communication costs depend
on the number of feature elements in TFSets and not upon the
number of participating agents. The results also show that the
ALPACAS approach is highly scalable with respect to number
of participating agents.

G. Message Transformation Algorithm Analysis

In this set of experiments, we study the effects of various
configuration parameters on the effectiveness of the ALPACAS
approach. We first study the effects of feature set size and
window size on the accuracy of ALPACAS approach.
Figure 11 and 12 respectively show the false positive and



the false negative percentages of the ALPACAS approach at
various settings of the feature set size and the window size
parameters. The results show that employing larger number of
feature elements yields better classification accuracies. This
is because, larger feature sets capture more information about
the characteristics of individual emails. We also observe that
ALPACAS approach performs best with medium sized win-
dows (windows containing 8-10 characters). This observation
can be explained as follows. When the window size is very
small, the feature elements correspond to small, commonly
occurring sequences of characters. For example, ‘agr’ can
come from either ‘viagra’ or ‘agree’. Hence, the feature set of
an individual email is likely to exhibit high similarities to both
ham and spam emails in the knowledgebases, which affects the
classification accuracy. On the contrary, when the window size
is set to high values, even similar emails are likely to have
very different feature sets. This is because, when the windows
are bigger, each character of the email text appears in several
windows. In this scenario, even a few differing characters
between two emails can affect the similarity of their feature
sets to a considerable extent. Thus, when window sizes are
very large, feature set of an individual email is likely to have
very little similarity to either the spam or the ham emails in the
knowledgebase. This again affects the classification accuracy.
To protect term-level privacy, we propose shuffle method.

We assume the entire email is a chunk divided into sub-chunks
by a factor to increase the shuffling degree. Figure 13 shows
the false positive and false negative rates for different sub-
chunk sizes. The results show that when the shuffling degree
increases, the accuracy drops. It is because increasing the
shuffling degree would break the similarity among emails.
However, we believe that with a small degree of shuffle, the
ALPACAS approach can still achieve a high classification
accuracy, and the attackers would spend much more effort to
infer the content from a single shuffled feature element.

V. DISCUSSION
In the current design, we use a simple mechanism for

the actual message classification. Approaches like statistical
filtering [16] can be utilized in conjunction with the feature
preservation transformation scheme. One such strategy would
be to apply Bayesian filtering on the feature elements. We
believe that sophisticated classification techniques would fur-
ther improve the filtering accuracy of the ALPACAS approach.
Further, our design of the ALPACAS approach assumes that
the email agents are stable (i.e., they have low failure rates).
Techniques such as replication and finger-table based rout-
ing [12] can improve the resilience of the ALPACAS approach
towards entries and exits of agents.
The current design of the ALPACAS approach assumes that

no participating email agent maliciously uploads erroneous
information into the knowledgebases. Further, it is also as-
sumed that no email agent in the ALPACAS approach mounts
collaborative inference attacks. For example, if the rendezvous
agents of an email exchange the feature elements they have
received as a part of the query message, then they have a

better chance of correctly guessing the contents of the email.
Preventing these types of malicious behaviors by participating
agents is a part of our ongoing work.

VI. CONCLUSION
In this paper, we presented the design and evaluation

of ALPACAS, a privacy-aware collaborative spam filtering
framework that provides strong privacy guarantees to the
participating email recipients. Our system has two novel fea-
tures: 1) a feature preserving transformation technique encodes
the important characteristics of the email into a set hash
values such that it is computationally impossible to reverse
engineer the original email. 2) a privacy-preserving protocol
enables the participating entities to share information about
spam/ham messages while protecting them from inference-
based privacy breaches. Our initial experiments show that
ALPACAS approach is very effective in filtering spam, has
high resilience towards various attacks, and it provides strong
privacy protection to the participating entities.
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