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Abstract

Most existing work on cooperative caching has been fo-
cused on serving misses collaboratively. Very few have
studied the effect of cooperation on document placement
schemes and its potential enhancements on cache hit ra-
tio and latency reduction. In this paper we propose a new
document placement scheme called the EA Scheme, which
takes into account the contentions at individual caches in
order to limit the replication of documents within a cache
group and increase document hit ratio. The main idea of
this new scheme is to view the aggregate disk space of the
cache group as a global resource of the group, and uses the
concept of cache expiration age to measure the contention
of individual caches. The decision of whether to cache a
document at a proxy is made collectively among the caches
that already have a copy of this document. The experiments
show that the EA scheme yields higher hit rates and better
response times compared to the existing document place-
ment schemes used in most of the caching proxies.

1. Introduction

Cooperative caching - the sharing and coordination of
cache state among multiple caching proxies - has been rec-
ognized as one of the most important techniques to reduce
Web traffic and alleviate network bottlenecks. Web cache
sharing was first introduced in Harvest [5] to gain the full
benefits of caching.

Since then several cooperative caching protocols have
been proposed [5, 6, 9, 13], aiming at improving hit ra-
tio and reducing document-access latency. However, few
studies have examined the cooperation of caches from
document-placement point of view. To our knowledge none
has so far tried to answer the following questions: can
we devise the document placement scheme that utilizes the
sharing and coordination of cache state among multiple
communicating caches? Can such a document placement
scheme improve hit ratios and reduce document-access la-

tency? What are the potential advantages and drawbacks
of such a scheme, especially how does the document place-
ment scheme relate to the ratio of the inter-proxy commu-
nication time to server fetch time, and to the scale at which
cooperation is undertaken? This paper presents a new docu-
ment placement scheme and reports our initial experimental
results with an in-depth analysis to answer these and other
related questions.

Let us first review how documents are placed in present
cooperative caching protocols and what are the potential
problems of the existing schemes. The document placement
policies in either hierarchical or distributed caching archi-
tecture share a common scheme: When an ad-hoc document
request is a miss in the local cache, this document is either
served by another “nearby” cache in the cache group or by
the origin server. In either case, this document is added
into the proxy cache where it was requested. Therefore,
a document may be cached in several or all of the caches
in the cache group if the document is requested at several
or all of the proxy caches. We refer to this conventional
scheme as the ad-hoc scheme. An obvious drawback of
the ad-hoc document placement scheme is the fact that the
caches within a group are treated as completely indepen-
dent entities when making document placement decisions.
This may result in “uncontrolled” replication of documents.
In other words the replication decision is made regardless
of disk space contention experienced at individual caches.
Such “uncontrolled” replication of data reduces the effi-
ciency of the aggregate disk space utilization of the group
of caches. By efficiency, we mean the number of unique
(non-replicated) documents present in the cache.

In this paper we propose a simple and yet effective
scheme to limit the replication of documents within a group.
We view the aggregate disk space of the cache group as a
global resource of the cache group, and introduce the con-
cept of cache expiration age to measure the contention of
caches. The new scheme is based on the expiration ages of
individual caches in the group, referred to as the Expiration
Age based scheme (EA scheme for short). The EA scheme
effectively reduces the replication of documents across the
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cache group, while ensuring that a copy of the document
always resides in a cache where it is likely to stay for
the longest time. Further, the implementation does not in-
volve any extra communication overheads when compared
with the ad-hoc scheme used in many existing cooperative-
caching protocols. Our trace-based simulation experiments
show that the EA scheme yields higher hit rates and better
response times. We report our simulations and experimental
results in this paper.

2. Problem Statement

Cooperative caching is a mechanism where a group of
web caches communicate among each other to achieve bet-
ter performance. Whenever a cache experiences a miss for a
document, it tries to locate whether the document is present
in any of the nearby caches. If so it retrieves the document
from that cache rather than contacting the origin server.

It is known that the benefits of cooperative caching are
bound by the ratio of inter cache communication time to
server fetch time. Researchers have been studying cache-
sharing protocols, which provide mechanisms to reduce the
communication cost among cooperating caches. Internet
Cache Protocol (ICP) [1] was designed specifically for com-
munication among web caches. ICP is a light-weight proto-
col and is implemented on top of UDP.

The protocol consists of two type of messages that are
exchanged between neighboring caches viz. ICP queries
and ICP replies. ICP query is a message sent by a cache
that experienced a local miss, to all its neighboring caches
asking whether they have the particular document. ICP re-
ply is a message from the caches receiving the ICP query
to the query originator, which communicates whether they
have the particular document cached in them.

Most commercial and public domain proxy caches im-
plement ICP or some variant of it for inter-proxy communi-
cation mechanism. However, as briefly mentioned in Sec-
tion 1, all existing cooperative caching protocols treat in-
dividual caches in a cooperation group as completely inde-
pendent entities when making decision on where to cache
a document. More concretely, the decision of whether
to place a particular document in a given cache is made
without the knowledge about the other caches. This blind
caching can lead to “uncontrolled” replication of documents
in the cache group. It may potentially reduce the cumula-
tive hit rate of the group as a whole entity. To understand
various factors that may influence the quality and efficiency
of document placement in a group of caches, in this section
we walk through a simple scenario to illustrate the potential
problems with the existing document placement scheme,
which we call the ad-hoc scheme.

Consider a cache group with three caches, say C1, C2

and C3 in it. They are related to each other through

peer/sibling relationship. Without loss of generality, let us
consider the distributed caching architecture as the cache
cooperation structure in this example, although our argu-
ments and our new document placement scheme are in-
dependent of specific cooperative cache architectures and
work well with various document replacement algorithms.
All our arguments can be extended to Hierarchical cache
architecture.

Consider a scenario when the cache C1 experiences a lo-
cal miss when serving a client request for a document D.
C1 sends an ICP query to both C2 and C3. If the document
is not available in both C2 and C3, C1 fetches it from the
origin server, stores a local copy and serves the client. If
after some time, C2 gets a client request for the same doc-
ument D, it sends an ICP query to C1 and C3, C1 replies
positively. C2 now fetches the document from C1, stores it
locally and serves the client request. Now it is evident that
the document D is present in both C1 and C2. Furthermore,
as the document is fetched from C1, it is considered to be a
hit in the cacheC1. Therefore the document in the cacheC1

is given a fresh lease of life. If C3 gets a client request for
the same document D, it can fetch it from either C1 or C2.
So the document D is now replicated at all the three caches.
This example illustrates how the ad-hoc schemes can lead
to “uncontrolled” replication of data.

This uncontrolled replication of data affects the effi-
ciency of the usage of aggregate disk space available in
the group. The worst case of this limitation, though hy-
pothetical, would be all the documents being replicated on
all the caches. In this case, the effective disk space in the
cache group is (1/N) times the aggregate disk space avail-
able, where N is the total number of caches in the group.
The reduction in the effective disk space availability in the
cache group increases the contention for disk space at the
individual caches. Increased contention for disk space man-
ifests itself in two ways.

� First, the time for which individual documents live in
the cache is reduced.

� Second, the number of unique documents available in
the cache group decreases.

The cumulative effect of the above two leads to a fall
in the aggregate hit rate of cache group when compared
with a cache group having the same amount of disk space
and with no replication or controlled replication of docu-
ments. Therefore the usage of cumulative memory in the
cache group is not optimal in the existing (ad-hoc) docu-
ment placement scheme.

3 The Expiration-Age based Scheme

In this section, we present our new document place-
ment scheme for cooperative caching. In this scheme, each
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proxy makes informed and intelligent decisions on whether
to cache a particular document. The decision is based on a
number of factors: whether the document is already avail-
able in the cache group, if available how long it is likely to
remain in the caches where they are currently stored, and the
disk space contention of the proxies that contain the docu-
ment. We use the Expiration Age of the caches to measure
their cache contention levels. In the next subsection we ex-
plain the concept of Expiration Age and how it can be used
to make informed decisions.

3.1. Expiration Age - A Cache Contention Measure

In this subsection we discuss measures that can be used
to compare disk space contention in various caches of a
group. One obvious way to measure the contention at a
cache in a given time duration is to use the average docu-
ment lifetime of a cache in that duration. This can be esti-
mated in terms of the lifetime of individual documents that
are evicted in the given duration.

Consider a document D that entered a cache at time T0
and was removed at time T1. The Life Time of document
D is defined as (T1 � T0). The Average Document Life
Time of the cache is defined as the average of Life Times of
documents that were removed in some finite time period. It
can be seen that the Average Document Life Time of a cache
depends on the disk space contention in the cache. If the
disk space contention were higher, Average Document Life
Time would be lower and vice versa.

While Average Document Life Time of a cache depends
on the disk space contention, it doesn’t accurately reflect the
cache contention. In the technical report version of this pa-
per [11] we provide a detailed example that illustrates the
short coming of Average Document Life Time in accurately
measuring the disk space contention in individual caches.
The example also indicates that any measure for disk space
contention should take into account the document hits and
misses. This is simply because document replacement is an
action to take for caches in reaction to the disk space con-
tention problem and almost all document replacement (re-
moval) policy depends on hits and misses, rather than the
lifetime of a document in the cache. Typically LRU and
its variants use the time when a document was last hit as
a major factor for removal, whereas LFU and its variants
use the number of times a document was hit since it entered
the cache to determine which documents are victims for re-
moval. This observation led us introduce the Expiration Age
of a cache as the measure for the disk space contention of
the cache.

When the cache contention is high, we observe two facts.
First, the number of documents removed from the cache in
a given period is higher. Second and more importantly, even
those documents that were hit recently or that were hit fre-

quently are removed in a shorter period of time. We intro-
duce the concept of Expiration Age of a document to in-
dicate how long a document is expected to live in a cache
since its last hit and how long on average a document gets
a hit at the cache. Obviously, the average of the expira-
tion ages of the documents that were removed from a cache
can be a useful measure of the disk-space contention at
the cache. When the disk-space contention at the cache is
higher, the average document expiration age of a cache will
be lower and vice versa.

In the next subsection we formally introduce the con-
cept of document expiration age and the methods to com-
pute document expiration age. We introduce the concept of
expiration age of a cache and the formula to compute the
cache expiration age in the subsequent section.

3.2. Expiration Age of a Cached Document

Following the discussion in the previous section, there
are two representative ways to define the Expiration Age of
a cached document. It can be defined by the time between
its removal and its last hit to indicate how long a document
is expected to live in a cache since its last hit. This approach
requires caching proxies to maintain the last hit time-stamp
for every document. The alternative is to define the Expira-
tion Age of a cached document in terms of the average time
it takes for the document to get a hit. This requires caching
proxies to maintain the number of hits for each document
cached.

Most of today’s caching proxies employs the Least Re-
cently Used (LRU) algorithm or the Least Frequently Used
(LFU) algorithm or some variants of LRU or LFU as their
cache replacement policy [4, 14]. Any proxy that uses LRU
or its variants will keep the last hit time-stamp for each doc-
ument they cache. Similarly, any proxy that uses LFU or its
variants maintains the number of hits every cached docu-
ment experiences. Therefore, the expiration age based doc-
ument placement scheme can be supported at almost any
proxy with almost no extra cost.

With this observation in mind, We define the Expiration
Age of a document in a cache, denoted as DocExpAge(D,C),
by a formula that combines both LRU Document Expiration
Age and LFU Document Expiration Age in the sense that
DocExpAge(D,C) is equal to the LRU Document Expiration
Age when the cache C uses LRU or its invariant and equal
to the LFU Document Expiration Age when the cache C

employs LFU for document replacement.

DocExpAge (D;C) =

8>><
>>:

DocExpAgeLRU (D;C)
if cacheC employs LRU replacement policy

DocExPAgeLFU (D;C)
if cacheC employs LFU replacement policy

(1)
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DocExpAgeLRU and DocExpAgeLFU are defined in
section 3.2.1 and section 3.2.2 respectively.

3.2.1. LRU Expiration Age

LRU is one of the most well studied and well-documented
document replacement policy for Web caching. In this pol-
icy, whenever a document has to be removed (in order to
make room for incoming documents), the document that
hasn’t experienced a hit for the longest time is selected as
the victim. Thus, caching proxies that use LRU or its vari-
ants will maintain the time of last hit for each document in
the cache. It is straightforward for any caching proxy that
uses LRU cache replacement to support the Expiration Age
based document placement scheme.

The LRU Expiration Age of a document is defined as
the time duration from the time it was last hit in a cache
to the time when it was evicted from the cache. Suppose
a document D was removed at time T1 and the last hit on
the document occurred at time T0, then the LRU Expiration
Age of document D, denoted by DocExpAgeLRU(D,C), is
defined as

DocExpAgeLRU (D;C) = (T1 � T0) (2)

The LRU expiration age of a document indicates how long a
document can be expected to live in a cache after its last hit.
To compute the expiration age for each of the documents
removed from a cache in a given period, the caching proxy
simply needs to keep the time that a document was last hit
and the time that this document was removed from the cache
for the given period of time.

3.2.2. LFU Expiration Age

The Least Frequently Used (LFU) scheme is another pop-
ular cache replacement policy. In this scheme, whenever a
document has to be evicted, the document with least fre-
quency of hits is selected as the victim. To implement this
scheme, a HIT-COUNTER is maintained along with every
document. This HIT-COUNTER is initialized to 1 when the
document enters the cache. Every time a document is hit in
the cache, its HIT-COUNTER is incremented by one. This
HIT-COUNTER is used for calculating hit frequency.

Let us consider how to compute the Expiration Age for
caches employing LFU replacement policy. Clearly, any
caching proxy that employs LFU cache replacement policy
will maintain at least two pieces of information for each
cached document: the time when the document entered the
cache and its hit counter (how many times the document
was hit before it is evicted from the cache). We can then
use the ratio of the total time a document lived in a cache to
its HIT-COUNTER value to estimate the expiration age of
a document. This ratio indicates how long on average the
document D can get a hit in the duration of its life in the
cache C. It can be used as a good indicator of the time that
the document D is expected to live in C since its last hit.

Consider a document D that entered the cache C at time
T0. Suppose this document was removed at time instant
TR. The Expiration Age of the document D under LFU
replacement policy, denoted as DocExpAgeLFU(D,C), can
be estimated by the ratio of the total time it lived in the
cache to its HIT-COUNTER value.

DocExpAgeLFU (D;C) =
(TR � T0)

HIT � COUNTER
(3)

LFU expiration age of a document indicates the average
time it takes for a document to get a hit. It is a good ap-
proximation of the time that a document is expected to live
after its last hit.

We have discussed definitions of document Expiration
Ages for two most popular and well-studied document re-
placement policies (LRU and LFU). We believe that it is
possible to define the same for other replacement policies
too. In this paper all our experiments employ LRU docu-
ment replacement scheme. Hence we use LRU Expiration
Age as the disk space contention measure. In the rest of the
paper we use the terms LRU Expiration Age and Expiration
Age interchangeably. But it has to be remembered that Ex-
piration Age definition depends on the replacement method
being employed in the caches.

3.3. Expiration Age of a Cache

The expiration age of a cache is intended to be a mea-
sure of the disk space contention at the cache. Recall the
discussion in Section 3.1, we can easily conclude that the
average of the expiration ages of those documents that were
removed from a cache indicates the level of the disk-space
contention at a cache. Thus, we define the expiration age of
a cache in a finite time period by the average of the expi-
ration ages of the documents that were removed from this
cache in this period.

Formally, let Victim(C; TI ; Tj) denote the set of docu-
ments that were chosen as victims for removal in a finite
time duration (TI ; Tj).

V ictim(C; TI ; Tj) = fDj8T < TI ; Live(D;C; T )

^8T 0
> Tj ; Evicted(D;C; T

0)g (4)

Where the predicate Live(D;C; T ) denotes that the doc-
ument D lives in the cache C at time T , and the predi-
cate Evicted(D;C; T 0) denotes that the document D was
already evicted from the cache C at time T 0.

The cardinality of the set Victim(C; TI ; Tj) indicates the
total number of documents evicted from a cache C during
the duration (TI ; Tj). The Expiration Age of the cache C in
the duration (TI ; Tj), denoted by CacheExpAge(C; TI ; Tj),
is calculated by the following formula:

CacheExpAge(C; TI ; Tj) =

P
D2V ictim(C;TI ;Tj)

DocExpAge(D;C)

jV ictim(C; TI ; Tj )j
(5)
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The Expiration Age of a cache indicates the average time a
document can be expected to live in the cache after its last
hit. This measure reflects the disk space contention going
on in the cache and thus can be considered as an indicator
of the disk space contention at the cache. A high value for
Cache Expiration Age indicates a low disk space contention
and vice versa. We base our scheme on this crucial obser-
vation. We explain our scheme in the next subsection.

3.4. The Algorithms for EA Scheme

In this section we explain the algorithmic details of the
EA scheme. As we discussed in the previous section, the
EA scheme uses the Cache Expiration Age as an indicator
of the disk space contention at individual caches. In this
section we walk through the EA algorithms and answer the
questions such as how a cache shares its cache expiration
age information with others in a group and how they reach
decisions on whether to cache a document obtained from
another cache in the group.

The EA document placement scheme involves sending
the Cache Expiration Ages of the caches along with the
HTTP request and reply messages among the caches in the
group. A cache that experiences a local miss sends out an
ICP query to all its siblings and parents (or peers). This
cache is henceforth referred to as Requester. The Requester,
on receiving a positive reply from either a parent or a sib-
ling, sends out an HTTP request to that particular cache.
Along with the HTTP request message, it appends its own
Cache Expiration Age. The cache that receives the HTTP
request, henceforth referred to as Responder, responds back
by sending the document to the Requester. Along with the
document, the Cache Expiration Age of the Responder is
also communicated to the Requester. The Requester now
compares its own Cache Expiration Age to that of the Re-
sponder. If the Cache Expiration Age of the Responder is
greater than that of the Requester, the Requester doesn’t
store the document locally, it just serves the user with the
document. However, if the Cache Expiration Age of the
Requester is greater than that of the Responder, it stores a
copy of the document locally.

The Responder also compares its own Cache Expiration
Age with the Cache Expiration Age of the Requester (that
was obtained along with the HTTP request message). If its
own Cache Expiration Age is greater than that of the Re-
quester, the entry corresponding to the requested document
is promoted to the HEAD of the LRU list. Otherwise, the
document entry is left unaltered at its current position.

When the Requester receives negative ICP replies from
all caches, we distinguish two situations. In cooperative
caches using the distributed caching architecture, the re-
questor fetches the document from the origin server, caches
the document and serves it to its client. If the caches in

the group communicate using the hierarchical caching ar-
chitecture, the requestor sends an HTTP request to one of
its parents (assuming the cache has a parent). Along with
that request it attaches its own Cache Expiration Age. It
is now the responsibility of the parent to resolve the miss.
It retrieves the document from the origin server (possibly
through its own parents). Then it compares the Cache Expi-
ration of the Requester with its own Cache Expiration Age.
If the Cache Expiration Age of the parent cache is greater
than that of the Requester, it stores a copy of the document
before transferring it to the Requester. Otherwise, docu-
ment is just served to the Requester, and the parent cache
does not keep a copy of the document. In either case, the
parent’s Cache Expiration Age accompanies the document.
The Requester acts in the same fashion as in the case where
the document was obtained from a Responder (making a lo-
cal copy if its own Cache Expiration Age is greater than that
of the parent).

3.5. Rationale and Features of the EA Scheme

The rationale behind the Expiration-Age based place-
ment scheme is based on two motivations. The first is to
eliminate unnecessary replicas of a document in the cache
group. The second is to ensure that the document be repli-
cated only if the new copy has a reasonable chance to sur-
vive longer than the “original” copy. By this we also ensure
that the EA scheme never reports a miss for a document
when it would have been a hit under the old scheme. So
even in the worst case our scheme is as good as the ad-
hoc placement scheme. We explain how the EA scheme
achieves these objectives.

It is straightforward to see that a document is not repli-
cated at a cache if its own Cache Expiration Age is less than
that of the Responder’s cache from which the document was
obtained. This is because the copy of the document at the
Responder is likely to survive longer than the new copy.
Even if a copy was made locally at the Requestor’s cache, it
would be removed earlier than the copy at the Responder’s
cache. Therefore, under the EA placement scheme, Re-
quester will not store a copy of the requested document lo-
cally, when its Cache Expiration Age is less than the Cache
Expiration Age of the Responder. This obviously reduces
the number of replicas in the cache group.

Now let us consider the situation when the Cache Expi-
ration Age of the Requester is greater than or equal to the
Cache Expiration Age of the Responder. In this case under
the EA scheme, the Requester stores a copy of the document
locally. However at the Responder’s cache, the entry corre-
sponding to this document is not promoted to the HEAD of
the LRU list. Eventually it gets removed if there are no lo-
cal hits. Hence in this situation, the copy of the document
at the Responder’s cache is not given an additional lease of
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life. Again the EA scheme reduces the number of replicas
of documents in the cache.

In addition, by making a local copy whenever the Cache
Expiration Age of the Requester is greater than that of the
Responder, we are ensuring that a copy is made if the new
copy is likely to survive for a longer time. By doing so the
new scheme guarantees that it wouldn’t report a miss when
the original scheme would have had a hit. Therefore this
scheme achieves both of our objectives.

In addition to the fact that the EA scheme reduces the
number of replicas while ensuring a copy be made if the
new copy is likely to survive longer than the already existing
copy, there are other useful features of the EA scheme.

First, the implementation of our scheme doesn’t carry
any extra overhead. Only extra information that is commu-
nicated among proxies is the Cache Expiration Age. Even
this information is piggybacked on either a HTTP request
message or a HTTP response message. Therefore there
is no extra connection setup between the communicating
proxies. Hence there is no hidden communication costs in-
curred to implement the EA scheme.

Second, as is evident from the algorithm, the decision
regarding caching a document is done locally. The caches
don’t rely upon any other process to decide whether to cache
a particular document or not. This is in contrast to some of
the distributed file system implementations where the deci-
sion to store a copy of a file (or a part of it), is taken by a
centralized or distributed manager process [2, 7].

In short, the EA placement scheme is independent of co-
operative cache architectures and cache replacement poli-
cies and its implementation does not have any overheads.

4. Experiments and Performance Results

In this section we investigate whether a document place-
ment strategy utilizing cache state information can improve
document hit rates and latencies? To answer this ques-
tion we performed various simulation based experiments
and measured performance of both Ad-hoc scheme and EA-
scheme on key metrics like cumulative hit rate, cumulative
byte hit rate and latency. Other than these three traditional
metrics, we evaluated the two schemes with respect to aver-
age cache expiration age. Cumulative Hit Rate is the ratio
of the total hits in the group to total number of requests in
all the caches in the group. Similarly cumulative byte hit
ratio is the ratio of bytes that hit in the cache group to the
total number of bytes requested in the cache group. Average
Cache Expiration Age is the mean of the Cache Expiration
Ages of all the caches in the group. If a document is re-
quested by a client at time TR and the document is served
at time TS , latency for document is defined as (TS � TR).
Average latency is the average of the latencies experienced
for all the documents served.

In addition to the simulation experiments reported here,
we have mathematically analyzed both the ad-hoc and EA
schemes. Our mathematical analysis demonstrates that the
EA scheme utilizes the aggregate memory available in the
group more effectively and also improves cache expiration
ages of individual caches in the group. Due to space con-
straints we haven’t been able to include the analysis in this
paper. Interested reader is referred to [11] for a detailed
mathematical analysis.

4.1. Experimental Setup

This subsection explains our experimental setup. We im-
plemented a trace driven simulator to evaluate the new EA
scheme against the conventional Ad-hoc scheme. The simu-
lator is written in Java and simulates both the EA placement
and the Ad-hoc placement scheme. We simulated the cache
group by executing the simulator on different machines in
our department. The simulators running on different ma-
chines communicate via UDP and TCP for ICP and HTTP
connections respectively.

We used the Boston University proxy cache traces for
our simulation. The traces were recorded from proxies and
logs from proxies and HTTP servers from Boston Univer-
sity. The traces were collected from middle of November
1994 to end of February 1995. The logs contain records of
requests from 591 users over 4700 sessions. The number of
records in the log is 575,775, out of which total number of
unique records were 46,830. Additional information about
the traces can be obtained from [3]. In the traces there were
log records with size field equal to zero bytes. We made the
size of each such record equal to average document size of
4K bytes.

In our experiments we simulated a cache group contain-
ing 2, 4, and 8 caches. Cooperative caching architecture of
these cache groups is distributed cooperative caching. So all
the caches in the group are at the same level of hierarchy.
For any misses in the cache group, it is assumed that the
cache where the request originated retrieves the document
from the origin server. In our simulations we also assumed
that all the caches in the cache group have equal amounts of
disk space. Hence if the aggregate disk space available in
the cache group is X bytes and if there are N caches in the
group, the disk space available at each cache is X

N
bytes.

We ran the simulation for cache groups of 2, 4 and 8
caches respectively. For each of the cache groups we mea-
sured the above metrics when the aggregate memory in the
group was 100KB, 1MB, 10MB, 100MB and 1GB respec-
tively. The next section discusses the results obtained from
our simulations.
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4.2. Performance Results

In this subsection we discuss the results obtained from
our trace based simulations. Although we have performed
experiments with cache groups of 2, 4 and 8 caches, due
to page limitations we provide the graphs and tables cor-
responding to the 4 cache group. Complete set of graphs
and detailed discussion on the results can be found in our
technical report [11].

First we compare the hit rates of ad-hoc placement
scheme and EA scheme. Figure 1 indicates the hit rate
of both schemes for cache group of four caches. We mea-
sured the hit rates at aggregate cache sizes of 100KB, 1MB,
10MB, 100MB and 1GB. It can be seen that the difference

Figure 1. Document Hit Rates for 4 cache group

between the two schemes is higher when the cache sizes are
smaller. There is about 6.5% increase in the document hit
rate for a group of 8 caches when the aggregate memory
is 100KB. Difference between the hit rates drops to 2.5%
for the same cache group when the aggregate cache size is
100MB.

This observation can be explained as follows. When the
cache sizes are small, even small amounts of increase in
memory yields substantial improvements in cache hit rates.
This phenomenon has been discussed by many researchers.
It can also be observed in our graphs. When the cache size is
increased 10 times from 100KB to 1MB, the cache hit rate
increases by almost 20%, whereas hit rate increases only
by 3% when the cache size increases from 100MB to 1GB.
Therefore when cache sizes are small, a better utilization of
the memory yields substantial gains in terms of document
hit rate. However at larger cache sizes, a better utilization
of memory doesn’t translate correspondingly into hit rates.
However it performs slightly better than the ad-hoc scheme
for large caches. In summary, the EA scheme yields signifi-
cantly better performance when the cache sizes are limited.

Next we studied the effect of the EA scheme on cumula-
tive byte hit rates. Figure 2 represents the byte hit rates for

Aggregate Memory Conventional Scheme EA Scheme
100K 3.21 4.03
1M 38.17 44.80
10M 446.91 507.40
100M 4570.96 5369.32

Table 1. Average Cache Expiration Age (in Secs) for 4
cache group

cache group of four caches. It can be seen that byte hit rate
patterns are similar to those of document hit rates. For a
group of 8 caches, improvement in byte hit ratio is approx-
imately 4% when the aggregate cache size is 100KB and is
about 1.5% when the aggregate cache size is 100MB.

Figure 2. Byte Hit Rates for 4 cache group

To illustrate the reduced disk space in the cache group,
we tabulate the Average Cache Expiration Age for both the
Ad-hoc and for the EA scheme. Table 1 shows these values
for cache group of 4 caches at various aggregate cache sizes.
We have not come across any cache related paper that uses
cache expiration age as a metric. However we regard it as
an important metric that indicates disk space contention in
the cache group. We can observe that with EA scheme the
documents stay for much longer as compared with the Ad-
hoc scheme. This demonstrates that EA scheme reduces
disk space contention in the cache group.

To study the impact of the EA scheme on the latency
experienced by clients, we estimated average document la-
tency for both the ad-hoc scheme and the EA Scheme. In or-
der to estimate the average document latency, we measured
the latency for local hits, remote hits and also misses for
retrieving a 4KB document 1. We ran the experiments five

1If we closely observe cooperative caching, the hits can be of two types.
The first type is what is referred to as a local hit. If the document is avail-
able in the same cache where the client request first came in it is a local hit.
If the document is retrieved from other cache in the group it is a remote hit.
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thousand times and averaged out the values. The latency of
a local hit (LHL) was 146 milliseconds. The latency of a
remote hit (RHL) was 342 milliseconds and the latency of
a miss (ML) was 2784 milliseconds. To obtain latency val-
ues for misses, we measured latency values for various web
sites and took their mean value.

Let LHR, RHR, MR represent the local hit rate, remote
hit rate and miss rate and LHL, RHL, ML represent the local
hit latency, remote hit latency and miss rate latency respec-
tively. The average latency of requesting a document can be
estimated by the following formula:

Average Latency =
LHR � LHL + RHR � RHL + MR � ML

LHR + RHR + MR
(6)

The graph in Figure 3 indicates the estimated average
latency for group of four caches. It is clear that the EA
scheme performs significantly better when the cumulative
cache size is 100KB, 1MB and 10MB. When the cache size
is 100MB, the latencies of both schemes are approximately
same whereas at 1GB the average latency of the EA scheme
is slightly higher than that of the ad-hoc scheme for a num-
ber of reasons.

First, the local and remote hit rates under the EA scheme
are different from the local and remote hit rates of the ad-
hoc placement scheme. As we reduce the number of repli-
cas in individual caches, it is obvious that the remote hit
rates under the EA scheme will increase. Table 2 shows the
local and remote hit rates for a group of 4 caches along with
the estimated latency values. As we can see, the remote hit
rates in the EA scheme are higher than that of the ad-hoc
scheme.

Figure 3. Estimated latency for 4 cache group

Second, when the cache sizes are small, the miss rates
under the ad-hoc scheme is higher than that of the EA
scheme. As the average latency for serving misses is rel-
atively large compared to the latency for serving local and
remote hits, the average document latency under the EA

If the document is not available in the cache group, it is a miss.

scheme is much lower than that of the ad-hoc scheme. This
is simply because the latency for serving misses dominates
the average document latency. However, as the cache size
reaches 1GB, the difference between the miss rates of the
two schemes becomes very little. Now the remote hit la-
tency becomes the dominating factor in determining the
average document latency. Thus, the ad-hoc scheme per-
forms slightly better than the EA scheme at 1GB. For exam-
ple, in our experiments when the aggregate cache size was
1GB, the remote hit rate under the EA scheme was 32.02%
whereas the remote hit rate of the ad-hoc scheme is only
11.06%. The difference between the miss rates of the two
schemes is 0.6%. We observe that in general when the miss
rates of the ad-hoc scheme is higher than the miss rates of
the EA scheme, the EA scheme performs substantially bet-
ter than the ad-hoc scheme.

In summary, the EA document placement scheme yields
higher hit rates, byte hit rates and reduces the average docu-
ment latencies in those caches where document hit rates are
sensitive to the available memory in the group.

5. Related Work and Conclusion

The field of cooperative caching has been researched ex-
tensively. As mentioned earlier, ICP was introduced for ef-
ficient and fast communication. Summary cache [6] and
adaptive web caching [9] are mechanisms to reduce or opti-
mize the number of ICP messages among caches. Few other
techniques such as hints, directories, hashing etc. have been
proposed as alternatives to ICP in order to reduce the overall
cost of document location [8, 16].

In addition to cache sharing protocols, basic research in
cooperative proxy caching ranges from cooperative caching
architectures [5] , cache coherence mechanisms, to cache
placement and replacement schemes. Cooperative caching
architecture provides a paradigm that assists proxies coop-
erate efficiently with each other. Current cooperative cache
architectures are roughly classified as Hierarchical [5] or
Distributed cache architectures [13]. Document placement
schemes determine when and where to place a document
in the cooperative cache. There are two models for docu-
ment placement viz. Lazy mode - in which documents are
retrieved and cached only when some clients request them
and eager mode - in which documents are pre-fetched and
cached based on access log predictions [10]. Document re-
placement algorithm decides which documents should be
evicted from caches in order to make room for new doc-
uments entering the cache. While document placement
for cooperative caching has not been well studied, a num-
ber of document replacement algorithms have been pro-
posed [4, 17], which attempt to optimize various cost met-
rics.

Although lot of research efforts have gone into this field
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Ad-hoc Scheme EA Scheme
Aggregate Memory Local Hits Remote Hits Latency Local Hits Remote Hits Latency
100 KB 36.18 5.70 1689.15 30.45 16.26 1582.44
1 MB 53.28 8.43 1170.48 42.32 22.58 1014.84
10 MB 62.55 9.71 894.69 48.38 27.37 866.08
100 MB 68.11 10.35 732.20 49.87 30.51 722.60
1 GB 71.62 11.06 622.15 51.38 32.02 645.89

Table 2. A Comparison of Ad-hoc scheme and EA scheme for a 4 cache group

of cooperative proxy caching, very few have considered
document placement schemes and the potential improve-
ment of such schemes on hit rates and document latencies.

In this paper we have presented an Expiration-Age based
document placement scheme (the EA scheme). This new
scheme takes into account the contentions at individual
caches in order to limit the replication of documents within
a cache group and increase document hit ratio. The main
idea is to view the aggregate disk space of the cache group
as a global resource of the group, and uses the concept of
cache expiration age to measure the contention of individ-
ual caches. The decision of whether to cache a document
at a caching proxy is made collectively among the caches
that already have a copy of this document. The EA scheme
effectively reduces the replication of documents across the
cache group, while ensuring that a copy of the document
always resides in a cache where it is likely to stay for the
longest time. We have reported our initial study on the po-
tentials and limits of the EA scheme using trace-based sim-
ulations. The experiments show that the EA scheme yields
higher hit rates and better response times compared to the
existing document placement schemes used in most of the
caching proxies.
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