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Abstract—With the advent of Internet of Things, the field
of domain sensing is increasingly being servitized. In order to
effectively support this servitization, there is a growing need for
a powerful and easy-to-use infrastructure that enables seamless
sharing of sensor data in real-time. In this paper, we present
the design and evaluation of Data Quality-Aware Sensor Cloud
(DQS-Cloud), a cloud-based sensor data services infrastructure.

DQS-Cloud is characterized by three novel features. First,
data-quality is pervasive throughout the infrastructure ranging
from feed discovery to failure resilience. Second, it incorporates
autonomic-computing-based techniques for dealing with sensor
failures as well as data quality dynamics. Third, DQS-Cloud
also features a unique sensor stream management engine that
optimizes the system performance by dynamically placing stream
management operators. This paper reports several experiments
to study the effectiveness and the efficiency of the framework.

I. INTRODUCTION

It is widely expected that the Internet of Things (IoT)
paradigm will enable remote sensing on a massive scale. IoT
will comprise of large numbers of wirelessly-connected sen-
sors that will collaboratively sense various aspects of a given
environment. Furthermore, IoT will facilitate dissemination
and sharing of sensor feeds on a global scale in near real-time.

Based on the recent trends in various computing domains
such as storage, software and infrastructure, it is reasonable to
expect that IoT will lead to ‘servitization’ of domain sensing
functionalities. In such a sensing-as-service ecosystem, sensor
feeds collected by one party (henceforth referred to as sensor
service providers) may be utilized by another party (henceforth
referred to as sensor service consumers). In other words, sensor
service providers install and maintain sensor infrastructures,
and share/trade the feeds from these sensors with sensor
service consumers over the Internet. The service consumers
can then embed the feeds into their own applications.

There is some initial work on building infrastructures
for supporting the sensing-as-service ecosystem. Xively [1]
(formerly known as Cosm and Pachube) is an early attempt at
such an infrastructure. However, effective servitization requires
powerful mechanisms for sensor feed discovery, planning
of feed processing workflow (query processing workflow),
failure resilience and system management. To the best of our
knowledge, most existing infrastructures do not provide these
capabilities, thus requiring high-levels of manual intervention.
This imposes significant burdens both at service providers’ as
well as service consumers ends. Furthermore, although quality

of sensor feeds is critically important for sensing services,
the concept of data quality is very weak in most existing
infrastructures.

Towards addressing the shortcomings of existing sensor
services platforms, in this paper, we present DQS-cloud – a
novel cloud-based sensor servitization framework that incorpo-
rates advanced feed discovery, feed processing and adaptation
capabilities. A unique aspect of DQS-cloud is that the concept
of data quality (DQ) of sensor feeds is central to its design.
DQ is pervasive throughout the architecture and drives all
mechanisms and techniques of the DQS cloud. In designing
the DQS-cloud infrastructure, this paper makes three research
contributions.

• First, we present a sensor service discovery technique
that takes into account the DQ requirements of individ-
ual sensor service consumers and the DQ properties of
individual sensor feeds. This DQ-aware sensor service
discovery technique finds the feed that best matches
requirements of individual sensor service consumers
both with respect to the content of the feed as well as
the quality of the feed.

• Second, we design a DQ-aware technique for plan-
ning feed processing workflows. This technique intel-
ligently places feed processing operators on gateway
devices as well as cloud servers so as to optimize the
bandwidth and battery consumption. Furthermore, our
technique incrementally adapts to entry and exit of
sensor service providers and consumers.

• Third, we present a DQ-aware fault tolerance mecha-
nisms to deal with failures and recoveries of individual
sensors. Our technique minimizes the disruption of
service at sensor data consumers. Further, it also
reduces the need for human intervention.

We have implemented a real prototype of the DQS-cloud
framework. We present several experiments to demonstrate the
efficiency and the scalability of the proposed architecture and
techniques.

The remainder of the paper is organized as follows. Sec-
tion II presents background and motivation on Internet of
things and Data as a service. Section III explains the system
architecture of our DQS-Cloud system. In section IV, we
discuss three novel features of our system in detail. Section V
demonstrates the experimental study of the system. In the next
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Fig. 1: High-Level System Architecture of DQS-Cloud

section VI, we cover the related work followed by conclusions
in section VII of the paper.

II. BACKGROUND AND MOTIVATION

Internet of Things (IoT) will comprises of billions devices
achieving a web where things would be connected, could sense
and could communicate with each other. IoT will be true
enabler of ubiquitous sensing bringing in dynamic network
of billions of devices and will bring further understanding of
complex natural processes, efficient management of transport,
medical, and infrastructure services, help in effectively report-
ing and tackling events of interest and many more things. The
idea of Computing as Service where the cloud providers have
successfully catered Platform as a Service (PaaS), Infrastruc-
ture as a Service (IaaS) and Software as a Service (SaaS)
model has revolutionized the Information Technology industry.
It will be very likely that in near future, the cloud based
Data as a Service model where either raw data or processed
data would be used for key decision making will further
expand the servitization concept. This will gain popularity
as it clearly has several advantages. First, as in the case of
cloud computing it will reduce the cost for individuals by not
having to worry about buying own servers and other technical
and maintenance overhead. Second, by enabling individuals,
domain scientists and businesses to share real time data, the
sensor service paradigm will enable easy data transfer on
global scale. Third, it will lay foundation stone to sensor
service industry where sensing providers would expose their
data feed and the middleware would provide appropriate data
service to the consumers.

The availability of online data markets such as InfoChimps
[24], Azure marketplace [25] data market has validated the
Data as a Service model. However, the existing data mar-
ketplace host static pre-collected data mostly structured in
nature. Our systems intention is to provide real time data
to consumers. Xively [1] is the first effort towards building

a real time data sharing cloud platform but there remains
some fundamental limitation between the requirements of next
generation IoT platform and Xively. First, it supports very
primitive query to obtain the data of interest hence it is a
tedious process for the user to search the data feed that fits
her requirements of various kind. Second, if the user chosen
data feed stops providing data due to various reasons, the
user needs to go back and redo the entire search of finding
appropriate data feed. Such design needs the user to write her
own feed monitoring tool. Third, the user remains ignorant if
a new data feed with better capabilities gets registered with
the cloud server. Ideally, in such case the server itself should
choose the best data feed dynamically and provide it to the
user, but such facility is missing. Fourth, the concept of data
quality is completely missing from such platform, as a result a
user has no choice of expressing the application specific feed
requirements.

III. DQS-CLOUD SYSTEM ARCHITECTURE

In this section, we describe the architecture of our system.
The Data Quality-Aware Sensor Cloud system is based on the
features of stream and query processing engine, data quality
and monitoring. Figure 1 shows the high-level architecture of
our proposed cloud system.

A. Overview

The system consists of three layers, i.e.,sensor data
providers, subscribers and cloud server. The first layer is the
sensor data providers in which providers can vary from cell
phone to Raspberry Pi to any of the possible sensor data
receiver acting as a gateway as shown in Figure 2. To be
a provider, a device must have the ability to send sensor
data over the Internet. The second layer, subscribers, may
be any device or application that belongs to a company, a
department or a gateway to other wireless sensor network.
Subscribers basically show interest to collect sensor data in
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Fig. 2: High-Level Architecture of Provider

real time for a particular data flow. The last layer, the cloud
server is the backbone of our DQS-Cloud system as shown in
Figure 1. Different components exist on the server functioning
and working continuously to process the data, keeping an eye
on the quality of the data, processing query, and operations in
real time.

Figure 2 demonstrates a high level architecture of a
provider. We use the terms provider / publisher and data stream
/ sensor interchangeably throughout the paper. Devices such as
Raspberry Pi, cell phones are considered as providers because
they can connect to the Internet. Small appliances such as
temperature, humidity, wind, and heart rate monitor sensors are
those that actually collects the data. Each of these devices are
connected to the providers to transmit data over the Internet.
The channel of data points for each small devices is termed as
data stream. Many data streams can be supported by a service
provider.

A key component of our architecture is the Data processing
and query layer. It is responsible for maintaining DQ aware
catalogs, DQ aware sensor feed discovery, dynamic allocation
and de-allocation of buffers, the operations to be performed on
data streams and control the status (active / passive) of the data
streams. The Publisher Interface component is responsible for
the registration of data providers and streams. It also informs
the data stream on its new frequency and delay time interval
calculated by the Data processing and query layer. The next
component is the Subscriber Interface, which is responsible
for the registration of subscribers, maintaining metadata for
each subscriber and sending data in real time to the subscriber
in question provided by the Data processing and query layer.

The next component is the Quality Monitoring component,
which is designed to monitor data streams. It checks whether
the data stream meets the requirement for which they have
agreed during registration. Some of the quality parameters
that we consider are data stream polling, the delay time
and frequency interval. The other monitoring component is
Subscriber Monitoring whose task is same as that of Quality
Monitoring component except that it oversees the data pro-
cessed by the Data processing and Query layer exclusively
for the specific subscriber. The quality parameters are also the
same as mentioned previously. The last component is Data

layer, which is composed of in-memory buffers and database
comprising of metadata and history information. The Buffers
are responsible for storing the recent sensor data feeds to
allow real-time processing. The Metadata database stores the
information of all subscribers, data providers and data flows.
The system also has a History database which is responsible
for storing the data points of all data streams. This is useful
for batch processing and serve ad-hoc queries.

B. Data Quality Model

Our main objective is to make a DQ as a multidimensional
space considering all sensor devices have multiple quality
parameters or metadata like accuracy, delay, frequency, lati-
tude, longitude, sensor type, etc. In addition, the sensors are
susceptible to failure which entails the data quality as an
important factor to be considered for DQS-Cloud. There is
no limitations on the number of quality parameters, but our
current system has limited the parameter to few and can readily
be adapted to other factors effectively. The quality parameter,
Accuracy represents how close the data values of the sensors
are to the real values. The Delay is the time interval after
which provider sends the data to the cloud server. Frequency
is the time interval after which the sensor collects data points
or values. Location of sensor is the combination of latitude
and longitude. Sensor types are as temperature, humidity, light,
wind sensors, etc.

With this model, each individual sensor feed maps to a
specific point in the multidimensional space at any given
point of time. The coordinates of the point to which a feed
is currently mapped depends upon the current values of its
DQ attributes. On the other hand, each domain application
maps to a region (sub-space) of the multidimensional space.
This subspace indicates the value ranges along various DQ
dimensions that are acceptable to the domain application. With
this model, a particular sensor feed, say Si, satisfies the DQ
constraints of a domain application DAk, if Si maps to a point
that falls within DAk’s sub-space. Figure 3, illustrates our
multidimensional DQ model, in this example, S2 satisfies the
DQ requirements of DA1, whereas S1 does not.

Apart from the multidimensional space, a DQ model should
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have some characteristics as mentioned below but are not
limited to:

1) Effectively accommodate a diverse and possibly
growing set of DQ attributes.

2) Quickly determine the feeds that satisfy the DQ
requirements of particular domain applications or
subscriber.

3) Compare sensor feeds based on their DQ character-
istics.

Fig. 3: Multidimensional DQ Model

C. Query Language

DQS query language is used to describe both subscriber
the kind of data they need, as well as the provider to describe
the feeds they provide. There are several ways to represent
the query in the form of XML, JSON and CSV. Our system
allows to write the query language, either in JSON or XML.
In general, the syntax of the query contains two main parts.

1) Description of attributes - sensor type, latitude, lon-
gitude, etc.

2) The attributes of data quality - delay (milliseconds),
frequency (milliseconds), accuracy, etc.

For a provider, the description attribute describes the kind
of data that is being served along with geolocation sensors
and data quality attribute that describes the ability of quality
of sensor data. While for a subscriber, the description attribute
specifies the kind of data and the geolocation the subscriber
is interested in along with the data quality attributes that
describes the data quality requirements of specific application.
Figure 4 shows an example of the JSON query language. There
are other ancillary attributes in the query language running on
our system, but is not described here.

IV. DATA QUALITY AWARE TECHNIQUES

All techniques to be discussed are highly integrated and
coupled to perform various autonomic operations like choos-
ing an optimized data stream, failure detections, bandwidth
optimization, etc. in our DQS-Cloud system.

Fig. 4: Query Representation

A. Data Quality Aware Service Discovery

The main purpose of this feature is to optimize the number
of active data streams. The optimization is performed by
choosing the appropriate data stream for subscribers main-
taining awareness of quality data. The importance of data
quality for sensor data requires a way to establish a mechanism
for introducing data quality parameters in the cloud system.
Systems like Xively, can provide sensor data, but do not
consider the quality of the sensor devices and data. Apart
from the quality of the data, the current sensor cloud platform
require subscribers to manually perform the tasks of choosing
providers, which is a very difficult task to handle.

We used two techniques to carry out the aforementioned
limitations of other systems. First, without the subscribers
intervention, our system incorporates automated technique for
choosing an optimized data stream for the subscriber based on
querys DQ parameters. For example, if subscriber Si wants
to receive sensor data of type ti with frequency fi and the
delay interval di of a particular location li, the subscriber has
to manually do the lookup to select a data stream Di. Basic
systems do not guarantee availability of exact data streams, as
a result the subscriber may have to choose an optimized data
stream up to the threshold for each of the DQ parameters.
Given this, our system chooses Di on the fly which will
be either exact or optimized feed for the subscriber Si, This
process is automated without the intervention of the subscriber.
To select a data stream for many subscribes, the system selects
the one that is better able to meet the need of as many
subscribers. In DQ 3-dimensional model, where the parameters
of DQ are accuracy, delay and frequency, we chose a data
stream with the lowest frequency, the exact accuracy and delay
which is within the threshold of the subscriber. For example,
in Figure 5, both data streams D1 and D2 are within the DQ
sub-space of subscriber S1. Our system chooses data stream
D1 because it has the minimum frequency interval of 10,000
milliseconds.

Second, for several subscribers which have similar queries,
a single data stream can be used to meet their needs. For
example, the subscriber Si and Sj both want to receive data
from sensors with type tx, frequency fx, and delay dx of
a particular location lx. In the basic system, for both the
subscribers, human intervention is required to choose the data
stream. Therefore, in the worst case, they are most likely to
choose different data streams, assuming that the system has
many streams that can meet their needs. This means for the
subscriber Si and Sj , Di and Dj data stream has been chosen,
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Fig. 5: Illustration of data quality aware service discovery
and query planning.

respectively. However, in our case, the number of active data
streams for similar subscribers are reduced efficiently. This
reduction is due to the selection of already active data streams.
For the above example, our system tweaks the DQ parameters
of one of the data streams by performing some operations,
so that it can satisfy the need for both Si and Sj subscriber
within their thresholds, respectively. In Figure 5, as discussed
before, our system chooses data stream D1 for subscriber
S1. We can see that both data stream D1 and D2 are also
within the sub-space of subscriber S2. However, our system
chooses data stream D1 as it is already active. Thus, it results
in fewer data streaming for m subscribers considering data
quality awareness. We have also shown this in the experimental
section V-C.

Using the above techniques, our system also gains more
control over providers and subscribers, which can help us in
handing of data stream failures dynamically. Also, since we
have control on the choice of the data stream to keep active,
we can easily switch from one data stream to another on the
fly even when the server and the subscribers are up, running
and listening. We will discuss more about this in detail later.

B. Quality Aware Query Planner

The main purpose of this feature is to plan the query
effectively. These queries include DQ characteristics that must
be considered when selecting a sensor feed for a subscriber.
We have already discussed how to discover feeds, but the next
challenge is deciding where to place the quality operators such
as filter, sampler, etc. The optimized decision should facilitate
a lower consumption of bandwidth of the network between
providers and cloud server and cloud server and subscribers,
respectively. The number of data points required per subscriber
can be calculated as:

Sin =
SubscriberDelay(Sid)

SubscriberFrequency(Sif)

Similarly, number of datapoints transferred per data stream
of the provider is:

Din =
DatastreamDelay(Did)

DatastreamFrequency(Dif)

To reduce bandwidth consumption on the network between
providers and cloud server, a certain level of operators have
to be pushed to the end of the provider. Our system achieves
this by using two-step procedures. First, it reduces the number

of data points per data stream of a provider. For example,
subscribers Si and Sj both want to receive sensor data of
type tx with frequency fi, fj and of delay di, dj of a
particular location lx, respectively. Both queries are similar
but with different delay parameters and frequencies. In the
basic system, both queries will be considered as different and
choose two different data streams. As we know, Din must
be greater or equal to Sin, otherwise the data stream Din
cannot be selected for the subscriber. Thus, the number of
data points to transmit will be more than the desired, i.e.
Din, Djn for subscriber Si, Sj , respectively. Whereas in our
system, which has DQ aware operators, the important task
is to decide which operators should be pushed to providers
for data streams. For each subscriber, we push the values of
the corresponding DQ parameters and perform operations on
providers. Thus, transmitting only the selected data points Sin,
Sjn as needed. Therefore, we have reduced the number of data
points from

∑
Dkn to

∑
Skn, where k ∈ 1 to m and m is

number of subscribers. In Figure 5, for both subscribers S1

and S2, data streams D1 and D2 are selected, respectively.
Our system computes new delay interval for D1 and D2 as
50,000 milliseconds and 60,000 milliseconds, respectively and
new frequency interval as 250,000 milliseconds and 240,000
milliseconds, respectively. So, the number of data points are
reduced from 134 to 37 per 1,000,000 milliseconds.

The second step uses incremental approach by annotating
the active feeds or data streams. As we discussed in sub
section IV-A, we reduce the number of active data streams by
calculating new values for the DQ parameters. Thus, for the
above scenario, since both queries are similar, only one data
stream is needed. The calculated value is the minimum of each
DQ parameters of all subscribers to a data stream. If the data
stream Di is selected for both the subscribers Si, Sj , a new
value for the DQ parameter of a data stream is calculated. For
example, Did and Dif have new value equal to min(Skd) and
min(Skf) where k ∈ 1 to m, respectively. With this approach,
the data stream transmits Din using new calculated values,
which is less than or equal to

∑
Skn. In Figure 5, data stream

D1 is within the sub-space for subscribers S1 and S2. The
data stream D1 is selected for both as per the data quality
aware service discovery mechanism. The computed delay and
frequency interval for D1 is 50,000 milliseconds and 240,000
milliseconds, respectively. Hence, the number of data points
are further reduced from 37 to 20 per 1,000,000 milliseconds.

However, to reduce the bandwidth between the cloud server
and the subscriber, we do not send extraneous data points
to the subscribers. Using above two steps, data stream Di

sends Din data points, which is greater than or equal to Skn,
where k ∈ 1 to m. So we have a second level of quality
operators in the cloud server, to send only data points using
the selected or annotated data stream. Now, the second level
of planning occurs at Data processing and Query layer to send
only the requested quality aware data points to the respective
subscribers. Therefore, we apply such as filter, sampler, etc.
for each subscriber. In the above case, for subscribers Si and
Sj , with the second level of query planning, we transmit only
data points Sin and Sjn, respectively, from the cloud server.
Therefore, we have reduced the number of data transmission
from the cloud server to subscribers from mDin to

∑
Skn,

which is the desired number of data points. In Figure 5, the
number of data points transferred to subscriber S1 and S2 is
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Fig. 6: Illustration of failure resilience and adaptations.

20 and 17, respectively.

By using the above mentioned approaches we are able
to meet the needs of all subscribers without losing any DQ
aware threshold. Along with that we also reduce the bandwidth
consumption of the network between providers and cloud
server. We also demonstrate this experiment in section V-D.

C. Failure Resilience and Adaptation

The most important aspect of this feature is to detect
failures of both providers and subscribers and dynamically
adapt to the new environment efficiently. Some of the situations
in which the provider or the subscriber may stop responding
may be fluctuations in network bandwidth, a malfunction of
the sensors, the battery drain, power outage, etc. Current
systems such as Xively [1] do not address such failures. If
the data stream or the provider fails, the subscriber has to
manually choose a new data stream again. Our system through
Quality monitoring and Subscriber monitoring component,
detects faults of both data streams and subscribers respectively.
Both of these glitches are reported to Data processing and
Query layer and the system performs autonomic computing.
Considering DQ-aware aspects, tasks such as choosing a new
data stream for an active subscriber, changing the delay time
interval and frequency of data streams and updating the status
(active / passive) of data streams and subscribers are taken care
exclusively by this feature.

Our system deploys a very small application at the
providers end for each data stream allowing us to control them.
With this application, after each polling interval each of the
data stream polls to control new value of DQ parameters. Our
system initially sets the delay interval for each data stream to 0.
This means that the system does not need the data of this data
stream. Therefore, we can deduce that if a data stream delay
is set to 0, it is in passive state, otherwise in active state. We
activate a data stream if and only if a subscriber needs it.

Providers such as sensing devices are highly susceptible to
failures. We need such a mechanism that maintains a minimum
data reception interruption without fail for the subscribers.
For minimal disruption, our system continuously monitors
each data stream, regardless of their status (active / passive)
and autonomously adjust to the new need. We monitor the
polling of each data stream. If for any data stream our Quality
monitoring detects that it is probing for a certain period of
time, we believe that the data stream is not functioning and sets
its delay time interval to 0. However, our system was already

using this data stream to meet the need of some subscribers.
For such scenarios, our system adapts autonomously and
select a new data stream for these subscribers with minimal
disruption. While performing this task, the subscriber may
not receive data for certain time. Our system ensures that the
subscriber receives data within their DQ thresholds or report
about current data stream failure with no other data streams
satisfying the need. If the subscriber is still willing to wait,
the system sends the data as soon as we have a data stream
for it. In Figure 6, as discussed for previous two features,
D1 is selected for both S1 and S2. The computed delay and
frequency interval for D1 is 50,000 milliseconds and 240,000
milliseconds, respectively. If data stream D1 stops functioning
properly and our system detects it, then for both subscriber S1

and S2 we need to choose a new data stream. As a result, our
system chooses a data stream D2 for both the subscribers as
it is within their DQ sub-space.

Similarly, subscribers can also be prone to failure especially
if they are sensor devices. Our system’s Subscriber monitoring
component detects the failure by checking heartbeat of all
subscribers after a certain time interval. Once the failure of a
subscriber is detected, the count of the number of subscribers
is reduced for a data stream of a provider. This way the system
can decide whether to keep data stream active or passive.
For example, after a failure of subscribers, none are left for
a data stream, we set the delay of this data stream back to
0. However, it may be the case that other subscribers are
still active in the system and use this data stream, so the
system still keeps it in active state. The important task in this
case is to calculate new values for the DQ parameters of a
data stream. The system will choose minimum value of DQ
parameter of all the corresponding subscribers as noted above.
Recalling how we choose the DQ parameter value for the data
stream, the system may have to compute new values for its
DQ aware parameters. In Figure 6, data stream D1 is selected
for both subscriber S1 and S2. The computed delay and
frequency interval for D1 is 50,000 milliseconds and 240,000
milliseconds, respectively. If subscriber S1 stops functioning
properly and our system detects it, then for data stream D1

the number of subscribers reduces to 1. The new computed
delay and frequency interval for D1 is 60,000 milliseconds
and 240,000 milliseconds, respectively.

Using the mechanism of direct supervision and coordina-
tion of the monitoring components with Data processing and
Query layer, our system can withstand failures and dynami-
cally make DQ aware adjustments.

V. EXPERIMENTS

In this section, an experimental study of our DQS-Cloud
system is presented. The objective of this experiment is to
demonstrate:

1) The dynamic nature of the system.
2) Optimization incurred in terms of number of active

data flows and bandwidth consumption.
3) The efficient working of our system.

We have implemented this prototype from scratch in Java
using Java SE SDK 1.7. In order to replicate real-world
scenario, we have implemented a client-based architecture
where the clients are providers and subscribers, while the
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TABLE I: List of data streams considered for experiments.

Data Streams D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Frequency Int. 50 25 30 50 60 10 40 30 45 35
Delay Int. 150 100 150 100 180 200 120 60 180 140

TABLE II: List of subscribers considered for experiments.

Subscriber S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Frequency Int. 50 60 40 40 50 12 11 30 40 35
Delay Int. 250 240 200 200 100 240 330 90 80 140

server is our cloud server. All providers, subscribers and server
are on different machines of different platforms to consider
heterogeneous environment.

For the experiments, the server uses i7-3630QM processor
Intel Core clock speed of 2.4 GHz machine having main
memory of 12GB and a cache memory of 6MB. The ma-
chine operates on the platform of Microsoft Windows 8. The
publishers and subscribers machines are running on Windows,
Linux, and UNIX operating systems. For persistent storage on
the server, we have used MySQL 5.6. The provider generates
synthetic data for each data streams and stores the data in
the lightweight SQLite database in real time. To consider the
network latencies we positioned publishers, subscribers and
server geographically.

A. Reference Tables and Assumptions

In all experiments below, we consider data streams and
similar subscribers, so there will be at least one possible match
for each subscriber. We assume that all data quality parameters
are satisfied except for the frequency and delay interval. Table I
and II shows the data streams and subscribers are used for
experiments along with their corresponding frequency and
delay time intervals. All mentioned time intervals are in terms
of seconds.

B. Time taken to send first data point to subscriber

In general, the subscriber has to manually select an active
sensor feed from the list of sensor feeds as in the case of
Xively [1]. Also, the subscriber does not know when it will
receive its first data point. Whereas, our system has an ability
to choose a data stream on the fly and send the subscriber first
data points as discussed below:

1) When the selected data stream is passive, the first
step is to make the data stream active and then the
active data stream sends data according to the delay
time calculated by the Data processing and Query
layer. Since the clocks are not synchronized, the time
needed would be two times of the delay time of the
subscriber in the worst case.

2) If the data stream selected for the subscriber is
already active, then the time taken would be equal
to the time delay of the subscriber.

Referring to Table I and II, initially assuming all data
streams as passive. For the subscriber S1, system will chose
data stream D6. Therefore, S1 will receive its first data
point after twice its delay, i.e. 500 seconds. While when the

TABLE III: Time taken to choose a new data stream for a
subscriber.

Num of Data Streams 2 5 10 50
Time taken (ms) 25 26 26 26
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subscriber S2 processing data stream D6 is already active and
can satisfy its query, S2 will receive first data point after 240
seconds.

Similarly at the time of the failure of current data stream,
subscriber will receive next data points in the same manner as
above. Table III shows the amount of time it took to choose
a new data stream for a subscriber by varying number of data
streams and the fixed number of subscribers.

C. Data Streams Optimization

In this experiment, we demonstrate that our system min-
imizes the number of active data stream while meeting the
needs of all subscribers. Figure 7 shows the comparison with
the basic system. In general, it is considered that for each
subscriber a new data stream will be selected. Whereas in
our system, using DQ aware catalogs and Metadata, the data
stream which is already active is chosen and new delay and
frequency interval is calculated to meet the need of the sub-
scriber. If there is no active data stream which can accomplish
that, we chose the data stream with the lowest frequency that
satisfies the delay time from the list of data streams.

Looking at Table I and II, and assuming that initially
all providers are registered and passive. Figure 7 shows the
number of providers that were activated when processing each
subscriber. The active data stream at the end of processing all
subscribers can be referred from the Table IV.

TABLE IV: Active data stream after processing all
subscribers.

Data Stream D2 D6 D8
Frequency Int. Computed 50 11 30
Delay Int. Computed 100 200 80
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D. Network Bandwidth Optimization

Here, we show that due to optimizations of data streams,
autonomic computations of new delay and frequency interval,
and decision to promote some query operations to the provider
for the data streams, the DQS-Cloud system can reduce the
number of data points transmitted from the provider to the
server. We consider the bandwidth consumption of the network
in terms of number of data points transmitted from the data
streams to the server in the time interval of 1000 seconds.
In a basic system, in the worst case, for n subscribers, n
data streams will be selected. Therefore, the data points are
transferred to each of the subscribers through their respective
data streams. So the number of data points is the sum of all
data points required by the subscriber.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10

#D
at

a 
Po

in
ts

 R
ec

ei
ve

d

#Subscribers

BANDWIDTH OPTIMZATION

Basic-System

DQS-Cloud

Fig. 8: Data Points Optimization

Referring to Table I and IIand Figure 8, it can be said,
for the basic system if all 10 subscribers are active, then 370
data points are needed continuously in real time to the cloud
server within 1000 seconds. Whereas in our system, the same
data stream is used to meet need of many subscribers. Our
system receive only 145 data points to meet the needs of these
subscribers.

E. CPU and Memory Utilization

Here, it is shown that because of all the optimization we
have incurred in our system, we have gained a significant
performance in terms of CPU and memory utilization. We
compare our system against the basic system, which has DQ
parameters but not the data quality aware techniques.

We generate synthetic data at the provider for each data
stream, in order to replicate the real world scenario. The
provider can receive data either from itself or from other sensor
devices. This data is stored in the SQLite database. Therefore,
for each sensor data stream, there are two corresponding
process, first, to generate data points, and second, to interact
with the cloud server.

For this experiment, all the data streams are running on a
single provider, which is acting as a gateway, so we captured
the CPU and memory utilization of the provider and the cloud
server.

Despite of data quality aware techniques, memory utiliza-
tion at the provider for both basic and DQS-cloud system
came out to be same. Because of data streams and bandwidth
optimization, cloud server uses less in-memory buffer storage
with reduced database interaction and less processing power.
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Fig. 9: CPU Utilization at provider

In terms of CPU utilization, for basic system, all data
streams are considered as active, hence they continuously
transmit the data as per DQ parameters. Whereas, in our
system, only few data streams are active and some operators
are pushed to the provider for each to reduce extraneous data
points. CPU utilization is considerably low at both the provider
and the cloud server. This is also due to the need of few data
stream monitoring. Figure 9 and 10 shows CPU utilization at
the provider and server, respectively.
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VI. RELATED WORK

There has been considerable research work done in the
area of wireless sensor network and stream processing engines
that can be considered as predecessor to our work but not
in true sense. Wireless sensor network (WSN) has a network
of several sensors connected in a fashion that enables data
to reach to the base station. Several research questions such
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as network formation, storage, in network processing, local-
ization, debugging have been studies to the depth. However,
WSN has not been designed to share the data across geographic
region. An important contribution to make the sensor data
available is undertaken by projects like IrisNet [9] and Sensor
web [10]. These framework define a suite of web service
interface and communication protocol to deliver the data to
the consumer.

Similarly, data stream processing engines and event pro-
cessing engines such as Aurora [13], Borealis [12], StreamBase
[26], Esper [27] are also related to our projects. In this era of
Internet, ”Internet of Things” or ”Cloud of Things” is a novel
paradigm which is rapidly gaining popularity in the world of
wireless technology and sensor web. The basic idea all the
things are connected and can communicate with the cloud.
Xively [1] is an early attempt in this area which supports
uploading and downloading of real time data using RESTful
APIs. However, issues such as providing sensor data to internet
scale as service, sensor feed discovery, sensor feed composition
and interoperability are not adequately addressed. Also, they
do not include the data quality aspect in the infrastructure for
sensor Data as a service. We believe that DQS-Cloud is the first
ever effort towards this direction which provides data quality
aware real-time data marketplace cloud service.

VII. CONCLUSION

It is expected that the Internet of Things paradigm will
lead to servitization of the field of domain sensing. However,
there is lack of effective infrastructure for supporting such
servitization. This paper presented the design of DQS-Cloud,
which is a novel cloud based framework for real-time sharing
and discovery of sensor feeds. The concept of data quality
(DQ) is central to the design of DQS-Cloud in the sense that
it drives most key techniques of the framework. DQS-Cloud
incorporates three unique features, namely a DQ aware sensor
discovery techniques, a DQ aware technique for planning of
feed processing workflows and a DQ aware fault tolerance
mechanism. Our experiments show that the DQS framework
is very effective in delivering appropriate sensor feeds to sensor
data consumers while minimizing consumption of valuable
resources such as bandwidth and CPU.
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