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Abstract— Connectivity based node clustering has wide rang-
ing applications in decentralized Peer-to-Peer (P2P) networks
such as P2P file sharing systems, mobile ad-hoc networks,
P2P sensor networks and so forth. This paper describes a
Connectivity-based Distributed Node Clustering scheme (CDC).
This scheme presents a scalable and an efficient solution for
discovering connectivity based clusters in peer networks. In con-
trast to centralized graph clustering algorithms, the CDC scheme
is completely decentralized and it only assumes the knowledge
of neighbor nodes, instead of requiring a global knowledge of
the network (graph) to be available. An important feature of
the CDC scheme is its ability to cluster the entire network
automatically or to discover clusters around a given set of
nodes. We provide detailed experimental evaluations of the CDC
scheme, addressing its effectiveness in discovering good quality
clusters. Our experiments show that utilizing message-based
connectivity structure can considerably reduce the messaging
cost, and provide better utilization of resources, which in turn
improves the quality of service of the applications executing over
decentralized peer-to-peer networks.

I. Introduction
In recent years the field of distributed data management

systems has witnessed a paradigm shift from the traditional
Client-Server model to the Peer-to-Peer (P2P) computing
model. While file sharing applications like Gnutella [4] and
Kazaa [6] were the harbingers of this change, various other
systems like mobile ad-hoc networks, P2P sensor networks etc.
have adopted this model of computation and communication.

Although these systems appear to be diverse and disparate,
all of them share some distinct characteristics:
� Network and data management are completely decentral-

ized
� Individual nodes have limited knowledge about the struc-

ture of the network
� Networks are dynamic with frequent entry and exit of

nodes
In this paper we use the term Peer-to-Peer systems in a

generic sense to refer to any system that possesses these char-
acteristics. Although, the P2P distributed computing paradigm
alleviates the scalability problem that has dogged client-
server systems and enables a lot of interesting and useful
applications, it also raises key research challenges that need
to be addressed by the community including:

1) Scalable techniques for data discovery and peer look-up

2) Efficient mechanisms for communication among nodes
in the network

The strategies adopted by most of the present systems to
address these challenges are costly in terms of the number of
messages required.

It is our contention that the absence of any knowledge of
the network structure is proving to be a stumbling block in
utilizing the full capabilities of P2P networks. We believe that
every such network exhibits some unique structural properties
and discovering these network structures is crucial to efficient
data discovery, node look-up and communication.

Connectivity-based node clustering is one such interesting
and important network structure that can be utilized in various
ways to improve the quality of service of applications running
on these networks. Informally, a connectivity-based node clus-
tering (hereafter referred to as node clustering) can be defined
as a partition of network nodes into one or more groups based
on their connectivity. We provide a formal definition of a node-
cluster in Section II. For now we shall assume that two nodes
that are highly connected are placed in the same cluster.

To illustrate the utility of node clustering, consider a P2P
file sharing system like Gnutella [4] or Freenet [3]. The
predominant file discovery mechanism in such systems has
been broadcast-based breadth first search. Though, this is a
simple solution its major drawback immediately comes to the
fore: The number of messages in the network is very high.
To overcome this drawback some researchers have proposed
techniques to limit the breadth first search by sending the
query message to a few neighbors that are either random or
selected based on some criteria. The tradeoff here is between
the number of messages and the quality of search results.

Now let us see how we can utilize the cluster structure
for limiting the number of messages, while ensuring minimal
degradation of search results. Suppose the nodes in the net-
work are clustered and each node in the network knows which
of its neighbors belong to its own cluster. Now a node � � in
the system, on receiving a query message forwards it to all
its neighbors that do not belong the same cluster as � �. From
the neighbors that belong to its cluster, �� selects a very few
nodes and forwards the message to them. The logic behind this
scheme is that nodes in same clusters are highly connected and
hence it is not necessary to send query message to each one



of them.
A second example of the utility of node cluster information

is the design of an intelligent file replication scheme for P2P
file sharing systems. The problem here is to reduce the number
of replicas of files, while ensuring that average file download
latency does not increase significantly. Some systems replicate
a file at each node the file passes through. Other systems
replicate a file only at those nodes which downloaded the
file. A simple scheme that uses cluster information would
limit the number of replicas in each cluster to some small
value. In addition to the above two examples, researchers in
the past have applied clustering information to address certain
key problems in various decentralized P2P networks [1], [8],
[7], [5].

Although node cluster information has been utilized to
improve performance and scalability in P2P networks, very
few researchers have studied the problem of discovering and
maintaining node clusters in P2P systems. There has been
considerable research in the algorithm community addressing
the problem of clustering nodes in directed and undirected
graphs. Although the P2P systems are essentially undirected
graphs, most existing graph clustering algorithms assume that
the entire graph information is available in one central loca-
tion. Unfortunately, none of the P2P networks maintain their
complete and up-to-date connectivity information. Therefore
the need is to design schemes that can cluster the nodes of a
network in a completely distributed and decentralized manner.

With these problems in mind, this paper presents a Connec-
tivity based Decentralized node Clustering scheme (CDC), a
scalable and an efficient solution for discovering connectivity
based clusters in peer networks. In contrast to centralized
graph clustering algorithms, the CDC scheme only requires
the local knowledge about neighboring nodes. An important
strength of the CDC scheme is its ability to cluster the
entire network automatically or to discover clusters around a
given set of nodes in the network. Our experimental results
indicate that these schemes yield high quality clusters. An
initial experimental evaluation of the CDC scheme is provided,
showing the effectiveness of the CDC scheme in discovering
good quality clusters.

II. Definitions and Terminologies
The connectivity structure of every P2P network can be

represented by an undirected graph with nodes of the P2P
network forming the vertices of the graph and connections
between nodes being the edges of the graph. Henceforth we
use the terms graph and network interchangeably. Similarly,
the terms node and vertex are used equivalently, and so are
the terms edges and connections.

Let � � ����� be an undirected graph, where
� � ���� ��� ��� ���� ��� is the set of nodes and � �
���� ��� ��� ���� ��� is the set of edges in the graph G. Two
nodes �� and �� in the graph are said to be Connected if there
exists a series of consecutive edges ���� ��� ��� ���� ��� such
that �� is incident upon the vertex �� and �� is incident upon
the vertex �� . The series of edges leading from �� to �� is

called a Path from vertex �� to �� . The length of a path � is
the number of edges in the path.

A Similarity function � on the vertices of a graph � is a
symmetric function mapping � �� to ��� , where ��� is the
set of positive real numbers and ���� 	� � ��	� ��. Further the
function satisfies the condition that ��	� �� � � iff 	 � �.
The similarity and dissimilarity function may be appropriately
defined according to the semantics of the particular graph
under consideration and the particular application at hand.Two
of the most popular similarity functions have been the number
of K-Paths between the vertices and the Reach Probability
from one vertex to another in the graph.

A Clustering 
� of a graph � � ����� is collection of
the sets �
��� 
��� ���� 
���, satisfying the following three
conditions: (1) each 
�� is a non-empty subset of vertices
(�
��� 
�� � � ) and

����
��� 
�� � � . (2) Any two nodes in


��, � � � � �, are similar. (3) Any two nodes belonging to
two different sets, say 
�� and 
��, are not similar. Each of
the 
�� in 
� is termed as a cluster. A clustering � is termed
as a Disjoint Clustering if the clusters are pair-wise disjoint.

For graph clustering problem, the similarity can be defined
in host of meaningful ways. Each of these definitions lead
to different natural clusters and have different applications.
However there are some properties that most useful clustering
schemes share.
� In a graph �, for any two nodes � � and �� which belong

to the same cluster 
��, there exists at least one path in
� such that all intermediate vertices along that path lie
in 
��.

� For a graph �, any two vertices lying in the same cluster
tend to have large number of paths connecting them.

� A random walk on the graph � tends to visit most of
the nodes in a cluster multiple times before it leaves the
cluster.

Based on these properties of good clustering, a number of
graph clustering algorithms have been proposed. The two most
popular schemes are: the K-Path Clustering Algorithm and
the MCL Algorithm [10]. Like most existing graph clustering
algorithms, both of them assume that the global information
about the entire graph (i.e., the number of vertices, the number
of edges, and their connectivity) is available in one central
location.

III. CDC Scheme for Graph Clustering
In contrast to centralized graph clustering algorithms, the

problem of distributed clustering assumes that each node
has limited view of the entire network. In this section we
present our scheme for distributed node clustering, termed as
the Connectivity based Decentralized node Clustering scheme
(CDC). First, we first formalize the distributed node clustering
problem and then discuss the CDC approach.

Let � � ����� be an un-weighted, undirected graph.
Each node �� in this graph is mapped to an autonomous and
independent computing element 
� �. Further each of these
computing elements knows only its neighbors. In other words,
the node 
�� has the knowledge of the existence of another



node 
�� iff 
�� and 
�� are neighbors in the graph �.
This condition has important connotations. First, it implies
that we do not have a centralized global view of the graph
�. Second, it also means that each node can communicate
only with its immediate neighbors. If it ever wants to reach
a node that is not its neighbor, then it would have to route
the message through one of its neighbors. The problem is
how to discover reasonable node clusters in the graph � in a
completely distributed fashion, i.e. without ever constructing
a global view of the graph.

The problem setting described above reflects the scenario in
real-world systems like P2P file sharing systems, P2P sensor
networks and ad-hoc mobile networks. As an example let us
consider the Gnutella network [4]. Each peer in the network
maintains a live TCP connection with a few other peers, which
are called its neighbors. The knowledge of each peer about the
network is limited only to its immediate neighbors.

The central idea in the CDC scheme is to simulate flow in
the network in a distributed and a scalable fashion. Clustering
a graph through flow simulation is based on the following
intuition. Let us think of the graph as a network of mutually
intersecting roads. The roads are the edges of the graph and
the intersection of two or more roads are the nodes of the
graph. Suppose a large number of people who do not know
the structure of the roads start out from a node � � in the
road graph, which we call the Originator node. Let each
person carry a weight 
� along with him. As these persons
are not aware of the structure of the roads, they choose any of
the roads starting out from the node � � and travel along the
road to reach another intersection. Whenever they reach an
intersection, they drop some of the weight they are carrying
at the intersection. Then they choose another road at random
and continue to travel along that road to execute the same
cycle till they are tired of walking or the weight they carry
becomes negligible. Now if one were to aerially observe the
roads and the intersections, he would observe two facts:
� If the graph structure has a densely connected graph struc-

ture around the originator node, then a high percentage of
people can be observed in the nodes (intersections) and
edges (roads) that lie in the dense region (i.e. cluster)
around the originator.

� Nodes that lie inside the cluster would have accumulated
a higher weight from all the people who passed through
the node and dropped part of their weight. In compari-
son, the nodes that are remotely approachable from the
originator would have accumulated very small weight.

These observations lead us to the central idea of the algo-
rithm. If there are a few originators in the graph from where
people would start their random walk, the nodes would acquire
weight from different originators. The idea then is that each
node would join a cluster from whose originator, it received
the maximum weight. If some node did not receive enough
weight from any node, then it decides to be an outlier node
(a node that does not belong to any cluster).

In a distributed P2P network, peer nodes are analogous to
intersections, and connections between peers represent roads.

People moving about are simulated by messages that are
circulated in the network. Each message has a predefined Time
to Live(��� for short). Each message executes only ���

hops, after which it expires and is discarded.

A. CDC Algorithms

The CDC algorithm starts out by initiating messages from a
set of nodes that are the originators of the clustering algorithm.
The set of originators is represented by � � ���� ��� ���� ���,
which initiate the process of message circulation by sending
out messages to all its neighbor nodes.

Each cluster message is a tuple consisting of the following
five fields:
� Originator ID (OID): A field uniquely identifying the

Originator node
� Message ID (MID): A field distinguishing each message

from all other messages from the same originator.
� Message Weight (MWeight): The weight carried by the

message
� Source ID (SourceID): A field indicating the most recent

node the message visited
� Time to Live (TTL): The maximum number of hops this

message can be re-circulated
The algorithm for the originator selection itself is com-

pletely distributed and is explained in detail in Section III-B.
For now we assume that we have been provided with a set of
originators.

The ��������, the ��� and the ��� fields in the mes-
sage tuple are self explanatory and straightforward to initialize.
The weight function that we use estimates the probability
of reaching any node from originator nodes. An originator
node �� initializes message weight as �����
����� �

�
	
��

�
��

.
Each node �� maintains a set of values, represented as

�����
��������� ���. This value indicates the sum of the
weights from all the messages that originated at �� and
reached ��. On receiving a message ���, the recipient ��
updates the �����
����� function corresponding to the mes-
sage originator. Then the node �� checks whether the ��� of
the message is greater than �. If so, �� forwards the message
to all its neighbors. Before the re-circulation, the recipient
updates the �
����� and the ���. The message weight is
divided by the degree of �� and the ��� is decremented by
1.

Each node may receive multiple messages from several
different nodes. It calculates the �����
����� function for
each of the originators from which it received messages. Each
node joins the cluster led by the Originator, for which the
value of �����
����� is the maximum. If all �����
�����

values lie below a predefined threshold, then the node remains
an outlier. The psuedo-code for the CDC scheme is provided
in Algorithm 1 and 2.

Now we provide an example to illustrate the functioning
of the CDC algorithm. In Figure 1 we have a graph of 14
nodes, labeled from � to ��. We illustrate how the algorithm
works when the process is initiated by three Originator nodes
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Fig. 1: CDC Illustration

��� �� ���. The figure illustrates �����
����� acquired by
each node at different steps of the algorithm execution. The
arrows in the diagram denote the messages flowing through
the system. The weight carried by each message is indicated
next to the arrow. The last diagram shows the �����
�����

each node has gained due to the three originators after 4 hops.
Each node joins the cluster from which it has gained the
maximum �����
����� leading to three clusters marked in
the diagram. However, for node �, the �����
����� received
from all Originator nodes are less than the threshold and hence
it becomes an outlier.

Algorithm 1 Algorithm Executed by Message Originator � �

Create a New Message ���
�������� ��, ������	
���� �

����������
����
����	��� ��, �������� ��
�
�����
�������� Current System Time �A unique value�
for Each node �� � ������� do

Send ��� to ��
end for

The algorithms described above are self-explanatory. How-
ever, we want to discuss an important issue regarding the
weight function we are using in the algorithm. If a node � �
in the graph receives � messages whose ��� � � from orig-
inator ��, then the quantity,

�
���������������
������

has special significance. This quantity indicates the probability
of being in node ��, if one were to start from node �� and
perform a random walk of exactly �� ����������	�� steps.

This section described algorithms to discover clusters
around a given set of Originators. In the next section we
address the question of how to select Originator nodes so that
the scheme yields good clusters.

B. THP Originator Determination Scheme

Choice of Originators is critical to the performance of the
CDC scheme discussed in the previous section. We discuss an
example that elucidates the significance of selecting “good”
originator nodes. The diagrams in Figure 2 shows four differ-
ent scenarios, indicating the clusters we obtain when we start
out with four different sets of Originators. In each scenario,
the originators are indicated by the shaded nodes.

Algorithm 2 Algorithm Executed by Node � � on Receiving
���

�Check whether I have received messages from ��������
if I have seen messages from ������� before then
�Check if the ������������� �� ��������
if ������������� �������	����	�� then
������	
���������� � ������	
���������� �
������	
���

else
������	
�����������������	
���

�������������������	����	��
end if

else
�This is the first message from ���
������	
����������� ������	
���������� �������	
���
���������������������

end if
if ������	
���������� � ����	
��� then
����	
���� ������	
������ ����
����	
�������������

end if
if ������� � � and 	
��	����
�

����������
� �
��	
��� then

Create a New Message �	����
�	����������������, �	�����
����	��� ��
�	�������	
���� 	
��	����
�

����������

�	�������� � �������� � ��, �	�������� �
�������
for Each node �� � ������� do

Send ��� to ��
end for

end if
Wait for ��
�� 
�	 in anticipation of other messages
if ����	
��� � �	
������	����� then

Join the cluster led by ����	
�����
else

Remain an outlier
end if

Scenario 1 is the best clustering we can obtain for the
graph. In this case we have three clusters and a single outlier.
The clustering in scenario 2, though not ideal is again a
good clustering. The clusters we obtain in other two scenarios
are unintuitive and are in no way close to ideal clustering
in scenario one. Though we have used the same ���, the
same weight function and the same number of Originators, we
obtain different clusters that not only vary in number but also
in their quality. This example demonstrates the importance of
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Fig. 2: Importance of Good Originators

selecting good Originators.
Now we briefly discuss the properties a good originator set

should possess.
� First, the set of originators should be spread out in all

regions of the graph.
If some regions in the graph do not have any originators,

then nodes in these unrepresented regions do not receive
enough messages and hence do not acquire sufficient weight
from any originator. Hence these nodes either get associated
with a cluster where they do not really belong or they choose
to remain as outliers, both of which result in bad clusters.
� Second, a node �� is considered to be a good originator

if it acquires more weight due to messages initiated
by it than the weight acquired by messages initiated
by any other originator. i.e. �����
������� �� ��� 	
�����
��������� ������� 
 � .

In any graph, it is not desirable to have originators that
accumulate more weight from messages that originated at
some other node than the messages initiated by it. If such were
to be the case, then the originator itself would “defect” to a
cluster initiated by some other originator. This again would
result in the formation of bad clusters.

The originators Scenario 1 and Scenario 2 in Figure 2 satisfy
both these conditions and yield good clusters. In contrast the
originators in Scenario three are concentrated in one single
region. The originators in Scenario 4 do not satisfy the second
condition. Both of these yield bad clusters.

Although the second property is logical, the crucial question
is how do we determine whether a node satisfies this criterion?
This property demands that we know �����
����� for each
pairs of vertices, which cannot be determined till we actually
execute the CDC scheme.

We adopt an approximation technique to solve this problem,
which we call the Two Hop Return Probability technique.
In this technique we determine the probability of returning to
a node �� in the graph in two hops, if we were to perform a
random walk on the graph starting at � �. This is calculated as
�!�"�#���$���� �

�
����������

� �
	
��

�����	
��

����

�.
A higher �!�"�#���$���� indicates that the node
�� has a higher chance of satisfying the condition

�����
��������� ��� 	 �����
��������� ������� 
 � �, and
hence has a lesser chance of “defecting” into another cluster.
As this scheme relies upon the two hop return probability, we
term it as the Two-Hop-Probability scheme or THP scheme
for short.

The THP scheme performs two tests. First, it checks
whether the node has already received any clustering messages
from other nodes in its vicinity. If so, it means that there are
other nodes in its vicinity that have already chosen to be Orig-
inators. Hence the node opts not to become an originator and
does not initialize messages. If the node discovers that there
are no Originators in its vicinity, then it obtains the degree of
each of its neighbors and computes the Two Hop Return Prob-
ability (�!�"�#���$). If the Two Hop Return Probability
is higher than a pre-defined threshold (�!�"�#���������)
then the node chooses to be an Originator. Otherwise, the node
will not become an Originator.

The two configurable parameters for this algorithm are the
� ��� ��% factor and the �!�"�#��������� factor. If these
factors are set to high values, the number of originators would
drop and vice-versa.

The THP algorithm is completely distributed. The number
of messages circulated in this phase is also very small. Each
node, which has not received a message from an originator in
its vicinity, has to just get the degree of each of its neighbors.
Hence this scheme is very efficient in terms of the messaging
cost.

IV. Handling Node Dynamics
Most P2P networks exhibit some degree of dynamism in

their structures, although the nature and the scale of dynamism
are specific to each network. For example in P2P file sharing
systems, the peer nodes enter and exit the system at arbitrary
points in time. This dynamics in the structure affects the
existing clusters of the nodes in the network. Re-clustering the
entire network on each node-entry or exit is impractical for two
reasons: 1. Re-clustering on each node-entry and exit causes
the network to be loaded with clustering messages. 2. If the
entry and exit of the nodes are frequent, then the clusters never
stabilize. Even before the clusters are discovered, another
node might enter or exit the system, causing the whole
process to restart. Therefore efficient and effective schemes
are algorithms are needed to handle the node entry and exit.

We have designed algorithms to handle the entry and exit
of the nodes in P2P networks. These schemes are based on
the fact that node entry and exit are localized phenomena that
affect the network structure in the close vicinity of the node
that is entering or exiting. The key idea of the node entry
mechanism is to calculate the “attraction” between the exiting
clusters and the entering node. The node then joins the cluster
to which it is most attracted to. Similarly when a node exits the
system, its immediate neighbors recalculate their “attraction”
to various clusters and “defect ” to the cluster to which they are
most attracted to. These algorithms are completely distributed
and invloves messaging between the entering/exiting node and
its immediate neighbors. Due to space limitations, we do



not discuss these schemes in this paper. Interested readers
may refer to our technical report [8], where we discuss the
algorithms in detail and provide experimental evaluation of
the schemes.

V. Experiments and Results
This section reports the experiments we performed to eval-

uate the proposed schemes and the results we obtained. We
begin by discussing the metric used for measuring graph
clustering accuracy.

A. Accuracy Measure for Graph Clustering

Measuring the accuracy of a given clustering on graph is
in general a tricky task. This is primarily because, unlike data
points in Euclidean spaces, the distance measure for graphs
can be defined in many different meaningful ways. Hence it
is possible to obtain different accuracy measures based on the
different similarity measures. In this paper we use an intuitive
performance measure proposed by [10] termed as the Scaled
Coverage Measure.

Let � � ����� be a graph and let 
� �
�
��� 
��� ���� 
��� be a given clustering on the graph. Let
us consider any node ��.

� Let &$����� denote the set of neighbors of ��.
� Let 
�������� denote the set of all nodes that belong to

the same cluster as that of vertex ��, i.e. 
�������� � 
��
if �� 
 
��.

� False Positive Set is defined as the set of all nodes, which
are not neighbors of ��, but are included in the same
cluster as ��, i.e. '����������	����� 
�� � ��� ��� 


�������� � �� 

 &$������.

� False Negative Set is the set of all neighbors
of ���� but are excluded from 
��������, i.e.
'����&�����	����� 
�� � ������ 
 &$����� � �� 
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Then define Scaled Coverage Measure of the � � in � with
respect to the clustering 
 as:
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Some of the salient features of the Scaled Coverage Measure
are:

� It assumes a value of ��� at best and ��� at worst.
� It “punishes” a clustering for both false positives and false

negatives.
� A node in a sparse region of the graph is penalized more

for false positives and false negatives than a node in a
dense region.

The accuracy of a clustering 
 over a graph � is defined
as the average of the Scaled Performance Measure of all of
its nodes.

�� ��!�� ���"�#���� �

�
����

����������� ���

�� �
(2)

The highest clustering accuracy achievable for any graph �

is called its optimal clustering accuracy. The optimal clus-
tering accuracy for any graph depends upon its structure. It

Parameter Power Range
Graphs Graphs

Total Nodes 5000 5000
Total Edges 11446 27083
Average Degree 4.57 10.83
Maximum Degree 623 25
Minimum Degree 1 1
Variance in Degree 212.53 11.08

TABLE I: Parameter Values for Various Topology Graphs

evaluates to 1 for graphs which contain only fully connected
components, with no edges across the components. For all
other graphs the optimal clustering accuracy is strictly less
than �.

B. Experimental Data Sets

For our experimental evaluation, we have used two kinds
of datasets:

Power Law Topology: We use power law topology to
generate graphs that resemble P2P data sharing networks in
their topological structure. Studies, in past few years, on
topology of the Internet [2] and more recently on P2P data
sharing networks [9], have revealed that topology of such
networks closely follow what is well known as a Power Law
Distribution. For our experiments we have used power law
topology graphs with 100, 200, 500, 1000, 2500 and 5000
nodes.

Range Topology: Range topology models the connectivity
relationship in wireless/sensor networks. In wireless networks
two computing units have the knowledge of the existence of
the other, only if they fall in each others radio range. Range
topology graphs model this phenomenon. In our experiments
we have use range topology graphs with 100, 200, 500, 1000,
2500 and 5000 nodes.

Table I lists some of the important properties of both
datasets.

C. Experimental Results

In this section we provide a brief description of each
experiment and the results obtained. We begin by comparing
the accuracy of the CDC algorithm.

Cluster Accuracy of CDC Scheme
Our first experiment is aimed towards demonstrating the

effectiveness of the CDC scheme we have proposed. In order
to do so, we compare the accuracy of the CDC scheme
with the Centralized MCL Clustering and the Distributed K-
Path Clustering schemes. We use the public domain software
developed by the author of [10] for obtaining clusters in the
centralized MCL scheme.

The MCL graph clustering software requires us to set a con-
figurable parameter, which controls the clustering granularity.
This parameter can take on values from ��
 to �. When the
parameter is set to lower values, the algorithm yields fewer
number of large clusters and vice versa. We have obtained
clusters by setting it to 1.2, 2, 3, 4 and 5. We measure the
accuracy of the clusters obtained and use the highest value
as our benchmark. We would like to make it clear that a



value, which is in between these values might yield cluster
with slightly higher accuracy.

In this experiment we want to test the accuracy of the
clusters yielded by the bare CDC algorithm. Hence we turn
off the THP originator determination mechanism. Instead, we
randomly select originators. In the experiments we report
we randomly select ��� of the total nodes in the graph.
These nodes act as the originators, initiating the messages.
As the originator selection is random, we have performed
each experiment ��� times and we report the average of the
accuracy values obtained.
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Fig. 3: Accuracy of CDC Scheme on Power Graphs

Figure 3 and 4 indicate the clustering accuracy of CDC
scheme, the centralized clustering scheme and the Distributed
K-path clustering scheme on power-law topology and range
topology graphs respectively. The graphs show that the CDC
scheme performs better than the K-path clustering scheme for
all graph sizes of both power and range topology. The accuracy
value of the CDC scheme is around 
�� and ��� higher than
the accuracy of the distributed K-path scheme for a power-law
graph and range topology graphs of 5000 nodes respectively.
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Fig. 4: Accuracy of CDC Scheme on Range Graphs

However the centralized MCL scheme performs better than
the CDC scheme for both power-law and range graphs. The
centralized MCL scheme beats the CDC scheme by almost
��� and ��� for power graphs and range graphs with 5000
nodes respectively.

These results show that the CDC scheme can yield
clustering results comparable to the centralized scheme, thus
demonstrating the reasonableness of the CDC approach.

THP Originator Mechanism Accuracy

Having demonstrated that CDC scheme is a reasonable
approach for the distributed graph clustering problem, we
now demonstrate the effectiveness of THP originator selection
mechanism.
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Fig. 5: Accuracy of THP Scheme on Power Graphs

Figure 5 and 6 indicates the clustering accuracy of the
Two-Hop Probability originator determination scheme and
compares it with the clustering accuracy of the CDC scheme
with random originator selection and centralized MCL scheme
on power-law and range topology graphs respectively

The results show that THP originator determination scheme
improves the clustering accuracy of the CDC scheme consid-
erably for graphs of both topologies. For example, on a power-
law graph of 5000 nodes, the THP originator mechanism yields
a mean accuracy value 0.381 as against 0.267 given by the
CDC scheme with random originators, which amounts to an
improvement of over �
�. Similarly for range graphs of 5000
nodes, the improvement is over 
��.

Surprisingly, the CDC scheme coupled with the THP
originator determination mechanism yields better accuracy
values than the centralized MCL scheme for both power and
range graphs with 200, 500, 1000, 2500 and 5000 nodes.
We did not expect our scheme to perform better than the
centralized scheme. We think that this phenomenon is due to
the structural properties of these two topologies. We feel that
for graphs of other topologies, the centralized scheme would
perform slightly better than the CDC scheme with THP
originator mechanism. Hence, though we do not claim that
our algorithm performs better than the centralized clustering,
we certainly feel that the accuracy of the clusters given by
our scheme is very close to the accuracy of the clustering
yielded by centralized MCL scheme.

Does CDC Scheme Need High TTL?
One concern which we had regarding the CDC scheme was

whether we need to initialize messages with high TTL values
in order to obtain good clusters? Using messages with high
TTL values has two problems which might be detrimental to
the practicality of the scheme. First, it increases the message
load on the network. Second, it increases the time required for
the clusters to emerge.

In order to figure out the effect of Initial-TTL on the
clustering accuracy, we obtained various clusters by setting the
Initial-TTL values from 1 to 5. Due to space constraints we
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Fig. 6: Accuracy of THP Scheme on Range Graphs

limit our discussion to power-topology graphs. The Figure 7
indicate the accuracy values of range topology graphs with
200, 500 and 1000 nodes.
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Fig. 7: Accuracy at Various TTL for Power Law Graphs

The results indicate that the algorithm yields good clusters
even when the TTL is set to 2. Further the accuracy values
for TTL of 5 are almost equal to the accuracy yielded by the
scheme when the TTL is 2. This demonstrates that the scheme
stabilizes very fast, which is a necessity for any distributed
algorithm.

VI. Related Work and Conclusion
In this paper we have proposed the Connectivity based

Distributed Node Clustering (CDC) scheme for clustering
nodes of a decentralized peer-to-peer network. The scheme
can either cluster the entire network automatically or detect
clusters around a given set of nodes. To the best of our
knowledge, this paper is the first one to report a completely
distributed and decentralized scheme for node clustering. This
work has been primarily inspired by the MCL algorithm
proposed by Dongen [10]. Researchers in algorithmic graph
theory have proposed a couple of algorithms for general graph
clustering. Out of these algorithms the two most significant
ones from a practical view point have been the K-path and
the MCL clustering algorithms [10].

The K-path clustering algorithm is based on the observation
that in a graph �, any two nodes in the same cluster (if
such clusters indeed exist in �) would be connected by large
number of paths of lengths (, ( ) �. The MCL algorithm
introduced by [10] views the graph as a Markov Chain
and operates on the corresponding markov matrix, which
contains one-step transition probabilities between all pairs of

vertices. The algorithm defines a non-linear operator termed
as the Inflation operator. Alternate application of the self-
multiplication operator and the inflation operator, reveals the
clusters in the graph.

The key difference between our work and the ones discussed
in these papers is that these are centralized graph algorithms
working on the global view of the graph, whereas our scheme
is completely distributed and does not need a complete con-
nectivity structure.

The work in the distributed computing community address-
ing the problem of electing cluster-heads bears some resem-
blance to our work [1]. These algorithms although distributed,
do not attempt to cluster the network based on its connectivity
structure. Hence the clusters discovered are not necessarily
“good” clusters from a connectivity stand-point. In contrast
our scheme is entirely based on connectivity structure of the
network and hence leads to high quality clusters.

Several researchers have proposed applying node clustering
information to various systems for improving the efficiency
and quality of service [7]. However very few of them address
the question of discovering good quality clusters. In short,
the work reported in this paper is unique and very few
researchers have addressed the connectivity based distributed
node clustering problem in such detail as we have done in this
paper.

We plan to extend this work in a variety of directions. First,
we want to experiment with graphs of various other topological
structures to study how our scheme performs. The second line
of research we want to pursue is to design variants of our
scheme to suit specific needs of different networks like P2P
networks with low bandwidth or networks with devices which
have low battery power etc. We think it is not only feasible
but also important to design variants of our scheme to suit
specific constraints. Finally, we also plan to study in detail, the
application of cluster information in various decentralized P2P
systems such as P2P file sharing systems, sensor networks,
mobile ad-hoc networks etc.
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