

University of Georgia Computer Science Department

Ranking Documents based on Relevance of Semantic Relationships

Boanerges Aleman-Meza, I. Budak Arpinar, Mustafa V. Nural, Amit P. Sheth

Goal

- Provide a ranking algorithm for documents with no structure or links between them
- Traditional methods may not work well (Pagerank etc.)

Methodology

- Annotate documents with named entities
- Exploit relationships between the query and the entities using Ontology
- Rank the relationships with the Relevance Measure

Overview: Schematic Diagram

- Semantic Annotation
 - Named Entities
- Indexing/Retrieval
 Using UIMA
- Ranking Documents
 - Relevance Measure

Semantic Annotation

The <Country>United Kingdom</ Country> (a.k.a. <Country>Britain</ Country>), is a constitutional monarchy and unitary state composed through a political union of four constituent entities: the three constituent countries of <Country>England</Country>, <Country>Scotland</Country> and <Country>Wales</Country> on <Country>Great Britain</Country>, and the province of ... Spotting appearances of *named-entities* from the ontology in documents

Relevance Measure of Entities

- Finds Relevant Neighboring Entities
- Keyword Query -> Entity Results
- Ranked by Relevance of Interconnections among Entities(a.k.a. relationships)

Determining Relevance (first try)

"<u>Closely related</u> entities are more <u>relevant</u> than distant entities"

- $E = \{e \mid \text{Entity } e \in \text{Document } \}$
- $R = \{f \mid type(f) \in user-request \\ and distance(f, e \in E) <= k \}$

- Good for grouping documents w.r.t. a context

(e.g., insider-threat)

- Not so good for precise results

.. Measuring what is relevant

Few Relevant Entities

From Many Relationships . . .

• **very few** are relevant paths

Defining Relevant Relationships

Relevance is determined by considering:

- type of *next* entity (from ontology)
- type of connecting relationship
- *direction* of the connection
- *length* of discovered path so far (short paths are preferred)

... Defining Relevant Relationships

 Involves human-defined relevance of specific path segments

- Does the 'industry focus' of a company make a document more relevant?

Find: <u>relevant</u> neighbors of entity e

 Entity-neighborhood expansion
 delimited by the 'relevant sequences'

Relevance Measure, Relevant Sequences

Ontology of Bibliography Data

Relevance Score for a Document

- 1. User Input: keyword(s)
- 2. Keywords match a semantic-annotation An annotation is related to one entity *e* in the ontology
- 3. Find relevant neighborhood of entity *e* Using the populated ontology
- 4. Increase the score of a document w.r.t. the other entities in the document that belong to <u>e's relevant neighbors</u>

(Each neighbor's relevance is either low, med, or high)

Evaluation

Used SwetoDBLP as the domain ontology

- Built from DBLP database
- Contains more than ½ million authors and 900K publications, more than 1.5M relationships
- 150 randomly selected queries containing authors

Evaluation

Precision for top 5, 10, 15 and 20 results

ordered by their precision value for display purposes

Ranking Documents based on Relevance of Semantic Relationships, Boanerges Aleman-Meza, July 2007

Findings from Evaluation

- Average precision for top 5, top 10 is above 77%
 - Precision for top 15 is 73%; for top 20 is 67%
- Low Recall was due to queries involving first-names that are common (unintentional input in the evaluation)
 - Examples: Philip, Anthony, Christian

Conclusions

- Relationship-based document ranking
 - Relevance-score is based on appearance of relevant entities to input from user
 - Does not require link-structure among documents

Conclusions

Challenges

- Keeping ontology up to date and of good quality
- Make it work for unnamed entities such as events.
- Future Work
 - Usage of ontology + documents in other domains

University of Georgia Computer Science Department

Thank You