# SEMANTICS ENABLED PROACTIVE AND TARGETED DISSEMINATION OF NEW MEDICAL KNOWLEDGE

Lakshmish Ramaswamy & I. Budak Arpinar
Dept. of Computer Science, University of Georgia
<a href="mailto:laks@cs.uga.edu">laks@cs.uga.edu</a>, budak@cs.uga.edu

#### **MOTIVATION**



Mr. Smith



Dr. Brown













## GOALS

- Cut down delays between medical discoveries and implementation via better knowledge dissemination
- Reduce information overload
- Minimal overheads on doctor establishments
- Medical information dissemination that is
  - Proactive Push-based
  - > Targeted
  - > Timely

# BACKGROUND: THE PUB-SUB PARADIGM



- Information filtering and propagation framework
- Subscriptions are continuous queries
- Used heavily in financial applications

# QUERY TYPES

- Topic-based
  - Queries choose topics of interest from pre-specified hierarchy
- Content-based
  - > Queries on content of published items
- Type-based
  - Queries specified on object types
- Distributed implementation to achieve scalability

# Pub-Sub: Pros and Cons

- Works well if
  - > Know what information will be of interest
  - Anticipate the information that will be published
  - > Published information is structured
  - Queries can be crisply specified
- Our scenario doesn't exhibit these characteristics
  - Scientific literature is free text
  - Cannot anticipate research
  - > Too many queries or too coarse-grained queries

## EHR AS BASIS FOR INFO DISSEMINATION

- Comprehensive and up-to-date (ideally !!)
   information about patient
  - > Age, gender, physical activity, family support
  - Medical conditions, individual and family history
  - Drugs and medications, past reactions
- Can serve as basis for identifying relevant information
- Collected routinely as part of treatment process
- Fast increasing adoption

# CHALLENGES

- Differences in terminologies and info representation
- Noisy EHR data
  - > Incompleteness
  - > Errors
- Personalization
- Scalability
  - > Several thousand physicians, millions of EHRs

# ARCHITECTURE



# SEMANTIC ANNOTATION

- Foundation to support powerful query and relevance mechanisms
- Enhancing text with structured domain knowledge
- The result is a set of explicit assertions indicating named-entities within them
- Term, concept & relationship identification
- We use Stanford NLP



#### RELEVANCE DETERMINATION

- Content similarity b/w EHRs and medical articles
- Current approaches rely on syntactic similarity
  - > Term vector approaches Common words in documents and their relative importance
  - Importance measured in terms of relative frequencies (TF-IDF metric)
- Many shortcomings
  - > Terminology differences
  - > EHRs not likely to have significant word repetitions
  - Repetitions may not imply strong emphasis
  - Blind to relationships among words

## SEMANTICS DISTANCE-BASED RELEVANCE

- Quantifies relationship strength
- Based on structure of domain ontology
  - > Min hops between concepts
  - > # paths between concepts
  - Weighted hop distance
- Compute semantic distance b/w concept pairs
- Aggregate semantic distances
- Can be used for relevance determination, ranking etc.

# SEMANTICS DISTANCE



## SEMANTICS GRAPHS-BASED RELEVANCE

- EHRs & articles mapped to semantic graphs
- Structural correlation of graphs
  - Identify links among concepts in EMR's and articles
  - Sub-graphs with dense cross-cutting paths signify higher degree of relevance
- More powerful but computation intensive



# Lots of Interesting Questions

- Fuzzy matching
- How to associate weights with ontology links?
- How to incorporate user feedback?
  - Can it be used to strengthen/weaken relationships in ontology?
- How to scale the system?
  - Clustering EHRs
  - Distributed processing Semantic overlays, Cloud
- Patient privacy issues
  - How much information can be exposed?
  - Where does the processing occur?