
Automatic Composition of Semantic Web Services*

Ruoyan Zhang, I. Budak Arpinar, and Boanerges Aleman-Meza
Large Scale Distributed Information Systems (LSDIS) Lab

Computer Science Department, University of Georgia
Athens, GA 30602-7404, budak@cs.uga.edu

* This work is supported by University of Georgia Junior Faculty Grants.

Abstract

With the growing number of Web services, importance of
composing existing Web Services into more complex
services in order to achieve new and more useful
solutions is increasing. However, in order to
automatically compose new services, existing services
need to be encoded in a machine understandable form.
The semantics of a service can be described by
annotating it with respect to service ontologies. The goals
of automatic composition include reducing the complexity
of creating composite services as well as choosing an
optimal composition among possible options. This paper
describes the Interface-Matching Automatic Composition
technique that aims for generation of complex Web
Services automatically by capturing user’s expected
outcomes when a set of inputs are provided; the result is
a sequence of services whose combined execution
achieves the user goals.

Keywords: Web Services, Composition, Semantics

1. Introduction

In recent years, a growing number of Web Services
(WSs) have emerged as the Internet develops at a fast
rate. The Web is now evolving into a distributed device
of computation from a collection of information resources
[Fensel02]. Furthermore, the need for composing existing
WSs into more complex services is also increasing,
mainly because new and more useful solutions can be
achieved. However, the composition of discovered
services and enabling data-flow among them are usually
done manually, which are highly inconvenient, especially
for more complex compositions.

Our service composition technique aims for reducing
the complexity and time needed to generate, and execute
a composition and improve its efficiency by selecting the
best possible services available at the current time. In
general, there are four different dimensions for a service
composition: (i) degree of user involvement in a
composition definition, (ii) if the composition is based on
a template or actual service instances, (iii) dynamicity of
the composition, and (iv) degree of user involvement in

the dynamicity (or adaptation) of the composition. In an
automatic composition, a user is not involved instead the
system defines control and data-flow by assembling
individual services. This is very challenging due to
difficulty of mapping user needs to a collection of
correlated services where their interim outputs can satisfy
each other’s input requirements and the final deliverable
meets the user demands. Besides that, in each of these
composition options either actual service instances or
some generic templates are assembled. In the latter,
individual services are searched and integrated
automatically at execution time for a given plan
[Chandrasekaran03].

In a dynamic composition (either user-defined or
automatically-defined based on instances or templates),
the composition itself can be adapted mainly because of
quality of service (QoS) requirements at run-time by a
user or automatically (i.e., user-adapted or automatically-
adapted). Finally, a composition may not be defined at
design-time but can be assembled service by service at
execution time.

2. Related Work

A composition can be based on templates. An example is
a trip planner, which is declared as a state chart, and the
resulting composite services are executed by replacing the
roles in the chart by selected individual services
[Benatallah02]. The ICARIS project [Tosic01] and
[Narayanan02] also use pattern composition approach.
METEOR-S platform provides a comprehensive
framework for semantic Web services and their
composition [METEOR-S03]

The instance composition approach is to generate a
composite service plan out of existing services. In this
category, [Mao01] proposes a composition path, which is
a sequence of operators that compute data, and connectors
that provide data transport between operators. The search
for possible operators to construct a sequence is based on
the shortest path algorithm on the graph of operator
space. However, [Mao01] only considered two kinds of
services – operator and connector with one input and one
output parameter (which is simplest case for service
composition). Also in the instance composition category,

SWORD uses a rule-based expert system to determine if a
plan of composite service can be built out of existing
services [Ponnekanti02]. It mainly focused on the
composition of information provider services (i.e., not
world-altering services), and (like [Mao01]) it does not
address the input and output mismatch problem. In our
approach, services can have more than one input and
output, and these parameters can mismatch in the
composition process.

3. Modeling Semantic Web Services

A Semantic WS is a unit of composition that can be
deployed independently, and may be subject to
composition by a third party on the Web. At the same
time, its interface, its process specification (i.e., its
functionality) and its relations to other services are
defined, and advertised in a machine-processable form so
it can be automatically discovered, composed, and
invoked in new complex WSs. The emerging Semantic
Web makes it possible to specify semantics of a domain
such as the terms and concepts of interest, their meanings,
relationships between them and the characteristics of the
domain through an ontology. In this paper, a WSs
ontology is used to define precise semantics of both
individual, and complex service instances, as well as
abstract services from which the properties, and process
definitions are inherited.

3.1 Web Services Ontology and Service Profile

A WSs ontology describes the interfaces of the services
and the relationships among them. An abstract service
specifies names and types of input and output parameters
with no property constraints. Like domain ontologies, a
service inherits the properties of its parent service in a
WSs ontology (see Figure 3.1 for price search ontology).

Figure 3.1: Price Search Ontology and Service Instances

In ONTOS we use emerging DAML-S service ontology
[Ankolenkar02]. A service profile is the core element of a
DAML-S specification, and it involves semantic
descriptions of service interfaces and functions. In

ONTOS, we primarily focus on the collection of inputs,
and outputs for composition and process-oriented
extension for functionality representation.

3.2 Query Format

A composite service query is represented in a very similar
way as a service description in DAML-S (Figure 3.2).
Like DAML-S template of services, the query profile
includes the description of the composite service and the
interface of the expected composite service, in which we
define the output parameters, output constraints, input
parameters, and their constraints. The output constraint
specifies the requirements on the outputs by the user. The
second part of the query is about the functionality of the
composite service. The user can partially specify how the
composite service works and what kind of individual
services would be expected to be included (constraints
and functionality parts are omitted in the figure for
brevity).
Example: A restaurant owner wants to find matching
wines to the meals in the restaurant and learn the prices
of these wines.

Figure 3.2 A Composite Service Query

4. Interface-Matching Automatic Service
Composition (IMA)

IMA composition technique aims for generation of
complex WS compositions automatically. This requires
capturing user’s goals (i.e., expected outcomes), and
constraints, and matching them with the best possible
composition of existing services. Therefore, inputs and
outputs of the composite service should match the user-
supplied inputs, and expected outputs, respectively.
Furthermore, the individual services placed earlier in the
composition should supply appropriate outputs to the
following services in an orchestrated way similar to an
assembly line (i.e., pipe-and-filter) in a factory so they
can accomplish the user’s goals. Finally, the composition
should conform to the user specified constraints including
time, cost, and user specified quality of composition
(QoC) properties.

In IMA, we navigate the WS ontology to find the
sequences starting from the user’s input parameters and

Product
Price Search

Bevearge
Price Search

Car
Price Search

Book
Price Search

W1 W2 B1

Inheritance
between abstract
classes

Inheritance
between abstract
and instance

Wine
Price Search

Interface Query:
• Input Parameter 1: Food Type
• Output Parameter 1: Wine Prices
• Output Parameter2: Wine Name

Description Query:
• Find the matching wines to food
• Return the prices of the wines

go forward by chaining services until they deliver the
user’s expected output parameters. The composition
terminates when a set of WSs that matches all expected
output parameters given the inputs provided by a user is
found, or the system fails to generate such a composition
of services.

The goal of this algorithm is to find a composition

that produces the desired outputs within shortest
execution time and better data-flow (i.e., better matching
of input and output parameters). If service ontologies are
complex and the number of services is large this can be a
challenging task. The composition starts from the service
that needs one or more of the input parameters given by
the user. If this WS does not produce all of the expected
outputs, more WSs need to be found to provide the
expected outputs. This process continues until we find a
sequence of WSs that will produce the expected
composition outputs from the user’s inputs.

Figure 4.1 shows an extended WS ontology with new

relations by matching input parameters and output
parameters. Nodes represent services and edges connect
services if the output of a service can be “feed-into” the
input of a service. Edges shown with dash-lines represent
parameters that are not exact match but they are
semantically equivalent. In the figure, different service
outputs can feed into other service inputs. For example
service 6 requires two input parameters, one of which can
be provided by either S1 or S3 and the other comes from
S4.

Figure 4.1: IMA Composition Technique

In an example scenario, the user provides input parameter
Si1 and expects the output So9 as indicated in the graph.
The composition goal is to find a shortest sequence of
services from S1 to S9. In this graph the source node SI
represents the start state and SF as the ending state, which
are added for computing convenience. The weight of

every edge is a function of execution time and semantic
similarity value. As a matter of fact, other factors can be
considered in computing weight of edges, such as
reliability, security of services, etc. Relative weights of
these factors (λ) are defined by the users as follows:

W = (λ) * execution time + (1-λ) * similarity value.

For the time being we consider four cases to check
similarity (i.e., matching) of an output and input
parameter from the same ontology: (1) if they are same,
their similarity is maximal. For example, the output
parameter of S1(in Fig.4.2) exact match with the input
parameter of S3 and they have the smallest value 1.0 (2)
If output parameter of the former service subsumes the
input parameter of the succeeding service, this is the
second best matching level, such as the output of S4
subsumes the expected output parameter - wine price. The
similarity value depends on their distance in the ontology.
(3) If the output parameter of the former service is
subsumed by the input parameters of the succeeding
service, the properties of the parameters could be partially
satisfied. That applies to the relationship between S1 and
S4. (4) When two parameters have no subsumption
relation or they are from different ontologies, such as S2-
S3, the similarity value can be obtained by using
Tversky’s feature-based similarity model [Cardoso02],
which is based on the idea that common features increase
the similarity of two concepts, while feature difference
decreases the similarity.

The composition algorithm aims to find the optimal
collections of services considering execution time and
semantic matching of parameters. We modify Bellman-
Ford shortest-path dynamic programming algorithm to
find the shortest sequence from initial stage at node SI to
the termination node SF. In a common directed graph, we
consider only one incoming edge and one outgoing edge
for every node selected in the shortest path. The
difference in our graph representation is that some
services need more than two incoming edges as input
parameters. Therefore, we not only record distance for
every node, but also we trace the distance of every path at
every node. When all the required input parameters are
available, a service can be executed. Therefore, the
distance of every node is determined by the maximum
value of distances of all the input parameters. For
example, S3 must have two incoming edges so a distance
value of S3 is determined by the maximum of S3i1 and
S3i2 because S3 can be executed after both of these inputs
are available. In a different case, when there is more than
one incoming edge fitting for one input parameter of a
service, such as either edge 3-6 or 1-6 satisfies input of
S6, we choose the minimum distance of 3-6 and 1-6 as a

1

Or

Or

So9

9

8

5

6

7

3
4

2

Si1

SF

S3i2
S3i1

SI

distance associated with input parameter of S6. The
algorithm running time is O(n3).

In Fig. 4.2, the user inputs the seafood and awaits the

matching wine prices. Both Wine Agent (S1) and World
Wine Agent (S2) are food-wine matching services which
output the name of matching wines with food input by the
users. Wine Price Information (S3) and Beverage Price
Information (S4) provide the prices of corresponding
wine or beverage. Edge weights are composed of two
values representing the similarity degree value and
annotating execution time of the precedent service. For
example, the weight of edge <S2, S4> is 1.5 + 1, which
means that similarity value of Wine:O3 (output of S2)
and Beverage:O3 (input of S4) is 1.5 and S2 execution
time is 1 unit (O3 means it is defined in ontology 3).
Wine is subsumed by Beverage, therefore some
information of beverage would be lost and the similarity
value is larger than 1 If λ is set to different values by the
user, we obtain different shortest paths in IMA technique
(see Table 4.1).

Figure 4.2 Wine Services Composition Example

Table 4.1 Shortest path under different λ

In more complex cases, there could be more than one
input and output parameters for a composite service. In
this case, our strategy is to compute the shortest path from
every starting node to the possible destinations, then
select the shortest path for every destination node

5. Conclusion

Automatic composition of Web services is a challenging
research problem. Due to increasing number and
heterogeneity of available Web services we rely on
service semantics to automatically compose new services.
Interface-Matching Automatic Composition technique

incorporates the use of WS ontologies to find matching
inputs and outputs. On the other hand, we are in the
process of developing a Human-Assisted Automatic
Composition technique that can complement the IMA
composition technique through enabling human-
involvement where composition can not proceed
automatically or there are ambiguities in matching
services.

Other directions in Web services composition that we
are currently addressing include using functionality in
order to compose complex services more efficiently.

6. References:

[Ankolenkar02] A. Ankolenkar, M. Burstein, J. R. Hobbs, O.
Lassila, et. al. DAML-S: WS Description for the Semantic Web.
The First Intl Semantic Web Conference (ISWC)
[Benatallah02] B. Benatallah, M. Dumas, Q. Z. Sheng, and A.
H. Ngu. Declarative Composition and Peer-to-Peer Provisioning
of Dynamic Web Services. IEEE Intl. Conf. on Data
Engineering, San Jose, California, Feb 2002.
[Cardoso02] J.Cardoso, and A.Sheth. Semantic e-Workflow
Composition. Journal of Intel. Info. Systems.
[Chandrasekaran03] S. Chandrasekaran, J. A. Miller, G.
Silver, I. B. Arpinar and A. P. Sheth, "Performance Analysis
and Simulation of Composite WSs," Electronic Markets: The
Intl Journal of Electronic Commerce and Business Media,
Ronald Klueber and Heiko Ludwig (Guest Editors) Vol. 13, No.
2 (Spring 2003).
[Fensel02] D. Fensel, C. Bussel. Semantic Web Enabled WSs.
In Second Annual Diffuse Conference:will WSs Revolutionize
e-Commerce? Brussel,Belgium, January.
[Mao01] Z. M. Mao, E. R. Brewer, and R. H. Katz. Fault-
tolerant, Scalable, Wide-Area Internet Service Composition.
U.C. Berkeley Technical Report UCB//CSD-01-1129, Jan 2001.
[METEOR-S03] METEOR-S: semantic Web Services and
Processes, lsdis.cs.uga.edu/proj/meteor/SWP.htm
[Narayanan02] S. Narayanan, and S. A. Mcllraith. Simulation,
Verification and Automated Composition of Web Services. 11th
Intl. World Wide Web Conference (WWW2002), Honolulu,
2002.
[Palucci02] M. Paolucci, T. Kawamura, T. R. Payne, and K.
Sycara, "Semantic Matching of Web Services Capabilities", The
First Intl Semantic Web Conference, Sardinia (Italy), June,
2002.
[Ponnekanti02] S. R. Ponnekanti, and A. Fox. SWORD: A
Developer Toolkit for Building Composite Web Services. 11th
WWW Conference, Honolulu, 2002.
[Tosic01] V. Tosic, D. Mennie, and B. Pagurek. On dynamic
Service Composition and Its Applicability to E-business
Software Systems. WOOBS'01 (Workshop on Object-Oriented
Business Solutions) workshop (at ECOOP 2001), Budapest,
Hungary, June 18, 2001.

λ Shortest Path Distance
λ=0 S1 -> S2 3
λ=1 S2 -> S4 2.5
λ=0.5 S1-> S3 2.6

Wine
Agent
(S1)

World
Wine
Agent
(S2)

Wine
Price

Inform.
(S3)

Beverage
Price

Inform.
(S4)

Food:O1 Wine:O1 Wine:O1

Food:O1
Wine:O3

Beverage:
O1

Wine Price: O1

Beverage: Information:O1

Seafood:O1 Wine Price:O1

1.0+0

1.0+0

1.5+1

1.2 +1

1.6+2

1.0+2

1.0+1

1.2+1.5.

