
ES3N: A Semantic Approach to
Data Management in Sensor Networks

Micah Lewis2, Delroy Cameron2, Shaohua Xie2, I. Budak Arpinar1

1 LSDIS Lab
2Computer Science Department, University of Georgia,

Athens, GA 30602-7404
{lewis, cameron, shaohua, budak}@cs.uga.edu

Abstract. In this paper, we present a Data Management Tool called ES3N, which
uses Semantic Web techniques to manage and query data collected from a mini-
dome Sensor Network. Our tool supports complex queries on both continuous and
archival data, by capturing important associations among data, collected and
stored in a distributed dynamic ontology. The motivation behind our work stems
from a desire to increase awareness of the advantages of Semantic Web
techniques across the Sensor Networks spectrum and to highlight the
inefficiencies in existing Data Management techniques in Sensor Networks for
silos and mini-domes. We stress the advantages of semantics in this case study,
and present a discussion that extrapolates the possible benefits Semantic Web
techniques can bring to Sensor Networks in general.

Keywords: Sensor Networks, Semantic Techniques, Query Processing,
Ontology, Semantic Association, OWL, RDF

1 Introduction

A sensor network is a computer network of many, spatially distributed devices using
sensors to monitor conditions at different locations, such as temperature, sound,
vibration, pressure, motion [15] etc. Two key issues in Data Management in Sensor
Networks are Data Storage (how to store data efficiently) and Query Processing (how
to achieve fast and accurate information retrieval). The first issue is resolved with
some efficiency, by storing data either locally or logically distributed at centralized
locations. The second issue; Query Processing, is critical and central to our research.

Power conservation is always important to system performance in Sensor
Networks. In Query Processing, the data manager is challenged to reduce and
summarize data online while providing storage, logging, and auditing facilities for
offline analysis [6] consuming minimal power. It must also provide an interface that
allows a user to understand, collect, process and manage the status of the network and
the data (such as averages, moments, histograms, or statistical summaries) generated
on-the-fly in real time [6]. Most Query Processing languages are based on some form
of SQL-like syntax. For example, work on the TinyDB Project [10] at UC Berkeley
and The Cougar Project [5] at Cornell University outline a query language that

consists of SELECT-FROM-WHERE-GROUPBY-HAVING blocks to support
selection, join, projection, aggregation, and grouping [6]. This language is efficient
for database oriented storage mechanisms. If the user poses a query such as SELECT
date, time FROM database WHERE date = “11-20-05” AND temp = 60, the query
will return the expected results, but using mere string and integer comparisons. This
approach ignores any relationships between the two pieces of data. For example, the
date may be related to temperature by a has_temp relationship allowing node to node
connections via edges. In this paper, we identify and exploit such relationships by
searching data semantically.

We focus our case study on The National Peanut Research Laboratory (NPRL1) in
Dawson, Georgia, which uses a Sensor Network across a mini-dome to monitor
conditions affecting peanuts. Our paper is significant for the following reasons:

 We develop an alternative storage mechanism in the form of an ontology, for
storing data

 We illustrate semantic query processing by exploiting semantic associations
between data

 We encourage the audience to consider semantic techniques in resolving the
larger data management and query processing issues affecting Sensor Networks

2 Motivation

This paper exemplifies how the use of semantics can enhance data management in
sensor networks. Semantics exploit underlying relationships between data captured by
sensors, creating a versatile framework that can be utilized in various applications.
We devote our attention to grain and seed storage, and show how our system
approaches data storage and data management in this application.

2.1 Absence of Data Storage

The initial motivation for this research was inspired by interaction with Cargill2, an
international provider of food, agricultural and risk management products, and
services [4]. This corporation stores cereal grain and oil seed products in large storage
silos, and their goal is to ensure that the stored products are kept at premium quality
before distribution. Guidelines in storage conditions are enforced by the Grain
Inspection, Packer and Stockyards Administration (GIPSA) and the American Society
of Agricultural Engineers (ASAE). These guidelines include equilibrium moisture
content and upper bounds on temperature and relative humidity.

1 NPRL was established in 1965, and current research centers on detection of mycotoxin and aflatoxin in

peanuts
2 Cargill is involved in every step of the production process, from harvesting to distribution -

http://www.cargill.com/

Cargill uses rather primitive data acquisition methods. Data are retrieved by
random sampling via hand held sensors, which often yield an inaccurate
representation of conditions. This makes it difficult to respond to deteriorating
conditions in their early stages. Also, there are no records of historical data to aid in
future decision making. We propose solutions to both these problems by utilizing a
distributed Ontology as a storage repository that uses semantics to discover
relationships among the streaming data.

2.2 Data Management Inefficiency

Our awareness of some of the problems affecting data management in Sensor
Networks was amplified after communication with the USDA Agricultural Research
Service (ARS) NPRL, which also engages in sub-par data management practices.
Readings taken from sensors hourly are analyzed to determine required action, and
historical data are available for analysis as well. The drawback is that Microsoft Excel
Spreadsheets are used as the mechanism of storage; and they are not user-friendly for
querying historical data. Therefore, with the use of a distributed Ontology, we resolve
these issues by employing a Semantic Search technique allowing the user to easily
query historical data. Through this system, simple and complex range queries are
supported. Figure 1 illustrates the configuration of the NPRL mini-dome Sensor
Network.

3 Overview

The development of ES3N followed a multi-layered process involving the following
steps:

1. Data Collection - usually a significant issue in Sensor Networks. Resolving
Heterogeneous data by tagging is often laborious. Raw data collected from
NPRL, as text and Excel files assumed to be accurate, eliminated the need to
focus on data collection challenges affecting this Sensor Network.

2. Memory Caching - efficient query processing requires efficient use of main
memory. Real-time streaming warrants some data in main memory, but
simultaneous permanent storage is necessary for efficient memory usage.

3. Data Tagging - in a small-scale sensor network, it may be reasonable to have
homogeneous sensors which are usually identical or similar in terms of
function [6]. In reality, Sensor Networks are inherently heterogeneous;
fragments of data from particular nodes within the network must be given
unique id’s for proper identification.

Fig. 1. Mini-Dome Sensor Layout Schematic

4. Ontology Representation - depending on the application, it can be necessary to
import or export data using standards such as RDF/RDFS and OWL [1]. For
our purposes both OWL and RDF were necessary.

5. Query Processing - this continues to be a central issue for researchers in
computer science and information systems. Query optimization is central to all
areas of computing. We use Semantic Techniques in this approach.

6. User Interaction and Data Representation - a wide range of visualization tools
are available. Choosing among graphs, touch graphs, web interfaces,
histograms, and tables will depend on the information being conveyed. We
develop an interface we call ES3N3, to present data to the user.

7. Evaluation – Analysis and evaluation of Semantic applications are void of
existing benchmarks and measurement standards. Often times, the best measure
of performance and efficiency are attained through human subjects. In this
instance we use empirical results to evaluate ES3N and present some
discussion that augments these results. Figure 2 outlines our multi-layered
approach.

3.1 Querying Sensor Networks

Sensor Networks are typically able to process a vast range of queries fairly efficiently
using existing techniques. The TinyDB project is based on a query language that

3 The acronym ES3N was kept from a previous version of our paper entitled Exploiting Semantics in Sensor

Networks for Silos.

supports basic, aggregate, temporal aggregate, event based and even lifetime-based
querying capabilities. This language supports a range of query types, including
monitoring, network health, exploratory, actuation and offline delivery queries. From
a Semantic Web perspective, these querying types can be further leveraged by
discovering and using Semantic Associations between fragments of data, to present
greater query richness. We demonstrate this in our layered approach.

Fig. 2. Multi-layered approach to application development

4 Implementation

4.1 Data Collection

ES3N collects data by storing them in an ontology. Daily RDF files are written to a
special data repository, and only imported into main memory depending on the nature
of the posted query. RDF files in main memory are quickly released back to
permanent storage after use, importing the next file required.

4.2 Main Memory Caching

Streaming data come directly into main memory, where it is routed to the user
interface and duplicated in the ontology. Data must be archived for two reasons; first,
to support historical queries and more importantly, to manage memory efficiently.
Archiving in the form of daily RDF files makes it unnecessary to keep yesterday’s
data in memory. Streaming data is temporarily in main memory while archival data
migrate to disk. This is also an efficient way of indexing incoming data.

4.3 Data Tagging

In most Sensor Networks raw data are heterogeneous and can pose problems for data
identification. Fortunately, NPRL uses two distinct types of node sensors;
thermocouple sensors for temperature and RH sensors for relative humidity. Incoming
data are therefore assumed to be accurate. However, incoming data are time stamped
so that the has_date and has_time relationships refer to unique literals for each entity,
and all other edges connect non-distinct literals.

4.4 Ontology Representation

An Ontology is a formal explicit description of concepts in a domain of discourse [13]
and remains a primary contributor to the development of in Semantic Web
Applications. According to Natalya F. Noy and Deborah L. McGuiness[13], the
development of ontologies is important for sharing common understanding of the
structure of information among people and software agents, enabling reuse of domain
information, making explicit domain assumptions and analyzing domain
knowledge[13]. For our purposes the most important contribution of an ontology is its
ability to hold entities with relationships and constraints among them. For example,
Table 1 shows constraints obtained through empirical research at NPRL on peanut
storage. Using the has_max_temp and has_max_humidity relationships in the
ontology these condition constraints play a key role in Actuation4 queries.

4 An Actuation Query requires a physical action depending on query results

Table 1. Peanut Constraints

Property Maximum Value
Relative Humidity 80%

Temperature 75

To implement our application, we use Protégé 3.25 which is a free, open source
ontology editor and knowledge-base framework developed and distributed primarily
by Stanford University. We choose Protégé 3.2 because it allows the creation of an
ontology schema, which can be exported easily to OWL and RDF/RDFS formats. Our
ontology schema consists of a set of predefined classes, attributes and constraints
exported as an OWL file. Incoming data from the NPRL sensor network are compared
against this schema, before being written to disk. A single record is described as
shown in Figure 3.

Fig. 3. Single Record in ES3N Ontology

5 Protégé 3.2 is a beta version of Protégé from Stanford University

11-19-05

13

has_date

0

1

0

has_fan2

has_fan1

has_fan3 58.2

29.2

has_fan1

has_humidityin

has_humidityout

0

has_tempout

52.4

53.6

71.2

59.9 56.6

65.0

56.6

56.9

50.7

57.1

54.167.1 53.6

has_temp_level2
has_temp_level1

has_temp_level3

#data13

Semantic Association

4.5 Query Processing and Data Analysis

For Query Processing, we use SPARQL, which is a Protocol and Query Language
designed for accessing RDF data. In fact, SPARQL is a Semantic Web candidate
recommendation presently undergoing standardization by the RDF Data Access
Working Group (DAWG) of the World Wide Web Consortium [15]. SPARQL is
embedded in Jena, which is a Java framework for building Semantic Web applications
that provides a programmatic environment for RDF, RDFS and OWL, including a
rule-based inference engine [8]. Our Ontology Schema, once imported in main
memory, creates an ontology model6, to which formatted streaming data are added as
resources. SPARQL queries capture relationships among data triples. Consider four
RDF resources in Figure 4.

Fig. 4. Semantic Association among four nodes

The four resources, data1, data2, data3 and data4 share all of the same properties.
In particular, the literal value (11-20-05) for the has_date relationship is the same for

6 An ontology model is a data container that holds resources about the ontology.

#data4

11-20-05

1

46.4

70.0

#data2

has_date

has_date

has_date
has_date

56.3 48.3

#data1

0

has_fan1

has_date

has_fan1

has_fan1

#data3

has_fan1

all entities. A query posted to the model based on this date, would form an association
among the four entities because their edges meet at the same node.

This kind of semantic association points to the possibility for supporting much
more complex queries that can traverse several hops, following many nodes and edges
to a variety of end points. SQL-like query languages, like those suggested in the
TinyDB and Cougar project, are limited merely to string and integer comparisons, and
are therefore incomparable to semantic search.

4.5.2 Exploratory Query

The simplest form of query retrieves a single record from the ontology. Consider the
following query: Query = “return the record on 11-22-05 at 5:00am.”

In answering this query, ES3N imports the archive file 11-22-05.rdf into the main
memory model. SPARQL extracts the appropriate record based on the has_date and
has_time properties.

4.5.3 Monitoring Query

A more complex query searches and returns more than one record within the same
RDF file. Consider: Query = “return all records for 11-22-05.”

SPARQL traverses the entire 11-22-05.rdf file and returns all the records in that
file to satisfy this query.

4.5.4 Range Query

A typical range query requires importing several RDF files into the model and
returning the data satisfying the query in each file. For example: Query = “return all
days in the month of December when only fan2 was on.” ES3N performs these steps:

 Import first file, 12-01-05.rdf
 Query this file for results
 Release this file back to disk
 Repeat the previous steps on the next file, 12-02-05.rdf and all remaining

December files

Thus far, we have shown it is possible to pose three different types of queries using
ES3N. We present these results to the user interface for analysis.

4.6 User Interaction and Data Representation

The ES3N Interface is a user-friendly front-end that allows data viewing in real time,
as well as querying and viewing of historical data. This GUI serves as a forefront,
allowing the user to utilize the research presented in this paper.

The real-time monitoring system is a preventative system versus a reactive one.
The streaming data can be analyzed to determine corrective action, primary among
which is Aeration. Aeration is used to maintain an equilibrium between the
temperature inside and outside the mini-dome, reducing the chances for an increase in
moisture of the stored product and buildup of condensation [2]. Three fans located
under the perforated floor of the mini-dome pull air down through the stored product,
when needed. Thus, the mini-dome is divided into three sections (left, right and
center) which are each aerated by one of three fans. The calculation of the average
temperature of the mini-dome as a whole is calculated as such,

sensorsple thermocouof#

2

1

5

1

3

1 3
)(

j
Sensor

i j j
Level

j
Sensor

i
Level

avgTemp

 .
(1)

Color-coded flags show the overall status of the stored product. Yellow signifies
that the average temperature of the mini-dome as a whole is less than the outside
temperature, but one section has a higher average temperature than the outside
temperature. In this case the corresponding fan is turned on. Orange signifies that two
sections are observed to have a higher average temperature than the outside
temperature; and in this case two fans are activated. Finally, red signifies that the
average temperature of the mini-dome as a whole is greater than the outside
temperature. In this scenario, all three fans are turned on to lower the temperature.
However, if the relative humidity of the air outside is greater than the maximum
relative humidity allowed for the stored product, no aeration takes place. This is due
to the fact that with a relative humidity over 80%, the air is very moist [2]. Therefore,
aeration would bring in moist air, causing more harm than help. Figure 5, shows a
snapshot of the ES3N Interface.

The ES3N Interface also allows the user to submit queries to the system. The user
may query historical data in the form of range or monitoring queries. Finally, the
ES3N Interface shows an overview of the ontology file system, which stores data in
two formats, text and RDF. The RDF format is merely an RDF file containing the
instances of that day. The text format shows the instances in tuple format, just as the
query results on the query page.

5 Discussion

A Semantic approach to the Data Management issues facing the NPRL Sensor
Network, leads us to highlight the following important aspects of the Semantic Web.

Ontology Data Storage - With a growing number of software engineers and
designers continuing to embrace the Semantic Web, ontology data storage is the wave
of the future. Oracle recently announced incorporating ontology building tools in its
database management software. Protégé continues to build on earlier versions geared
toward providing user friendly ontology editors. A growing awareness through
conferences, workshops and exchange of information continues to champion the cause
of the Semantic Web. Ontology schemas, OWL and RDF ontologies offer an
alternative storage mechanism, annotating data and taking advantage of existing
relationships among them. These provide immeasurable benefits for a new form of
query processing, as demonstrated in our work.

Fig. 5. ES3N screenshot

Semantic Query Processing – SPARQL (www.w3.org/TR/rdf-sparql-query/) and other
RDF query languages, including RQL [9], RDQL [14], and SquishQL [11] continue
gaining greater recognition and popularity in many Java applications such as Jena and
Sesame. Publicly available Semantic Query Processing tools hiding technical design
from the user will unmask the future of query processing, increasing query richness
immensely.

The future of Semantic Web - Semantic Association continues to be a major
concept used in a wide variety of applications. Current research at the University of
Georgia encompassing Conflict of Interest Detection [1], National Security [16],
Insider threat and Semantic Discovery (SemDis) are pivotal among these. The Key
issues such as standardization through Semantic Annotation and Entity
Disambiguation remain critical to the future of the Semantic Web. Accessibility and
availability of larger standardized ontologies will enable searching multiple data
repositories in many different formats. In our research we have shown that Sensor
Networks too can benefit from Semantic techniques, and we hope to stimulate thought
from the experts in this field.

6 Conclusions and Future Work

 Our ES3N application only demonstrates its data management capabilities with
homogeneous sensors. In more complex Networks, sensors are undoubtedly
heterogeneous. Our ontology schema allows for application across a multi-grain
platform bringing the issue of ontology size into question. Years of collected data
allow for much larger range queries requiring faster response times and dealing with
larger data files. Future works concern using larger OWL and RDF-based storage
mechanisms to support a multi-grain platform and handling much larger RDF files. In
particular, we consider using BRAHMS [7], which is an application developed by
research at the University of Georgia to store extremely large RDF data. BRAHMS
boasts size and speed, and is gaining ground as the recommended tool for RDF
storage.

In conclusion, we have shown that Semantic Techniques are important in forming
associations among data adding to the richness of the querying capability. Our
distributed ontology philosophy offers fast and efficient data retrieval, limiting the use
of main memory in answering complex queries. Our future work promises to address
larger Ontologies and investigating more complex Semantic Associations.

8 References

1. Aleman-Meza, B. et al.: Semantic Analytics on Social Networks: Experiences in Addressing
the Problem of Conflict of Interest Detection. ACM (2005)

2. Arthur, S.L., Brown S.L., Butts, C.L., Dorner J.W.: Aerating Farmer Stock Peanut Storage
in the Southeastern U.S. (2006) Trans. ASABE Vol 49(2)

3. ASAE Standards 2002: 49th Edition, Standards Engineering Practices Data. American
Society of Agricultural Engineers

4. Cargill Industries Inc. Agricultural Commodity Trading. cargill.com
5. Demers, Alan.et al.: The Cougar Project: A Work-In-Progress Report. ACM SIGMOD

Record, 32(4): 53-59 (Dec 2003)
6. Gehrke, Johannes and Madden, Samuel.: Query Processing in Sensor Networks. IEEE CS

and ComSoc (2004)
7. Janik, M. and Kochut, K. BRAHMS: A WorkBench RDF Store and High Performance

Memory System for Semantic Association Discovery. Fourth International Semantic Web
Conference , Galway, Ireland (2005)

8. Jena – A Semantic Web Framework for Java. jena.sourceforge.net
9. Karvounarakis, G. Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M.: RQL: A

Declarative Query Language for RDF. Eleventh International World Wide Web Conference,
(Honolulu, Hawaii, USA, 2002), ACM

10.Madden, Samuel R. et al.: TinyDB : An Acquisitional Query Processing System for Sensor
Networks. ACM Transactions on Database Systems, (2004)

11.Miller, L., Seaborne, A. and Reggiori, A.: Three Implementations of SquishQL, a Simple
RDF Query Language. First International Semantic Web Conference on The Semantic Web,
(Sardinia, Italy, 2002), Springer-Verlag, 423 – 435.

12.Ni, Lionel M. et al.: Semantic Sensor Net : An Extensible Framework. IEEE International
Conference on Computer Networks and Mobile Computing, Zhangjiajie, China (Aug 2005)

13.Noy, Natalya and McGuinness, Deborah L.: Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford University, Stanford, CA

14.Seaborne, A. RDQL – A Query Language for RDF, 2004
15.“Sensor network”. Wikipedia, the free encyclopedia. en.wikipedia.org (2006)
16.Sheth, A.P et al.: Semantic Association Identification and Knowledge Discovery for

National Security Applications. Journal of Database Management, 16(1). 33-53

