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Abstract. In this paper, we present a Data Management Tool called ES3N, which 
uses Semantic Web techniques to manage and query data collected from a mini-
dome Sensor Network. Our tool supports complex queries on both continuous and 
archival data, by capturing important associations among data, collected and 
stored in a distributed dynamic ontology. The motivation behind our work stems 
from a desire to increase awareness of the advantages of Semantic Web 
techniques across the Sensor Networks spectrum and to highlight the 
inefficiencies in existing Data Management techniques in Sensor Networks for 
silos and mini-domes. We stress the advantages of semantics in this case study, 
and present a discussion that extrapolates the possible benefits Semantic Web 
techniques can bring to Sensor Networks in general.
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1   Introduction

A sensor network is a computer network of many, spatially distributed devices using 
sensors to monitor conditions at different locations, such as temperature, sound, 
vibration, pressure, motion [15] etc. Two key issues in Data Management in Sensor 
Networks are Data Storage (how to store data efficiently) and Query Processing (how 
to achieve fast and accurate information retrieval). The first issue is resolved with 
some efficiency, by storing data either locally or logically distributed at centralized
locations. The second issue; Query Processing, is critical and central to our research. 

Power conservation is always important to system performance in Sensor 
Networks. In Query Processing, the data manager is challenged to reduce and 
summarize data online while providing storage, logging, and auditing facilities for 
offline analysis [6] consuming minimal power. It must also provide an interface that 
allows a user to understand, collect, process and manage the status of the network and 
the data (such as averages, moments, histograms, or statistical summaries) generated 
on-the-fly in real time [6]. Most Query Processing languages are based on some form 
of SQL-like syntax. For example, work on the TinyDB Project [10] at UC Berkeley 
and The Cougar Project [5] at Cornell University outline a query language that



consists of SELECT-FROM-WHERE-GROUPBY-HAVING blocks to support 
selection, join, projection, aggregation, and grouping [6]. This language is efficient 
for database oriented storage mechanisms. If the user poses a query such as SELECT 
date, time FROM database WHERE date = “11-20-05” AND temp = 60, the query 
will return the expected results, but using mere string and integer comparisons. This 
approach ignores any relationships between the two pieces of data. For example, the 
date may be related to temperature by a has_temp relationship allowing node to node 
connections via edges. In this paper, we identify and exploit such relationships by 
searching data semantically. 

We focus our case study on The National Peanut Research Laboratory (NPRL1) in 
Dawson, Georgia, which uses a Sensor Network across a mini-dome to monitor 
conditions affecting peanuts. Our paper is significant for the following reasons: 

 We develop an alternative storage mechanism in the form of an ontology, for 
storing data 

 We illustrate semantic query processing by exploiting semantic associations 
between data

 We encourage the audience to consider semantic techniques in resolving the 
larger data management and query processing issues affecting Sensor Networks

2 Motivation

This paper exemplifies how the use of semantics can enhance data management in 
sensor networks. Semantics exploit underlying relationships between data captured by 
sensors, creating a versatile framework that can be utilized in various applications.
We devote our attention to grain and seed storage, and show how our system 
approaches data storage and data management in this application.

2.1   Absence of Data Storage

The initial motivation for this research was inspired by interaction with Cargill2, an 
international provider of food, agricultural and risk management products, and 
services [4]. This corporation stores cereal grain and oil seed products in large storage 
silos, and their goal is to ensure that the stored products are kept at premium quality 
before distribution. Guidelines in storage conditions are enforced by the Grain 
Inspection, Packer and Stockyards Administration (GIPSA) and the American Society 
of Agricultural Engineers (ASAE). These guidelines include equilibrium moisture 
content and upper bounds on temperature and relative humidity.

                                                          
1 NPRL was established in 1965, and current research centers on  detection of mycotoxin and aflatoxin in 

peanuts
2 Cargill is involved in every step of the production process, from harvesting to distribution -

http://www.cargill.com/



Cargill uses rather primitive data acquisition methods. Data are retrieved by 
random sampling via hand held sensors, which often yield an inaccurate 
representation of conditions. This makes it difficult to respond to deteriorating 
conditions in their early stages. Also, there are no records of historical data to aid in 
future decision making. We propose solutions to both these problems by utilizing a 
distributed Ontology as a storage repository that uses semantics to discover 
relationships among the streaming data.

2.2   Data Management Inefficiency

Our awareness of some of the problems affecting data management in Sensor 
Networks was amplified after communication with the USDA Agricultural Research 
Service (ARS) NPRL, which also engages in sub-par data management practices. 
Readings taken from sensors hourly are analyzed to determine required action, and 
historical data are available for analysis as well. The drawback is that Microsoft Excel 
Spreadsheets are used as the mechanism of storage; and they are not user-friendly for 
querying historical data. Therefore, with the use of a distributed Ontology, we resolve 
these issues by employing a Semantic Search technique allowing the user to easily 
query historical data. Through this system, simple and complex range queries are 
supported. Figure 1 illustrates the configuration of the NPRL mini-dome Sensor 
Network.

3   Overview

The development of ES3N followed a multi-layered process involving the following 
steps:

1. Data Collection - usually a significant issue in Sensor Networks. Resolving 
Heterogeneous data by tagging is often laborious. Raw data collected from 
NPRL, as text and Excel files assumed to be accurate, eliminated the need to 
focus on data collection challenges affecting this Sensor Network.

2. Memory Caching - efficient query processing requires efficient use of main 
memory. Real-time streaming warrants some data in main memory, but 
simultaneous permanent storage is necessary for efficient memory usage.

3. Data Tagging - in a small-scale sensor network, it may be reasonable to have 
homogeneous sensors which are usually identical or similar in terms of 
function [6]. In reality, Sensor Networks are inherently heterogeneous;
fragments of data from particular nodes within the network must be given 
unique id’s for proper identification.



Fig. 1. Mini-Dome Sensor Layout Schematic

4. Ontology Representation - depending on the application, it can be necessary to 
import or export data using standards such as RDF/RDFS and OWL [1]. For 
our purposes both OWL and RDF were necessary.

5. Query Processing - this continues to be a central issue for researchers in 
computer science and information systems. Query optimization is central to all
areas of computing. We use Semantic Techniques in this approach.

6. User Interaction and Data Representation - a wide range of visualization tools 
are available. Choosing among graphs, touch graphs, web interfaces, 
histograms, and tables will depend on the information being conveyed. We 
develop an interface we call ES3N3, to present data to the user.

7. Evaluation – Analysis and evaluation of Semantic applications are void of 
existing benchmarks and measurement standards. Often times, the best measure 
of performance and efficiency are attained through human subjects. In this 
instance we use empirical results to evaluate ES3N and present some 
discussion that augments these results. Figure 2 outlines our multi-layered 
approach.

3.1   Querying Sensor Networks

Sensor Networks are typically able to process a vast range of queries fairly efficiently 
using existing techniques. The TinyDB project is based on a query language that 

                                                          
3 The acronym ES3N was kept from a previous version of our paper entitled Exploiting Semantics in Sensor 

Networks for Silos.



supports basic, aggregate, temporal aggregate, event based and even lifetime-based 
querying capabilities. This language supports a range of query types, including
monitoring, network health, exploratory, actuation and offline delivery queries. From
a Semantic Web perspective, these querying types can be further leveraged by 
discovering and using Semantic Associations between fragments of data, to present
greater query richness. We demonstrate this in our layered approach.

Fig. 2. Multi-layered approach to application development



4   Implementation

4.1   Data Collection

ES3N collects data by storing them in an ontology. Daily RDF files are written to a 
special data repository, and only imported into main memory depending on the nature 
of the posted query. RDF files in main memory are quickly released back to 
permanent storage after use, importing the next file required.

4.2   Main Memory Caching

Streaming data come directly into main memory, where it is routed to the user 
interface and duplicated in the ontology. Data must be archived for two reasons; first, 
to support historical queries and more importantly, to manage memory efficiently. 
Archiving in the form of daily RDF files makes it unnecessary to keep yesterday’s 
data in memory. Streaming data is temporarily in main memory while archival data 
migrate to disk. This is also an efficient way of indexing incoming data.

4.3   Data Tagging

In most Sensor Networks raw data are heterogeneous and can pose problems for data 
identification. Fortunately, NPRL uses two distinct types of node sensors; 
thermocouple sensors for temperature and RH sensors for relative humidity. Incoming 
data are therefore assumed to be accurate. However, incoming data are time stamped 
so that the has_date and has_time relationships refer to unique literals for each entity, 
and all other edges connect non-distinct literals.

4.4   Ontology Representation

An Ontology is a formal explicit description of concepts in a domain of discourse [13]
and remains a primary contributor to the development of in Semantic Web
Applications. According to Natalya F. Noy and Deborah L. McGuiness[13], the 
development of ontologies is important for sharing common understanding of the 
structure of information among people and software agents, enabling reuse of domain 
information, making explicit domain assumptions and analyzing domain 
knowledge[13]. For our purposes the most important contribution of an ontology is its 
ability to hold entities with relationships and constraints among them.  For example, 
Table 1 shows constraints obtained through empirical research at NPRL on peanut 
storage. Using the has_max_temp and has_max_humidity relationships in the 
ontology these condition constraints play a key role in Actuation4 queries.

                                                          
4 An Actuation Query requires a physical action depending on query results



Table 1. Peanut Constraints

Property Maximum Value
Relative Humidity 80%

Temperature 75

To implement our application, we use Protégé 3.25 which is a free, open source 
ontology editor and knowledge-base framework developed and distributed primarily 
by Stanford University. We choose Protégé 3.2 because it allows the creation of an 
ontology schema, which can be exported easily to OWL and RDF/RDFS formats. Our 
ontology schema consists of a set of predefined classes, attributes and constraints
exported as an OWL file. Incoming data from the NPRL sensor network are compared 
against this schema, before being written to disk. A single record is described as
shown in Figure 3.

Fig. 3. Single Record in ES3N Ontology

                                                          
5 Protégé 3.2 is a beta version of Protégé from Stanford University
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Semantic Association

4.5 Query Processing and Data Analysis

For Query Processing, we use SPARQL, which is a Protocol and Query Language 
designed for accessing RDF data. In fact, SPARQL is a Semantic Web candidate 
recommendation presently undergoing standardization by the RDF Data Access 
Working Group (DAWG) of the World Wide Web Consortium [15]. SPARQL is 
embedded in Jena, which is a Java framework for building Semantic Web applications 
that provides a programmatic environment for RDF, RDFS and OWL, including a 
rule-based inference engine [8]. Our Ontology Schema, once imported in main 
memory, creates an ontology model6, to which formatted streaming data are added as 
resources. SPARQL queries capture relationships among data triples. Consider four
RDF resources in Figure 4.

Fig. 4. Semantic Association among four nodes

The four resources, data1, data2, data3 and data4 share all of the same properties. 
In particular, the literal value (11-20-05) for the has_date relationship is the same for

                                                          
6 An ontology model is a data container that holds resources about the ontology.
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all entities. A query posted to the model based on this date, would form an association 
among the four entities because their edges meet at the same node. 

This kind of semantic association points to the possibility for supporting much 
more complex queries that can traverse several hops, following many nodes and edges 
to a variety of end points. SQL-like query languages, like those suggested in the 
TinyDB and Cougar project, are limited merely to string and integer comparisons, and 
are therefore incomparable to semantic search.

4.5.2   Exploratory Query

The simplest form of query retrieves a single record from the ontology. Consider the 
following query: Query = “return the record on 11-22-05 at 5:00am.”

In answering this query, ES3N imports the archive file 11-22-05.rdf into the main 
memory model. SPARQL extracts the appropriate record based on the has_date and 
has_time properties.

4.5.3   Monitoring Query

A more complex query searches and returns more than one record within the same 
RDF file. Consider: Query = “return all records for 11-22-05.”

SPARQL traverses the entire 11-22-05.rdf file and returns all the records in that 
file to satisfy this query. 

4.5.4   Range Query

A typical range query requires importing several RDF files into the model and 
returning the data satisfying the query in each file. For example: Query = “return all 
days in the month of December when only fan2 was on.” ES3N performs these steps:

 Import first file, 12-01-05.rdf
 Query this file for results 
 Release this file back to disk
 Repeat the previous steps on the next file, 12-02-05.rdf and all remaining 

December files

Thus far, we have shown it is possible to pose three different types of queries using 
ES3N. We present these results to the user interface for analysis.



4.6   User Interaction and Data Representation

The ES3N Interface is a user-friendly front-end that allows data viewing in real time, 
as well as querying and viewing of historical data. This GUI serves as a forefront, 
allowing the user to utilize the research presented in this paper.

The real-time monitoring system is a preventative system versus a reactive one.
The streaming data can be analyzed to determine corrective action, primary among 
which is Aeration. Aeration is used to maintain an equilibrium between the 
temperature inside and outside the mini-dome, reducing the chances for an increase in 
moisture of the stored product and buildup of condensation [2]. Three fans located 
under the perforated floor of the mini-dome pull air down through the stored product, 
when needed. Thus, the mini-dome is divided into three sections (left, right and 
center) which are each aerated by one of three fans. The calculation of the average 
temperature of the mini-dome as a whole is calculated as such,
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Color-coded flags show the overall status of the stored product. Yellow signifies 
that the average temperature of the mini-dome as a whole is less than the outside 
temperature, but one section has a higher average temperature than the outside 
temperature. In this case the corresponding fan is turned on. Orange signifies that two 
sections are observed to have a higher average temperature than the outside 
temperature; and in this case two fans are activated. Finally, red signifies that the 
average temperature of the mini-dome as a whole is greater than the outside 
temperature. In this scenario, all three fans are turned on to lower the temperature. 
However, if the relative humidity of the air outside is greater than the maximum 
relative humidity allowed for the stored product, no aeration takes place. This is due 
to the fact that with a relative humidity over 80%, the air is very moist [2]. Therefore, 
aeration would bring in moist air, causing more harm than help. Figure 5, shows a 
snapshot of the ES3N Interface.

The ES3N Interface also allows the user to submit queries to the system. The user 
may query historical data in the form of range or monitoring queries. Finally, the 
ES3N Interface shows an overview of the ontology file system, which stores data in 
two formats, text and RDF. The RDF format is merely an RDF file containing the 
instances of that day. The text format shows the instances in tuple format, just as the 
query results on the query page.

5   Discussion

A Semantic approach to the Data Management issues facing the NPRL Sensor 
Network, leads us to highlight the following important aspects of the Semantic Web.



Ontology Data Storage - With a growing number of software engineers and 
designers continuing to embrace the Semantic Web, ontology data storage is the wave 
of the future. Oracle recently announced incorporating ontology building tools in its 
database management software. Protégé continues to build on earlier versions geared 
toward providing user friendly ontology editors. A growing awareness through 
conferences, workshops and exchange of information continues to champion the cause 
of the Semantic Web. Ontology schemas, OWL and RDF ontologies offer an 
alternative storage mechanism, annotating data and taking advantage of existing 
relationships among them. These provide immeasurable benefits for a new form of
query processing, as demonstrated in our work.

Fig. 5. ES3N screenshot  

Semantic Query Processing – SPARQL (www.w3.org/TR/rdf-sparql-query/) and other 
RDF query languages, including RQL [9], RDQL [14], and SquishQL [11] continue 
gaining greater recognition and popularity in many Java applications such as Jena and 
Sesame. Publicly available Semantic Query Processing tools hiding technical design 
from the user will unmask the future of query processing, increasing query richness 
immensely. 

The future of Semantic Web - Semantic Association continues to be a major 
concept used in a wide variety of applications. Current research at the University of 
Georgia encompassing Conflict of Interest Detection [1], National Security [16], 
Insider threat and Semantic Discovery (SemDis) are pivotal among these. The Key 
issues such as standardization through Semantic Annotation and Entity 
Disambiguation remain critical to the future of the Semantic Web. Accessibility and 
availability of larger standardized ontologies will enable searching multiple data 
repositories in many different formats. In our research we have shown that Sensor 
Networks too can benefit from Semantic techniques, and we hope to stimulate thought 
from the experts in this field.



6   Conclusions and Future Work

      Our ES3N application only demonstrates its data management capabilities with 
homogeneous sensors. In more complex Networks, sensors are undoubtedly 
heterogeneous. Our ontology schema allows for application across a multi-grain 
platform bringing the issue of ontology size into question. Years of collected data 
allow for much larger range queries requiring faster response times and dealing with 
larger data files. Future works concern using larger OWL and RDF-based storage 
mechanisms to support a multi-grain platform and handling much larger RDF files.  In 
particular, we consider using BRAHMS [7], which is an application developed by 
research at the University of Georgia to store extremely large RDF data. BRAHMS
boasts size and speed, and is gaining ground as the recommended tool for RDF 
storage.

In conclusion, we have shown that Semantic Techniques are important in forming 
associations among data adding to the richness of the querying capability. Our 
distributed ontology philosophy offers fast and efficient data retrieval, limiting the use 
of main memory in answering complex queries. Our future work promises to address 
larger Ontologies and investigating more complex Semantic Associations. 
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