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I.  INTRODUCTION

I.A Metabolomics.  Metabolomics is the computing of emergent properties of

biological systems such as development, biological clocks, and infection processes from

kinetic models of DNA, RNA, and proteins.  These kinetic models are being used to

guide the process of gene-validated product discovery transforming medicine, industry,

and agriculture.  The ultimate challenge of genetics is to predict global properties of the

organism, properties not necessarily manifested by individual subcomponents within the

cell.  Some of these properties only make sense with respect to the organism as a whole,

e.g., pathogenicity lifestyle (1) or life itself.  These complex traits controlled by many

genes represent the ultimate challenge in seeking an explanation in terms of detailed

molecular mechanisms in the cell.

From the standpoint of human health, an explanation is sought for how an

organism such as the opportunistic fungal pathogen, Pneumocystis, changes from a

benign commensual in the mammalian lung to the major killer of AIDs patients through a

lethal pneumonia (2).  From the standpoint of agriculture, one of the major challenges of

peanut production is controlling an opportunistic pathogen, Aspergillus flavus, causing

aflatoxin contamination in peanuts.   Controlling aflatoxin biosynthesis has consequences

for human health, the quality of a major US crop, and for domesticated animals ingesting

contaminated peanuts (3, 4). From the standpoint of industry, fungi are producers of

chemical feedstocks and biologicals ranging from ethanol to taka-amylase and citric acid

(5, 6). From the standpoint of fundamental questions in biology, an explanation is needed

for how a fungus programs the development of a conidiophore (7) or captures the diurnal
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cycle within the cell (8).  One approach to explaining these global processes is through

the identification of a biochemical and regulatory network that rationalizes these

processes with a mechanistic model (9). Unlocking these regulatory and biochemical

networks provides an opportunity for their manipulation either through targeting of

critical steps in metabolism for the discovery of anti-fungals or through manipulation of

pathways to overproduce needed compounds like penicillin.

I.B  Paradigm Shift in Biology.  Biology is going through a paradigm shift

driven by microbial systems.  The discipline is becoming data-driven through the

avalanche of genomics information being released on a variety of fungal systems (10).

The discipline of fungal biology has become high-throughput, with vast amounts of data

robotically generated through use of automated sequencing machines (11) and the use of

microarrayers for analysis of gene expression (12) and mass-spectrometers for protein-

protein interaction mapping (13). These data are highly structured and hierarchically

organized (14). At the center of any biochemical and regulatory network, whether it be

the lac operon (15) or the biological clock (16), is the Central Dogma describing the most

fundamental flow of information in the cell from DNA  RNA  protein.  Within a cell

this dynamic flow of information is hierarchically arranged.  Functionally, reaction

networks have structure (17).  At their highest level they are organized into broad

functional categories such as energy metabolism, nucleotide metabolism, recombination,

and DNA repair.  At a lower functional level, within any one of these functional

categories, there is a finer definition of function in terms of genes and their products

involved in, for example, the Embden-Meyerhof Pathway, Krebs Cycle, and oxidative
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phosphorylation.  At the lowest level in the functional hierarchy, there is a particular

pathway (18,19).

This information flow also has a structural hierarchy.  Genes and proteins do not

work in isolation within a reaction network (20, 21).  Rather, proteins form complexes

that carry out the work of the cell, such as signaling.  Signaling cascades of proteins may

work in a coupled fashion to connect the surface of the cell with the nucleus in order to

respond to different environmental conditions (22). These signaling wires themselves are

made up of shared components to allow a coupled response to environmental signals.  In

other parts of the cell, proteins form smaller aggregates to carry out a specific function,

such as transcription, which in turn aggregate to form a "some" like the transcriptosome

composed of more than 100 proteins (23).  New tools are being developed to identify

these molecular machines (24, 13).  These subcellular structures within the cell may have

arisen from simpler precursors, and the structure of these molecular machines may in part

reflect their history (25).

The information in the cell is hierarchically organized through its history.  The

shared thread of the DNA links organisms into a reticulate structure, in which the history

of genes traces out the organismal phylogeny linking all organisms in the tree of life.

The appearance of each new mutation in the DNA can be viewed as the ticking of a

molecular clock.  This ticking of the clock can be used to link organisms into families,

which can be in turn linked into pedigrees, which in turn give rise to genera, which in

turn radiate into the larger taxonomic branches.  This evolutionary organization is played

out at different levels by comparing genes evolving at different rates (26).  Through the
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consideration of the detailed mechanics of the cell, biology has thus become an

information science from a functional, structural, and evolutionary standpoint.

Because of the avalanche of information resulting from the genomics revolution,

biology has changed into a mathematical discipline.  Extensive automation is required to

capture the data (27) through laboratory information management systems (28). The

information needs to be stored, managed, and retrieved in sophisticated databases (29, 28,

30).  The information needs to be integrated with new algorithms (31, 32, 33, 34, 35, 36,

37) and with new tools such as the semantic web to make queries of the diverse resources

now available for identifying reaction networks (38).  Models are being created to

summarize the information (39, 40). The information has to be analyzed to test

hypotheses about the structure, function, and evolution of living systems (41), and,

finally, the information needs to be visualized (42, 43, 44) to be understood and utilized.

Computer scientists, mathematicians, and statisticians are engaged in all aspects of

biology as an information science.

With the focus on complex traits involving many genes and their products, a new

approach is needed, an approach more familiar to ecologists and neural biologists.  This

systems approach is at the heart of genomics.  Measurements are taken on the system as a

whole.  The relative levels of all RNAs are measured (12).  The relative levels of all

proteins are captured from crude protein extracts (45).  The response of the system as a

whole is measured by capturing all RNA and protein levels in the cell.  The ability to

predict the global response of the system becomes the ultimate test of a biological

hypothesis.
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The promise is that by measuring the global response of the system we can

understand and predict complex traits (46).  Currently, this is only a promise by

genomics, but it is a compelling challenge to move beyond Mendelian genetics.  Most of

the traits of interest, such as antibiotic production, pathogenicity, or clocks, are controlled

by many genes and are tightly coupled to other processes (47).

In this section metabolomics as a discipline has been defined, and connections are

made with metabolic engineering.  In Section II the origin of metabolomics is explored.

In Section III the models or "biological circuits" behind metabolomics are sketched with

their applications.  In Section IV the process of discovery at the heart of metabolomics is

considered.  In Section V the process of identifying biological circuits is considered along

with the challenges.  In the final section metabolomics is put in a larger context and

summarized.

II. BIRTH OF METABOLOMICS AS A SYSTEMS SCIENCE

      The challenge of genetics is formulating a detailed understanding of complex

traits, particularly those that characterize the organism as a whole.  Examples include

high blood pressure, biological clocks, sex, development, and pathogenicity.  Much of

what we know about the biological clock, for example, comes from the study of a

particular fungal system, Neurospora crassa (8).  In Figure 1 is shown an example of this

emergent property of N. crassa, the regular temporal sequence of conidiation by this

organism growing in race tubes.  When transcriptional activators like white-collar 1 (wc-

1) and white-collar 2 (wc-2) are knocked out, the organism loses its ability to tell time.

The extent of the circuit is unknown, but a number of genes are now implicated in the

functioning of the Circadian oscillator.  One goal is to be able to predict the oscillatory
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response from a detailed biological circuit specifying the function of genes and their

products.

Traditionally, the subject of quantitative genetics has focused on complex traits

(48).  The approach has been model-based with the hypothesis of several loci on

chromosomes contributing to a particular complex trait.  Assumptions about dominance,

penetrance, and epistasis are made, and then predictions about the inheritance of the trait

are calculated.  The subject has given rise to an area where there are now powerful

methods for identifying quantitative trait loci (QTLs) that affect particular complex traits

(49,50,51,52).  When QTLs are integrated with other kinds of genomic information,

precise predictions of the location of genes can be made (53, 52).  Unfortunately, this

approach is divorced from a detailed understanding of genes and their products.  In the

end, the explanation of a complex trait is only a location on a chromosome.

Both genomics and quantitative genetics have a common goal, the understanding

of complex traits.  The challenge is how to make Genomics as a data-driven discipline

into hypothesis-driven science.  One approach is to cross Genomics and Quantitative

Genetics.  The resulting child is metabolomics.  Metabolomics at its outset embraces the

model-driven approach of quantitative genetics and combines this with the data-driven

discipline of Genomics.  Metabolomics thus becomes hypothesis-driven genomics.

Metabolomics begins with the data rich foundation of Genomics.  The starting

point is the entire DNA sequence of an organism.  This resource is used to capture RNA

and protein profiles, i.e., the cellular state, under varied conditions.  Models of the

complex trait are introduced to explain the trait in terms of RNA levels, protein levels,

and metabolite levels plus the organization of genes, their products, and substrates in the
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cell.  The models serve to explain and predict using the data-rich foundation of genomics.

Predictions are made about the complex trait and the global state of the system from a

detailed understanding of DNA, RNA, and proteins.  The success or failure of a scientific

hypothesis can be judged in this wider genomic context.

II.A System state.    One of the remarkable advances of Genomics has been in

obtaining a fairly complete description of what the cell is doing.  It is now possible to

measure all relative RNA and protein levels in microbial systems (12, 45).

Varied strategies can be used to examine gene expression, including differential

display, subtractive hybridization, and restriction fragment differential display.  In

particular, two technologies have come to the fore, microarray analysis (54) and serial

analysis of gene expression (SAGE) (55).  Some comparisons of these approaches have

been made (56), and the result is that each method identifies different subsets of the total

RNA population.  With microarray analysis varied implementations exist.

II.A.1.  RNA profiling by microarraying.  One illustration of the approach

developed by DeRisi et al. (12) is described in Chu et al. (57), in which microarray

analysis is used to analyze an emergent property of all living systems, reproduction.

RNAs are isolated from 10 different time points in sporulation and the meiotic cell cycle,

reverse transcribed, labeled with a red or green chromophore, and the cDNAs (red) from

each time point mixed with cDNA derived from the 0 time point (green).  This cocktail is

then probed against all 6000 genes in the yeast genome (Fig.2)(58).  The advantages of

this approach are the linearity of signal response, the presence of an internal control (by

mixing the cDNAs from different sources into one probe), and the simple approach to

visualizing the transcriptosome.  One limitation has been an interaction between the
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source of the RNA and color label (i.e., the red or green chromophore), which has led

others to radiolabeling cDNAs (23).  Seven clusters of genes are differentially regulated

during sporulation (41), and the genes are clustered by the similarity of their profiles as

shown in Fig. 2 (58).  This information then becomes a resource for detailed hypotheses

about the cell cycle (59).

II.A.2.  RNA profiling by SAGE.  An alternate approach and the one first used to

characterize the yeast transcriptosome is simply to sequence efficiently the resulting

cDNAs from different cellular states and to count the RNAs present (i.e., SAGE (55)).

With the ability to quantify expression of all genes, the next step in the information flow

of the Central Dogma is capturing relative protein levels in the cell.

II.A.3.  Protein profiling by ICAT.  Isotope-coded affinity tagging (ICAT) has

been used to characterize the GAL cluster in yeast (45).  Protein profiling will help us to

identify genes that are under translational control (16,60) as well as providing a more

complete description of the cellular state.  The ICAT reagent contains a sulfhydryl-

specific reaction group (iodoacetamide) to label cysteines, an affinity ligand (biotin) to

capture the protein, and a linker region that contains 8 deuterium atoms (D8) or 0

deuterium atoms (D0) to label the cellular state.  In the case of yeast, Gygi et al. (45)

compared proteins in cells grown on galactose or ethanol as a carbon source as the two

cellular states.

Using the ICAT reagent, they were able extract and identify more than 800

proteins that responded differentially to change in carbon source.  Data collection

operated in two modes on a mass-spectrometer.  In one mode, peaks coming off the

column were used to identify proteins from their BN-Y fragments.  In the other mode,
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pairs of peaks were captured separating the two labeled forms (D0 vs. D8) of each protein

to quantify the relative amounts of particular proteins in the two cellular states (labeled

by D0 and D8).  The use of the cysteine label decreased the complexity of the protein

mixture and thus increased the opportunity to characterize more proteins in the cell.  The

combination of the use of an internal control, dual peaks as a form of replication (D0 and

D8), and the ability to analyze insoluble proteins in contrast to other mass-spectrometric

methods, such as MALD-TOF-MS/MS (13) make this an attractive approach.  The major

limitation is resolving all the proteins in a cell-free protein extract.

II.B.  A journey into the MudPIT.  In Multidimensional protein identification

technology (MudPIT) the aim is to resolve all proteins in the proteome.  One approach

that has been successful is to combine multidimensional chromatography with

electrospray ionization on a mass spectrometer (61,62).  Peptides are systematically

separated by charge in one dimension and by hydrophobicity in another dimension.  An

SCX cation exchange column was used to separate by charge and preceded by a

prefractionation step on hydrophobicity prior to the dual liquid chromatography LC/LC

step.  Wolters et al. (62) estimated that up to 23,000 peptides could be separated using

this approach.  Using protein extracts from S. cerevisiae, they were able to separate 5540

unique peptides (approximately 1484 proteins) from a complex mixture.  The estimated

dynamic range for detection varied 10,000 to 1 with a lower detection limit of 100 copies

of a protein per cell.  The major advance of MudPIT is reaching the insoluble protein

fraction and more than doubling the number of resolvable proteins with two-dimensional

polyacrylamide gel electrophoresis (2D-PAGE) (13).  The major limitation is still the

complexity of the protein mixture.
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II.C.  Who counts the small molecules? Having completed the story of large

molecules, a segue to the characterization of the metabolite profiles is needed, and some

initial efforts are reviewed (63,64).  Some of the new approaches to metabolite profiling

are discussed in Chapter 14 by (64).  A variety of separation procedures are being

explored.

II.D. System measurements. The basic measurements available on the system

are the RNA and protein levels in different cellular states along with the levels of small

molecules as available.  These transcriptional and protein profiles become the resource to

which the biological circuit is fitted.

II.E.  Making genomics hypothesis-driven.   The process of making genomics

hypothesis-driven is summarized in Figure 3. The state of the system is captured in the

RNA and protein profiles and whatever elements of metabolite profiles can be captured.

These data are then used to identify a formal kinetics model to describe what genes and

their products are doing.  The classic elements of a biochemical reaction network are

shown in Figure 3.  The simplest kind of reactions are those that lead to Michaelis-

Menten Kinetics as shown (65).  Once the table of reactions is specified, the profiling

information can be used to identify the rate constants and initial conditions of the

biochemical and gene regulatory reaction network.

One of the simplest kinds of reaction networks is a pair of coupled signaling

cascades as shown in Figure 3.  A receptor protein (R or R1) at the plasma membrane

responds to an incoming signal, such as a pheromone or osmolarity (22).   The message is

passed to a G-protein (G or G1) which, through a signaling cascade, activates a

transcriptional activator (E or E1) to program the cell for an adaptive response.  Even this
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simplest of systems can display emergent properties such as memory of the incoming

signal, which the individual signaling wires by themselves do not manifest.

Once the kinetics model or what we will term a "biological circuit" is identified,

then familiar simulators like GEPASI, MIST, or SCAMP can be invoked to yield

predictions about the system (66,67,68), which can then be validated experimentally.

II.F.  Role of Hypothesis-Driven Genomics.  The advantage of this framework

for hypothesis-driven genomics is several fold.  This framework leads to a natural

integration framework for genomics information.  The profiling data are used for fitting

the reaction network.  Protein-protein and protein-DNA interactions enter to constrain the

search for a better reaction network topology (21, 69).  Available information on

pathways is incorporated into the chemical reaction network from BIND, KEGG, EcoCyc

and other sources (70,19,18).  The fundamental structure of the reaction network reflects

the information flow and information hierarchy in the cell.  The reaction network or

biological circuit summarizes the available information in an intelligible framework

familiar to biologists, chemists, and physicists; moreover, the resulting kinetics model

makes predictions about the system as a whole, which are then subject to stringent

assessment against the measured states of the system.

Finally, the consideration of a biochemical and gene regulatory reaction network

generalizes and regularizes the process of hypothesis-generation.  Questions about how

genes are regulated, whether or not translational control exists, or how one circuit

involved in secondary metabolism is coupled to other circuits in carbon metabolism can

be directly addressed.  More importantly, the framework of a reaction network is open-

ended and begs a genomic perspective, i.e., fleshing out the wiring diagram.  The
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experimentalist is forced to continue to incorporate new genes and their products until the

system-wide behavior can be recovered according to a more stringent standard of

correctly predicting system response.  It is no longer enough to get the story qualitatively

right, but the levels of reactants and products must be correctly predicted.

This framework with the biological circuit at its heart provides a search tool for

better hypotheses.  As more relevant genes are found to be responding together at the

RNA and protein level or as more genes are found to have the same upstream sequences

binding to a bait DNA-binding protein (69), they can be incorporated into the circuit.  In

essence, protein-protein interaction maps (20, 21, 13) and protein-DNA interaction maps

(69, 71, 72) provide a search grid for alternative reaction networks.

II.G  Automated workflows to implement the process of hypothesis-driven

genomics.  The process of perturbing the system, measuring the response through

profiling, fitting a hypothesized biological circuit, evaluating fit, modifying the model,

and selecting the next system perturbation involves many automated and human tasks.

This process can be modeled and managed as an automated workflow (28).  LIMS have

become a standard part of genomic sequencing (27, 73, 74). The task of identifying a

reaction network is more complicated.  The data sources are disparate, and the

experiments required to identify such a biological circuit will typically involve over

100,000 task executions.  Thus, the human and automated tasks to identify a reaction

network are complex, evolving, and involve managing data accumulated over a period of

years.  A simple diagram summarizing the tasks in a workflow is given in Figure 20.

A workflow is defined as an activity involving the coordinated execution of

multiple tasks, which can be performed by people, programs, or machines (28), while a
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workflow process is defined as an automated organizational process involving these

tasks.  Recently, laboratory information management systems (LIMS) systems have been

introduced to design and manage these workflow processes (27).  An automated

workflow management system (WfMS) is the collection of tools enabling workflow

creation (which includes design), workflow enactment, and management of workflow

processes.  The goal of a workflow management system is to enforce inter-task

dependencies, scheduling, data management, and reliable execution.  Workflow

management systems can play a central role in monitoring and enforcing quality of

service (QoS), such as sequence quality (76, 77).  Genomics workflow systems require

adaptability and ensured QoS.

Several workflow management systems are available (78, 79, 80).  One such

system is METEOR which provides four kinds of services: workflow builder, workflow

repository, workflow enactment, and workflow manager.  Enactment has been

implemented in two versions, WebWork (81), which is entirely web-based and is suited

for workflows that do not dynamically change their architecture and OrbWork (82),

which supports dynamic modifications to a workflow.

METEOR has already been used to support portions of a workflow to identify

reaction networks.  A workflow like that in Figure 17 includes a subflow for sequencing,

which has been implemented (74).  A larger subflow for protein-protein interaction

mapping has also been created (28), which again is a subcomponent of circuit

identification.  Workflow management systems will be essential for integration of

genomic and bioinformatic projects aimed at identifying biological circuits.
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III.  MODELS

A variety of modeling approaches for biological circuits have been proposed.

These include linear models with time as a factor (83), linear dynamic (84), Bayesian

networks (85, 86), neural networks (87), Boolean networks (88, 89, 90), and classic

chemical reaction networks satisfying mass balance (39).  At one extreme Boolean

networks are Draconian simplifications of chemical reaction networks satisfying mass

balance, but may be informative about crucial links in large reaction networks.  At the

other extreme are the stochastic formulations of reaction networks, in which the fate of

individual molecules are tracked by applying a set of master equations summarizing the

chemical reactions.  Deterministic reaction networks strike a balance on this spectrum.

The success of these competing approaches will ultimately be decided by the data.  The

focus here is on classic chemical reaction network models because they are well-

grounded in physics and chemistry.  These chemical reaction network models can either

be deterministic as in (39) or stochastic (91, 92).

  For most reactions, enforcement of mass balance leads to specification of a

system of differential equations to describe this reaction network (39).  An example of

how the reaction network captured in the circuit of Figure 4 is translated into a coupled

system of nonlinear differential equations is given in (40).

III.A.  Water Models.  In that most of the examples here are drawn from

respiration, the modeling framework is illustrated with one of the simplest examples of

combustion, the mixing of molecular oxygen and hydrogen, as shown in Figure 4.  This

network diagram is the model.  Circles denote reactions, and squares denote reactants or

products.  The arrows define the forward direction of a particular reaction. Incoming
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arrows lead from reactants, and outgoing arrows lead to reaction products.  The end

product is water, and we term this simplest of models, water model I (or the simple water

model). Take reaction 1 as an example:

R1: H2 + O  H + OH

(with left to right as the forward reaction).  Each such reaction has a pair of reaction

constants, the forward reaction constant (kf) and backward reaction constant (kb).  The net

rate of production of Species OH due to reaction R1 would be given by the simplest

multiplicative kinetics by (65):

d[OH]/dt = kf [H2][O] - kb[H][OH],

where, e.g., [OH] denotes the concentration of OH at time t.  The total rate of production

of a species is then obtained by summing over reactions, containing , say, OH:

d[OH]/dt = Σr d[OH]/dt

The system of six differential equations characterizing the behavior of the reaction

network can be found in (40), and the reader is encouraged to try the simulator

KINSOLVER for this simple reaction network, found at http://gene.genetics.uga.edu/stc.

With the advent of simulators like KINSOLVER, the focus for biologists then simply

becomes to identify the biological circuit.  This is the model.

As chemists accumulated more kinetics data, they found the initial reaction

network was an oversimplification of what makes some rockets go up (i.e., H2 and O2).

The reaction network or circuit needed to be refined to that in Figure 5 (Water Model 2).

This inclusion of additional species and/or reactions is typical of building a model that

fits a biological system.
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III.B.  Carbon metabolism.  A slightly more complicated biological circuit can

be constructed for one of the two early paradigms for eukaryotic gene regulation (93, 94)

along with the GAL cluster in S. cerevisiae (95, 9). Specifying the model in Figure 6

begins by writing down the chemical reactions of the known participants in quinic acid

(QA) metabolism.  The circles on the wiring diagram denote reactions; boxes denote

reactants.  Arrows are used to indicate the reactants entering a reaction, and outgoing

arrows, the products of a reaction.  Some reactions have no outgoing arrows, and they

(the lollipops) are decay reactions.  At the top of the circuit, reactants include the 7 genes

in the qa cluster (qa-x, qa-2, qa-4, qa-3, qa-y, qa-1S, qa-1F) (94).  These genes can be

either in an unbound or a bound state with a transcription factor produced by the qa-1F

gene as indicated by a superscript, 0 or 1, respectively.   These genes are, in turn,

transcribed into messenger RNAs (superscripted with an r) which, in turn, are translated

into proteins superscripted with a p (a slight departure from convention).  A total of

4 out of the 7 protein products participate on a known biochemical pathway at the bottom

of the diagram.  In the circuit, there are two hypothesized cellular states for quinic acid,

extracellular (denoted with an e) or intracellular quinic acid (QA).  One of the genes, qa-y

, is thought to encode a permease, qa-yp, which may be involved in the transport of quinic

acid into the cell.  One hypothesized protein-protein interaction exists in the model

between the repressor, qa-1Sp, and the transcriptional activator, qa-1Fp.  Quinic acid in

the cell (QA) is hypothesized to be the cell signal that disrupts the bound complex of qa-

1Sp/qa-1Fp to favor induction by qa-1Fp (94).  This story is summarized in Figure 6.

This story can be converted into a formal biological circuit in Figure 7.  The top

structure to the circuit is the Central Dogma.  At the bottom of the circuit is a piece of a
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biochemical pathway metabolizing QA.  The pathway feeds into the Krebs Cycle.  The

qa-1Fp acts to create a feedback loop to activate the cluster and itself.  When sucrose is

added to the medium, a mechanism for catabolite repression is hypothesized, in which the

presence of sucrose favors the binding of the repressor protein qa-1Sp to the

transcriptional activator qa-1Fp. At this time the boxes in the 3rd and 4th rows are the

observables.  The circuit can be simulated over the web at

http://gene.genetics.uga.edu/stc as described in (40). Some examples of the equations

describing the 50 reactions can be found in Figure 8.  In this example transcriptional

regulation is a reaction in which the transcriptional activator qa-1Fp binds to the inactive

gene like qa-2.  One of the metabolic reactions is shown in which the enzyme qa-3p

converts intracellular QA* into dehydroquinate (DHQ).

III.C. The lac operon.  The classic example of a biological circuit and the first

one to be worked out is the lac operon (15).    The top structure of the circuit reflects the

Central Dogma in Figure 9.  The transition from inactive transcriptional state (i.e., lacY0)

to an active transcriptional state (i.e., lacY1) is coupled to the transition from active

transcriptional  (i.e., lacZ1) to an inactive transcriptional state (i.e., lacZ0), as the RNA

polymerase is handed from one gene to the next to form a polycistronic message.  The

lacIp protein binds to the operator in the absence of lactose.  The catabolite repressor

protein, crpp, acts as a positive activator (like qa-1Fp) by stabilizing the recruitment of the

RNA polymerase to the promoter site.  The biological circuit differs from the usual story

told in texts by inclusion of the internal signaling cascade linking PEP in glycolysis to the

glucose transporter (96).  This particular circuit is about twice the size of the qa cluster

circuit and still leaves out components of the Embden-Meyerhof pathway linking
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Glucose-6-phosphate to PEP.  Again, the circuit can be simulated over the web at

http://gene.genetics.uga.edu/stc.

III.D.  trp operon. One other classic circuit illustrating translational control is the

trp operon (97).  In this story, summarized in Figure 10, there are two configurations of

the RNA, one in which the ribosome is stalled at a trp codon and one in which the

ribosome is not stalled.  When there is plenty of tryptophan, there is a feedback loop

created in which the RNA forms a structure that leads to transcription termination such

that no proteins are made. In the other configuration, the RNA polymerase transcribes the

downstream structural genes, and the RNA gets translated.    In addition, a feedback loop

involving trpRp which, in contrast to the lac operon, is activated in the presence of the

metabolite to shut down the trp operon.  The pathway is at the bottom of the circuit.

III.E.  Examples of biological circuits relevant to agriculture, industry, and

medicine.  A preliminary circuit can be constructed for aflatoxin biosynthesis from the

25 known components of the sterigmatocystin cluster (98) and the identification of a

positive regulator of aflatoxin biosynthesis (99).  A preliminary circuit is available at

http://gene.genetics.uga.edu/stc, but it is much larger than the circuits described above.

Mechanisms of negative regulation of the pathway are yet to be identified.  This A. flavus

system is one of the few approved for USDA piloting of release of competing strains to

displace those strains producing aflatoxin.  In this case, the circuit could help to identify

which mutations are likely to be most effective in knocking out aflatoxin biosynthesis in

genetically engineered strains and determining how aflatoxin biosynthesis is triggered.

Another important example is the penicillin gene cluster in Aspergillus nidulans

and Penicillium chrysogenum (47).  The cluster with its ~3 genes is conserved in



21

prokayotes and eukaryotes (100) with a partially specified regulatory system and may

have arisen in fungi by horizontal transfer from a prokaryote like Streptomyces.  The

regulation of the penicillin cluster at first sight appears more complicated than the

paradigms like the qa cluster.  The regulation of penicillin synthesis appears to be tied to

biological circuits for carbon metabolism, pH sensing, and nitrogen metabolism as

examples (47).  For example, Suarez and Penalva (101) present evidence that a pacC

transcription factor involved in pH sensing may bind to an intergenic region between

acrA and ipnA genes in the P. chrysogenum penicillin cluster. An hypothesis for the

pathway describing biosynthesis of penicillin is well developed.  A biological circuit is

likely to contain several kinds of feedback loops to incorporate connections to other

circuits.  A genetic perturbation of this circuit is likely to interact with a process of

amplification of the penicillin cluster by sited directed homologous recombination

mediated by a conserved hexanucleotide sequence (102).  Relevant environmental

perturbations include the carbon source and pH.  Some kinetics models have already been

tried.

The final example is drug discovery for P. carinii (Pc), the major killer of AIDs

patients (2). An ATP Bioluminescent assay for in vitro screening of anti-Pc drugs has

been developed (103).   With the resources of the Pneumocystis Genome Project (104,

37), over 2000 distinct cDNAs have been generated and partially sequenced.  This cDNA

collection includes genes such as erg-9, erg-1, and erg-7 in sterol biosynthesis.  A partial

reaction network for sterol biosynthesis can be hypothesized by reference to KEGG (19).

The cDNA collection can be then exploited for transcriptional profiling to understand the

mechanism of action of existing anti-Pcs like TMP-SMX, Pentamidine, and Atovaquone,



22

for highlighting new potential drug targets in sterol biosynthesis and other critical

pathways, and for evaluating the proposed reaction network for sterol biosynthesis.  The

approach is to perturb the system with an array of potential protein inhibitors, observe the

response with the ATP Bioluminescent assay and transcriptional profiling, fit a

hypothesized reaction network, evaluate the model, modify the model and perturbations,

and repeat the cycle to discover drugs and their mechanism of action.

III.F.  Simulating arbitrary reaction networks satisfying mass balance.  A

number of simulators now exist that simulate arbitrary reaction networks that satisfy mass

balance.  These include METAMODEL (105); GEPASI (106,66); SCAMP (68),

KINSIM (107, 108), MIST (67), E-CELL (109), and KINSOLVER (40).  These packages

differ in the diversity and type of numerical solution methods for the systems of

differential equations illustrated in Figure 8.  The simulators also differ in their ability to

be used on different types of computers or over the Web.  Lastly, the simulators differ in

their capability to examine many reaction networks at once relevant to a particular system

(110).

III.G.  Steady-State Approximations to simplify biological circuits.  A classic

approach to simplifying the reaction network is to make steady state approximations to

obtain simplified kinetics (65).  The classic example is Michaelis-Menten (MM) kinetics

derived from the reactions in Figure 3 by making a steady-state approximation with

respect to the level of enzyme complex [ES]. With a general purpose simulator, this is not

necessary and can in some cases be positively misleading. For example, the MM

formulation tends to break down when there are multiple substrates for the enzyme.
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With this caveat, it may be possible to simplify the kinetics model by steady state

approximations to reduce the number of parameters and to gain interpretability of the

model, i.e., heuristic appeal.   One example is shown in Figure 11.

The deterministic model in Figure 11 is a steady-state approximation to the full model in

Figure 7 in which the velocities for the concentrations of the bound-state of the genes are

assumed approximately constant (i.e., d[qa-x1]/dt = C).  In this model there are two sets of

promoters, one set being QA-inducible and one set not being QA-inducible (111). QA

independent rates of transcription of the activator (f), repressor (s), and structural genes (sg) are

denoted by αf, α s, and αsg.  In contrast, the rate of production of message induced by QA is

proportional to the level of inducer and activator protein.  The rates of QA-inducible transcription

of activator, repressor and structural genes are denoted by δf, δs, and δsg, respectively.  The

repressor interacts with the activator, and the effect of the repressor on transcriptional activation

is captured in the repressor effects γf and γ sg. Message levels (mx) decay at the same rate in

proportion to their level. The Hill Coefficient, n, is introduced as a shape parameter for the

cooperative effect of repressor polypeptides on message levels.  In this model there is no post-

transcriptional regulation.  All messages are translated at the same rate, and protein levels (px)

have different constant rates of decay of βf for the activator, βs for the repressor protein, and

βsg for the structural gene proteins.  The number of parameters is reduced to 42, and the model in

Figure 11 is analytically tractable.

III.H.  Stochastic circuits.   McAdams and Arkin (112) have presented evidence that

stochastic factors play an important role in the λ switch response.  Kepler and Elston (113) have

also demonstrated that stochastic factors can play an important role in transcriptional control

through the recruitment of RNA polymerase to the promoter, and Abastado et al. (114) have

made the case for stochastic factors in translational initiation by ribosome scanning of the uORFs

upstream to GCN4 (115).  The extent to which such stochastic factors play a role in most
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biological circuits is unknown.  Gillespie (91) established a framework for stochastic kinetic

models, which, under certain regularity conditions, converge to the deterministic circuits

satisfying mass balance described in the previous modeling sections.

The formulation of the model, as with deterministic models, begins by writing down the

circuit diagram or, equivalently, the tables of hypothesized reactions as in Figure 12.  The

formulation of a stochastic circuit is illustrated with the qa  gene cluster circuit.  From a

microscopic point of view, binding of a free inducer molecule (i.e., quinic acid in the cell),

activator, and repressor to the activator, gene, or activator, respectively, is very likely to be a

random process because of the low concentrations of the reactants in the cell (113, 116).

In Figure 12, time can be taken to advance in discrete steps due to random collisions of

molecules participating in the reactions, where mFunI  and mSunI  are the basal number of mRNAs

for qa-1F and qa-1S; where mFI and mSI are the number of induced mRNAs for qa-1F and qa-

1S; where qa-1Fp and   qa-1Sp
  are the number of protein molecules encoded by qa-1F and qa-1S;

and mFR is the number of transcriptional activators bound to a repressor protein.  The quantities Zi

represent the numbers of product molecules, and the constants ki are reaction rates.  The sources

A,B are the qa cluster DNA and assumed constant.  As in Figure 12, similar reactions can be

written down to specify the role of the structural genes in the reaction scheme.  The model is a

discrete-time denumerable Markov Chain (117).  A formal relation among the parameters in

Figure 12 and the reaction rates can be established following Gillespie (91).  For example,

α φ  = (  k1AτV)/mfmax, where τ is the time scaling parameter, mf m a x is a concentration

normalization coefficient, and V is a volume factor.  Recently Kierzek (92) developed

methodologies for simulating stochastic networks.

III.I.  Limitations of reaction network models described.  III.I.1.  There are too many

parameters and too few data.  With each new species, a new parameter, its initial concentration is

added.  With each new reaction, two new parameters, the forward and backward reaction

constants, are added.  In general only a subset of the species are observed over time.  The major
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problem is identifying one model that fits one reaction network with limited and noisy profiling

data.  To address this problem will require novel fitting procedures.

III.I.2.  We may not have all the pieces.  To overcome this problem any modeling, fitting

and model evaluation framework must be general enough that discovery of new species during

profiling or new topological features during protein-protein interaction mapping can be included

in the circuit.  For example, a general purpose simulator KINSOLVER (40) is required.

III.I.3.  Stochastic factors may play a significant role in the reaction network (112, 118).

As a consequence, it will be important to build on the work of Gillespie (91) and Kierzek (92) to

generalize a deterministic simulator for an arbitrary reaction network satisfying mass balance, as

Tomita et al. (109) have begun to do.

III.I.4.  The cell is well-stirred is a basic assumption of the family of models proposed.

Weng et al.  (119) point out that consideration needs to be given to cellular compartments,

scaffolding, and reaction channeling.  Compartmentalization can be handled in part by simulators

like KINSOLVER by indexing the species by the compartment containing them (120).  Similarly,

scaffolding and channeling can be represented by allowing for additional concentration variables

and corresponding reactions for chemical species participating in a protein scaffold or reaction

channel.  Another option is the approach of E-CELL (109), which is to introduce another table

describing the compartmentalization of reaction species.

III.I.5.  Higher-order kinetics may come into play.  The formal model is based on

collision dynamics determining the Right-Hand-Side (RHS) of the coupled differential

equations like those in Figure 8.  Any number of reactants or products can be introduced

into a particular reaction, allowing higher-order kinetics.  The more standard non-

multiplicative MM kinetics can be derived as steady state approximations to the full

reaction network as in those based on collision dynamics (65), as was done in Figure 11.

IV.  PERTURBATION, PREDICTION, AND OBSERVATION
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IV.A.  Emergent properties as a predicted response.  Once a systems approach

is embraced, an experimental framework is needed to study the global response of the

system.  One approach is to perturb the system experimentally and then to measure the

global system response.  Predictions are made about the effects of various system

perturbations and then compared to the observed state of the cell through profiling.

Experiments are designed to test the predictions.  In a systems approach the goal is to

understand and recover the behavior of the entire system. The system is not take it apart,

but rather it is perturbed and it and its total response, measured.  The hope is to be able to

predict its system-wide behavior.

System perturbations can fall into three broad classes as illustrated with respect to

the qa cluster in Figure 13.  They can be genetic in nature, such as gene mutations or

more specifically, gene knockouts.  A gene mutation in the qa-2 gene removes its

function in Figure 13.  Perturbations can be chemical in nature, such as adding a protein

inhibitor to the medium to inhibit qa-3p.  This kind of perturbation would characterize the

search for drugs to inhibit essential activities in organisms such as Pneumocystis.

Finally, a perturbation can be environmental in nature, such as a change in carbon source

(i.e., sucrose for quinic acid).  In each case, the response is predicted from the simulation

and compared to that observed to validate the circuit.

IV.B.  Genetic Perturbations can be a challenge. The major challenge for perturbation

experiments is carrying out targeted gene knockouts in N. crassa and other fungi with a low rate

of homologous recombination.  High-throughput strategies for directed and random signature

tagged mutagenesis (STM) using transposons have been developed in bacteria and yeast

(121,122,123,124,125,126,127). Recently Hamer et al. (127) have successfully utilized a STM

strategy on a close relative of N. crassa, the rice blast fungus Magnaporthe grisea.
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The STM strategy used by Hamer et al.  (127) shares many of the common

elements of all STM strategies originally developed by Hensel et al.  (122) and Burns et

al. (121). Loss of function mutations are generated with a transposon.  A tag is introduced

into the mutation.  The tag contains a marker that can be selected for in the target system

after transformation.  Strategies differ on whether or not the mutations are generated in a

targeted way (125) or randomly (124) and whether or not they exploit homologous

recombination present in the organism.  They can also differ on the nature of the tag and

whether or not the collection of mutants is ultimately generated by a negative selection or

screen.  As knockout technology has progressed, there has also been a shift away from

knockouts to conditional mutations and adding further functionality to the insertion

cassette (128).

Hamer et al.  (127) began the mutagenesis process with an engineered transposon

cassette (containing a hygromycin resistance gene) that could be mobilized in vitro to

mutagenize a large insert clone, such as a cosmid or BAC.  The mutagenized cosmid or

BAC is then transformed into the target organism such as M. grisea by selecting for

hygromycin resistance.  Polymerase Chain Reaction can then be used to screen for

homologous recombination events.  In this way, they were able to generate 25,179

insertion mutants.  A total of 33% of these insertion mutants were identified to have

homologs in public databases. One example of an insertion mutant included insertions in

the pathogenicity gene MAC1.  The STM approach has also been used successfully to

isolate pathogenicity islands in Candida glabrata (129) and Cryptococcus neoformans

(130).
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A simple example is shown in Figure 14.  The control perturbation involves

growing wild type N. crassa on quinic acid alone, and the main product, protocatechuic

acid (PCA) is graphed using the simulator (40).  The system is perturbed by introducing a

mutation into the qa-2 gene.  The predicted result in Figure 14 is no PCA, a block in QA

metabolism with no growth on QA alone.

With each perturbation, one of several responses might be observed.  A transient

response may be predicted.  As in the case of the qa cluster, a transient response may be

initiated by the environmental signal of quinic acid, but once the signal is removed, the

whole circuit may shut down again.  In contrast, even relatively simple circuits can

display emergent properties (39).  For example, Gardner et al. (131) built a simple toggle

switch that may mimic many coupled signaling pathways.  The product of gene A

represses gene B, and the product of gene B represses gene A.  Such a simple system has

a biphasic response (131), i.e., memory of a previous signal even after the signal is

removed.  Another example of an emergent property manifested by a circuit is an

oscillatory response.  The classic example is the biological clock (16), but a simpler

circuit called the repressilator has been engineered in E. coli that oscillates (132).

Whatever the response of the biological circuit, if the model correctly predicts the

emergent property, this serves as a validation of the model.

IV.C.  Observation by profiling.  An example of this prediction, perturbation,

and observation process is given for the qa gene cluster.    A quinic acid (QA)-inducible

cDNA library was initially characterized.  The QA-inducible cDNA library of 33 plates was

robotically arrayed on one membrane (133). Twelve replicates of the arrayed library were

stamped, and one membrane was probed with an AatII-fragment of the H123E02 cosmid
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containing only the qa cluster  (133).  Two of the positives in the cDNA library were sequenced

and confirmed to be derived from messages of qa-1F and qa-3.

Transcriptional profiling allowed us to examine the outcome of an environmental

perturbation and of a genetic perturbation (12).   The WT and mutant 246-89601-2A (a mutation

in the qa-2 gene) were shifted to 0.3% quinic acid (with aromatic supplements only for the

mutant) (134,135), and RNAs were isolated from WT and mutant 246-89601-2A at 4 time points

after induction (30, 90, 120, or 240 minutes).  These RNAs were reverse transcribed and

radiolabeled to probe the cDNA arrays (133) as in Figure 15.

As time progresses from left to right, more spots (genes) appear, and the intensities of the

spots increase.  The membranes are double stamped so the spots appear symmetrically about the

middle of each figure.  A total of 12 genes (spots) appear to be QA-inducible by 240 min. Two of

these genes were confirmed by end-sequencing to be qa-1F and qa-3.  The remaining 10 genes

did not hybridize to an AatII fragment of H123E02 (containing the entire qa cluster) at high

stringency (133). If so, this implies there are other genes outside the qa cluster that need to be

considered in QA metabolism. For example, some of these 12 genes may be involved in a

starvation response since QA is not a preferred carbon source.  To distinguish these two

hypotheses, the experiment needs to be repeated with a shift to a medium with no carbon source

or starvation for an aromatic amino acid.  The experiment was repeated with a qa-2/aro-9 mutant,

and the transcriptional profile at 240 min appeared identical to WT, although it did not grow

when shifted to quinic acid (134).  The experiment was replicated once with the same findings.

The profiling experiment was modified with a genetic perturbation.  An aro-9/qa-2

double mutant was transformed with the qa-2+ gene (136).  Transformant's RNA profile was

obtained as above except that the exposure time was increased to 1 hr on the Packard Instant

Imager.  The same 12 genes came up, but also an additional 7-8 cDNAs were positive.  None of

the additional positives matched to known qa cluster cDNAs.
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The findings here are likely to be typical of studies that reexamine classic stories from a

genomic perspective (9).  In Figure 16 the expression of the 12 genes responding to quinic acid,

or possibly a starvation response, is shown; only 2 of these genes appear to be part of the qa

cluster.  What the remaining genes are is unknown at this time.  There are other genes that need to

be included in the circuit in Figure 7 because their response is not accounted for.  New tools are

being developed which permit scientists to explore relationships between genes uncovered in

RNA profiling (137).

IV.D.  Protein-protein interactions: observing the links in a circuit.  Protein-protein

interaction mapping is being pursued in a number of model systems (20, 21, 138, 13).  Early

approaches use the 2-hybrid system to detect protein-protein interactions (20, 21, 138).  Two

classes of strategies are being used to paint the maps.

IV.D.1.  Clone by clone strategy.  In a clone by clone strategy, one prey clone

interrogates a robotically arrayed bait library by mating the yeast strain with the prey clone and

each yeast strain with a bait clone. Interaction mating is achieved by robotically pinning the prey

strain to all of the arrayed bait strains (21).  With yeast, this means that about 6000 potential

interactions out of the 60002 can be examined at one time.  While this approach is slow, the

sensitivity to detect interactions is about 3 times that of the high-throughput screens now

described.

IV.D.2.  High-throughput strategy.  In a high-throughput strategy some pooling

scheme is employed.  Ito  et al. (20) pooled both bait and prey in pools of 96 and mated the pools.

The resulting positives can be picked and sequenced to identify the interactors. Each interaction

mating allowed the examination of 962 potential interactions. They found 183 interactions after

scanning about 10 percent of the proteome.  By extrapolation, about 2000 interactions are

expected in the yeast proteome.  Uetz et al. (21) created a 96-well plate of bait clones and then

mated them with a strain containing a whole prey library.  In this way each experiment resulted in
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the examination of 96 x 6000 potential interactions.  With their high-throughput strategy, they

identified 957 potential protein-protein interactions out of about 2000 expected (20).

Their map can be visualized by tools like those of Fang et al. (44) as a protein mobile as

shown in Figure 17.  In this protein mobile, nodes are proteins, and edges are detected

interactions.  This protein mobile then becomes a search grid on which the scientist refines a

biological circuit. Possible links in the circuit are, in part, guided by the links reported in the

protein mobile presented in resources like BIND (70).

There are a number of limitations of 2-hybrid screens.  Numerous false positives and

false negatives occur as evidenced by the lack of overlap between screens conducted by Ito et al.

(20) and Uetz et al.  (21).  Also, promiscuous proteins show up, repeatedly interacting with other

proteins.  Something may be missed in the original target system to make an interaction go in the

S. cerevisiae or E. coli detection system.  As a consequence, other approaches to building protein-

protein interaction maps are being pursued.

Gavin et al. (13) describes how to use tandem affinity purification (TAP) in conjunction

with MALDI-TOF mass spectrometry to characterize protein complexes in S. cerevisiae. By this

method they were able to identify 232 distinct protein complexes.  A total of 58 of these

complexes had not been reported before.  The major limitation of their approach was the use of

2D protein gels to separate proteins, thereby setting aside insoluble proteins.  Ho et al. (139)

describe a related approach.

IV.E.  Protein-DNA interactions, observing the links in a circuit.  Other resources are

needed for systematically reconstructing a biological circuit.  One of these is a map of all protein-

DNA interactions (69).  At this time all that is available is the equivalent of a clone by clone

screen of protein-DNA interactions.

IV.F.  Web services to unite the bioinformatics nation of data sources. Data sources

for profiling data, protein-protein interaction and protein-DNA interaction data, and
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metabolic pathway information for reaction network modeling have too many differences

that inhibit unified access and interoperability of data sources (10, 37). For example,

bioinformatics databases like BIND, KEGG, NCBI, Ensembl, FlyBase, SGD,

WormBase, and UCSC all provide relevant data, but they are using a wide range of

different systems and formats (140). Researchers wishing to integrate these data need to

write hundreds and even thousands of different programs to carry out the integration of

data sources without any assurance of correct enactment of bridging services. To unify

the services of the "bioinformatics nation", providers may adopt a Web services model

(141).

A Web service is any piece of software that makes itself available over the

Internet and uses a standardized XML messaging system. A Web service can have a

public interface, defined in a common XML grammar. The interface describes all the

methods available to clients and specifies the signature for each method.  Currently,

interface definition is accomplished via the Web Service Description Language (WSDL).

Furthermore, if a Web service is created, there should be a simple mechanism to publish

it.  There should also be a mechanism for interested parties to locate the service and its

public interface. The most prominent directory of Web services is currently available via

UDDI, or Universal Description, Discovery, and Integration. In this Web services model,

the data providers register their services in a formalized service registry, and researchers'

scripts no longer need to be concerned with the interface details of the different

databases. This model may represent a unification platform needed in bioinformatics

(140).
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A number of bioinformatics services are currently available (142). For

example,the OmniGene project (143) from MIT aims to create an open source Web

Services platform for bioinformatics. Additionally, the Distributed Annotation Service

(DAS) provides a distributed platform for aggregating genome annotation data from

multiple sources (144). Lastly, the BioMOBY project aims to provide distributed access

to multiple bioinformatics services and provides a centralized registry for finding new

services. All of these projects are likely to see much growth in the near future.

V.  FITTING BIOLOGICAL CIRCUITS.

The profiling information together with protein-protein interaction maps and

protein-DNA interaction maps provide the information necessary to identify biological

circuits.  After system perturbation, the profiling information either agrees with the

predictions of the circuit or does not, and a figure of merit can then be used to guide the

selection of a biological circuit that is consistent with the profiling data from the system

in different cellular states.  The information about links in the circuit can be used both to

constrain the fitting process and guide the comparison of new models evaluated for fit

relative to the existing best model.  The standard fitting approach for reaction networks is

now described.

Let the parameters in the biological circuit be denoted by the M-tuple,

θ := (θ 1, ...., θ M).  In the case explored here the parameters are the rate constants kf and

kr, for all reactions r = 1,2, …, MR as in the reaction network of Figure 11 and the initial

concentrations [s]t=0 for all intra-cellular species s = 1,2,…,MS.  The number of
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parameters is M = MS + 2MR. For the deterministic model in Figure 11, the rate constants and

initial conditions are θ = (αf, αs, αqa-2, αqa-3,αqa-4, αqa-x,αqa-y, βf, βs,  βqa-2, βqa-3, βqa-4,βx, βqa-y, γf,

 γqa-2, γqa-3,γqa-4, γqa-x, γqa-y , δf, δs, δqa-2, δqa-3,δqa-4,

 δqa-x, δqa-y,κ0,Q0,mf,0, ms,0, mqa-2,0, mqa-3,0,mqa-4,0, mqa-x,0, mqa-y,0,pf,0, ps,0, pqa-2,0, pqa-3,0,

pqa-4,0, pqa-x,0, pqa-y,0) with unit Hill coefficient.  In the following, this parameter vector

shall be referred to as as the "model θ".

Next, let Y:= (Y1,…, YD) represent the D-tuple of all experimental observables

which have been measured in one experiment or a series of time-dependent profiling

experiments.   Suppose that in a series of E experiments, labeled by e ε Ε = {1,...E}

experiments, in each experiment the concentrations [s] of certain species s are measured

at time points t.  Different experiments would be distinguished by externally controlled

and quantitatively known experimental conditions which include, for example, the carbon

source and its concentrations, feeding/starvation schedules, choice of measurement time

points; and functional presence or absence of certain genes or proteins, as controlled by

mutations or protein inhibitors.  The data vector Y would then comprise components

Yl := Ys,t ,e:= ([s]t,e/[s]0) [with l := (s,t,e)]

with some (known or unknown) reference concentration [s]e
(ref), if, e.g., some linear

measure of concentration is used or

 Yl := Ys,t ,e:= ln ([s]t,e/[s]0) [with l := (s,t,e)]

if log-induction ratios (12) are recorded.  Here l := (s,t,e) and s ε S' labels the MS'

different molecular species, with S' denoting the subset of all species whose time-

dependent concentrations actually have been observed.  Note that, in general, S' is only a

subset (generally a small one!) of the set S of all MS participating species in the biological
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circuit.  With t ε { t1,…, tMt) labeling the MT different time points at which species

concentrations have been measured, the dimensionality of the data vector Y is then

D = MS' x MT x E.

For the present mRNA profiling data set in Figure 15 for the qa cluster,  E = 1, MS' = 6,

MT = 7 and D = 42.

Now, let F(θ) :=  ( F1(θ),...,FD(θ)) denote the corresponding predicted values for

these observables Y for a given model θ.  For the above-described set of observables

Ys,t,e, the predicted values Fl(θ) = Fs,t,e(θ) [with l := (s,t,e)] are calculated from θ by

solving the network's system of rate equations for the rate constants and initial conditions

comprised in θ using the simulator KINSOLVER (40) and then calculating from that

solution the log-concentration ratio ln([s]t,/[s]0 or the respective linear concentration

measure for each observed species s at each observation time point t in each experiment

e.

It is reasonable to assume that the probability distribution P(Y;θ) of the data is

representable as a multivariate Gaussian, with error correlations only between data Yl

taken at the same time point.  Hence, the following likelihood function will be used as the

figure of merit:

P(Y;θ) = const x exp [-χ2/2] with χ2 = (Y-E(Y))'Σ-1(Y-E(Y))

and E(Y) and Σ denote the mean and variance-covariance matrix of the observation

vector Y for model θ.  When multiple realizations of each profiling experiment are

performed, then the variance-covariance matrix can be estimated.  In the fitting reported

in Figure  18, a univariate Gaussian with σ/Ε(yl) x 100 = 20% has been assumed and the

observed single-experiment concentrations have been used as the data vector Y with the
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link function E(Y) = F(θ) (145).  To date, heteroskedasticity has been reported not an

issue (146).

The fit is then obtained by maximizing the figure of merit P(Y;θ) with respect to

the model parameters.  A number of tools exist to carry out this fitting process (147, 148).

A model from the family in Figure 11 is displayed that fits the RNA profiling data of the

qa cluster quite well in Figure 18.  Profiles were obtained for 6 out of 7 of the qa genes.

The RNA profile for qa-1F peaks at 4 hrs and then drops after that point with another rise

at 6 hrs.  The remaining profiles track that of qa-1F message levels.  The simulator also

yielded predictions about the protein profiles which are now testable (45).

V.A. Too many parameters, too few data.  The major limitation of current

fitting procedures is that they do not address the major problem of too many parameters

and too few data.  In the example in Figure 11, after making steady-state assumptions,

there were 42 parameters and 42 data points.  This situation is not likely to change even

with the availability of genome-wide RNA and protein profiling technologies.  The

reaction network in a cell is large and interconnected, and it is not clear at this time in

studying a particular process such as carbon metabolism what other components of the

reaction network need to be considered.  For example, quinic acid metabolism is

intimately connected to aromatic amino acid metabolism through the aro cluster in N.

crassa (149).  This raises the question of how QA metabolism is linked to general control

(150).  Even in well studied circuits involved in antibiotic production, it may not be safe

to decouple secondary metabolism from, for example, energy metabolism.  New fitting

procedures are needed that directly address the problem of too many parameters and too

few data (151).
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V.B.  A stochastic alternative.  It is not clear at this time what role stochastic

factors play in biological circuits.  Patel and Giles (116) estimated that the number of qa-

1F messages is on the order of 0.1 to 1 RNA per nucleus.  This granularity within the cell

may mean that a transcription factor finding a small 17 kbp stretch of DNA on the

smallest chromosome in N. crassa may not be guaranteed.  As a consequence, the

stochastic formulation in Figure 12 was simulated with the results for the qa-1F message

shown in Figure 19.

In this case, the 4 stochastic realizations have the same basic mountain shape

observed for the real profile.  The number of RNA molecules rises to about 400

molecules per cell.  It is likely that the stochastic circuit will provide a description similar

to the deterministic circuit.  Either formulation leads to a similar story relative to the

observed profiles. The challenge is comparing stochastic vs. deterministic circuits with

the same circuit structure.  Under some circumstances deterministic circuits can be

viewed as limits of the underlying master equations in Figure 12 describing the stochastic

circuit (91), but inference problems arise in distinguishing stochastic circuits vs. their

limiting deterministic relative when one model (i.e., a deterministic one) lives on the

boundary of the parameter space for a larger class of models (i.e., the stochastic ones).

VI.  CONCLUSION

Metabolomics is a process of discovery that promises a mechanistic

understanding for interesting biological processes.  This mechanistic understanding is

captured in a kinetics model well grounded in physics and chemistry.  The discovery
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process itself is more akin to approaches used in systems ecology or neural biology.  For

60 years, biologists have been taking biological systems apart to find their components.

Now the process is about to reverse.  With the complete genomic blueprint now in hand,

the challenge is to reassemble the pieces.  The adjectives describing metabolomics are

hypothesis-driven, integrative and reconstructive.

The most basic question in metabolomics is: what is a living system? (27).  One

approach to answering this question is reconstructive and rooted in an approach originally

adopted by Beadle and Tatum (152), "From the standpoint of physiological genetics the

development and functioning of an organism consist essentially of an integrated system

of chemical reactions controlled in some manner by genes."   To identify this

hypothesized reaction network requires an integrative approach.

The flow of the reconstruction process can be summarized simply in Figure 20.

The fungal system is perturbed.  In the case of drug discovery, cells are treated with

potential drugs, as an example, or in the case of industrial fermentation, genetically

engineered strains are selected to increase production.  The system is observed through

RNA, protein, and metabolite profiling to compare the response with a control.  The cells

may die or may produce more of a desired product like penicillin.  The profiling data are

used to identify kinetics models or "biological circuits" to predict the response of the

system.  In many cases the profiling step will identify additional genes and their products

which will have to be included in the biological circuit.  The fitted model then allows

predictions about the total response of the system.  The response of the system can

sometimes be surprising when pathways are coupled and enlarged to explain the profiling

data.  Possible emergent properties include memory and a cyclical response.  The model
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is re-evaluated and tested for goodness of fit.  Current tests for better alternatives are

limited and need to be developed.

A better model is selected and a new perturbation is selected.  Choosing an

informative perturbation is a challenging problem.  The cycle completes and starts over.

The result is a process of discovery and refinement.  In each cycle the model serves to

integrate available information on sequence, profiling, protein-protein interactions,

protein-DNA interactions, and protein-lipid interactions.  This discovery process

ultimately will be automated into an adaptive control process to speed the process of

gene-validated product discovery (28).
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Figure 1.  The promise of genomics is understanding complex traits such as the Circadian

clock.  An example of the effects of gene mutations (wc-1 and wc-2) on circadian

oscillations in Neurospora crassa is redisplayed reprinted with permission from

(Crossthwaite , SC, JC Dunlap, & JJ Loros (153).  Neurospora wc-1 and wc-2;

transcription, photoresponses, and the origins of circadian rhythmicity.  Science 276:

763-769).  Copyright 1997 American Association for the Advancement of Science.  N.

crassa is shown growing in race tubes with the regular pattern of conidia being formed

displaying the clock under varied conditions.

Figure 2.  A display of relative RNA levels under 10 conditions (time points) during the

cell cycle of S. cerevisiae.  The 6000 genes are displayed vertically by the similarity in

their RNA profiles using UPGMA as implemented in Wu (58).  Increasing red indicates

increased expression relative to the beginning time point, and increasing green indicates

decreased expression relative to the beginning time point.

Figure 3.  Genomics is made hypothesis driven by utilizing a chemical reaction network

to integrate genomics information and to make predictions about emergent properties of

the system of interest.

Figure 4.  Water model 1 is a simple example of a chemical reaction network.  Squares

indicate chemical species, and circles indicate chemical reactions.  Species with arrows

pointing into a reaction are reactants, and species with arrows towards themselves out of
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a reaction are products.  In essence, the arrows define what is the forward reaction

direction.

Figure 5.  Water model 2 is an elaboration of Water Model 1, an elaboration dictated by

being able to predict the kinetics of the reactions.

Figure 6.  A pictorial summary of what is known about QA metabolism or informal

biological circuit for QA metabolism.  There are 7 genes in the qa cluster that are

coordinately regulated.  Four of the genes are thought to participate in QA metabolism.

Two of the genes are regulators of QA metabolism.  The gene qa-1F is a transcriptional

activator; the gene qa-1S is a repressor that is hypothesized to bind to the activator to shut

down the genes in the cluster.  The qa-y gene is thought to encode a permease, letting QA

into the cell.

Figure 7.  A formal biological circuit for the qa cluster is presented.  The top part of the

circuit represents the Central Dogma, while the bottom part of the circuit is the

biochemistry.  The top row of squares represents the transcriptionally inactive forms of

the genes.  The second row of squares from the top is the set of transcriptionally active

genes bound to the activator protein qa-1Fp.  The third row of squares is the set of the

cognate RNAs which are translated into the fourth row into polypeptides.  In the bottom

half of the diagram the polypeptides are carrying out their biochemical functions.  There

is a feedback loop created by the transcriptional activator.  The repressor qa-1Sp is shown

binding to qa-1Fp to inactivate same.  Sucrose acts to facilitate this repression reaction,
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acting as a catabolite repressor.  The end metabolic product shown is protocatechuic acid,

which eventually leads into the Krebs Cycle.  The qa-yp polypeptide acts a transporter for

QA.

Figure 8.  The formal biological circuit specifies a system of ordinary differential

equations describing the kinetics of all species. Each reaction contributes to the

specification of the time rate of change of the species involved.  In the first reaction, the

transcriptional activator qa-1Fp binds to the inactive gene to form the complex

representing the transcriptionally active form of the gene.  The forward reaction

involving the collision of the qa-2 gene with qa-1Fp occurs at a rate determined by the

forward reaction rate kf  and the product of the molar concentrations indicated in brackets

to produce the transcriptionally active complex qa-2/ qa-1Fp .  In the backward reaction

the complex falls apart at a rate determined by the backward reaction constant  kb and the

molar concentration of the complex.  Similarly the instantaneous change in the qa-3p

protein from the reaction converting QA to DHQ can be computed.  The reactants must

collide as determined by the forward reaction constant and their concentrations, and the

products must collide for the backward reaction to take place as determined by the

backward reaction constant and the product of concentrations.

Figure 9.  The biological circuit for the lac operon is more elaborate than that of the qa

cluster.  The lacIp repressor can bind to the operator to shut down the cluster through a

negative feedback loop unless lactose is present to bind to lacIp, thereby titrating out the

repressor.  There is also a positive feedback loop provided by the catabolite repressor
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protein crpp which aids in the recruitment of RNA polymerase to the promoter (lacP0).

The catabolite repressor protein is only active when bound to cAMP.  The enzymes acp

and pdp make cAMP from ATP and convert cAMP to AMP, respectively.  An internal

signaling cascade including (e1p, eIIp, eIIIp, and hPrp) is included to take a phosphate on

phosphoenolpyruvate (PEP) to glucose to pump glucose into the cell as Glucose-6-

phosphate.

Figure 10.  The trp operon differs from the lac operon in having translational control.

Tryptophan synthesis provides feedback to attenuate translation.  If tryptophan is rare in

the cell, then the message assumes one configuration efficient for translation.  If

tryptophan is at high levels in the cell, the message assumes an altered conformation with

the ribosome not conducive to translation.  In addition there is a repressor trpRp acting on

the operator to shut down the operon, and the repressor is activated in the presence of

tryptophan as would be expected for a biosynthetic pathway.

Figure 11.  Steady-state approximations to the levels of some species can be used to

reduce the number of model parameters in a biological circuit.  After assuming that the

levels of transcriptionally active genes are in steady state, the system of ordinary

differential equations for the full biological circuit in Figure 6 can be approximated by

the reduced model specification below.  It is enough to describe the message levels

denoted by m and protein levels denoted by p.  The α 's denote basal transcription rates,

the δ 's, the QA inducible transcriptional rates, the γ 's, the repressor effects, and the β 's,
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the rates of protein decay.  The subscripts f, s, and sg denote the qa-1F, qa-1S, and

structural genes in the qa cluster.

Figure 12.  Part of the list of master equations for a stochastic circuit with the same

structure  as Figure 6 is listed.  Here mFB and mSB are the basal numer of mRNAs for qa-

1F and qa-1S;  mFI and mSI are the number of induced mRNAs for qa-1F and qa-1S; and

mFR is the number of transcriptional activators bound to a repressor protein.  The

quantities Zi represent the number of product molecules, and the constants ki are reaction

rates.  The sources A,B are the qa cluster DNA and assumed constant.

Figure 13.  Three kinds of system perturbations are illustrated for the qa cluster: 1)

genetic; 2) chemical as in a drug; or 3) environmental.

Figure 14:  Response of PCA (protochatechuic acid) level with and without a qa-2 gene

knockout over time as simulated in KINSOLVER for the biological circuit in Figure 6

(40).

Figure 15. Transcriptional profiling: N. crassa was shifted from 1.5% sucrose to 0.3% quinic acid.  A

cDNA library derived from cells induced in quinic acid was robotically arrayed on nylon membranes (133).

RNA was extracted from cells by grinding under liquid nitrogen with the High Pure RNA Isolation kit

(Roche, Inc.).  Simultaneous cDNA synthesis and 33P radiolabeling were performed according to

manufacturer directions (Roche, Inc.).  Unincorporated 33P was removed by spin columns (Sigma, Inc.).

Arrays were probed with 33P labeled cDNAs derived from 3 time points after the shift to quinic acid.
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Images were collected on a Packard Instant Imager over a 26 min period. The qa-2/aro-9 double mutant is

also shown expressing the same transcripts at 240 min, but it does not grow.

Figure 16. Twelve genes appear to respond to a shift from 1.5% sucrose to 0.3% quinic acid.  The counts of

12 genes (from Figure 15) recorded by the Packard Instant Imager are graphed as a function of time. Only

two of these genes appear to be part of the qa cluster.

Figure 17.  Protein mobile of protein-protein interaction map presented by Ito et al.  (20).  Nodes represent

proteins, and edges represent interactions.  Graphic was generated by software described in part in Fang et

al.  (44).

Figure 18.  Measured trajectories over time of RNA levels for six of the seven qa cluster genes.  Solid dots

are the data (151).  Smooth curves are those of a fitted model as in Figure 11 chosen to maximize the

likelihood P(Y; θ)

Figure 19.  Counts of qa-1F message in a cell over time for 5 independent realizations of the stochastic

alternative to the circuit in  Figure 6, i.e .  Figure 12

Figure 20.  An example of Hypothesis-driven Genomics or the process of metabolomics.


