
Mobile Web Search Personalization Using Ontological
User Profile

Kapil Goenka
Department of Computer

Science
University of Georgia

Athens, GA 30602-7407
kapil.goenka@gmail.com

I. Budak Arpinar
Department of Computer

Science
University of Georgia

Athens, GA 30602-7407
budak@cs.uga.edu

Mustafa V. Nural
Department of Computer

Science
University of Georgia

Athens, GA 30602-7407
mvnural@cs.uga.edu

ABSTRACT

Most present day search engines have a deterministic behavior in
the sense that they return the same search results for all users who
submit the same query at a certain time. They do not take the
userʼs interests and preferences into account in the retrieval
process. Integrating user context in the retrieval process can help
deliver more targeted search results, thereby providing a
personalized search experience to the user. Personalizing web
search involves the process of identifying user interests during
interaction with the user, and then using that information to
deliver results that are more relevant to the user. In this paper, we
present our approach to personalizing web search on a mobile
device (iPhone). Our approach involves building an ontological
model of user interests on the userʼs mobile device based on his
interaction with web search results. Personalization of search
results is achieved by re-ranking search results returned by a
standard search engine (Yahoo) based on proximity to the userʼs
interest model. The ability to recognize user interests in a
completely non-invasive way and the accuracy of personalized
results are some of the major advantages of our approach.

Keywords
Search Personalization, User Profiles, Sematic Web, iPhone.

1. INTRODUCTION
Today, internet search engines have become an indispensable part
of our lives. People today are able to find all sorts of information
instantly from almost anywhere. The exceedingly difficult nature
of the problem of understanding user intent and matching it with
the worldʼs accumulated knowledge stored on the World Wide
Web has attracted large scale research and development efforts
from the academia as well as the industry. In the recent years, we
have also seen an explosive growth in mobile devices. The
modern cell phones are significantly better than the oneʼs from a
few years ago. Mobile Internet has quickly become part of the
consumer media experience for millions of people. More people
are searching the web while they are on the move.

Although the capabilities of Internet search engines are
incrementally improving, there are several challenges facing the
search engines. One challenge is the problem of irrelevant search
results. Irrelevant search results usually arise due to short,
ambiguous queries or semantic level mismatches. Examples
include “apple”, “Pascal”, “match”, “conductor” etc. all of which
can have different meanings depending on context. Another cause
for irrelevant results is the one-size-fits-all approach taken by
most existing search engines, where an identical query from

different users in different contexts will generate the same set of
results for all users. These search engines return a list of search
results based on a userʼs query but ignore the userʼs specific
interests, search context and individual differences in information
needs. As a result, a user may have to go through many irrelevant
results before finding the desired information. Mobile web search
introduces new challenges not present in traditional web search.
The input modes are inherently limited due to the small size of the
device itself and the network connectivity is often not comparable
to the Internet speeds on computers. Mobile users are likely to be
on the go when searching for information and the attention span
of the users is significantly lower than in traditional web search on
computers. Furthermore, the user is unlikely to sift through a lot
of search results to get to the desired page due to his short
attention span. It is therefore very important to get the desired
search results in the top positions to avoid waste of time and effort
for the user.

Personalization techniques that incorporate user interests and
preferences into the search may address some of these issues.
Personalization broadly involves the process of learning a profile
of user interests. Personalization of web search usually involves
filtering or re-ranking the results returned from a standard search
engine, or directly incorporating user interests into the retrieval
process itself to present personalized results. Given a query, a
personalized search can provide different results for different
users or even different results for the same user in different
contexts. Web search personalization has two main dimensions:

1. How can precise information about userʼs interests be
collected and represented?

2. How can this information be used to deliver personalized
search results?

In this work, we present our approach to personalizing web search
in a mobile environment. As a case study, we chose Appleʼs
iPhone as the mobile platform to implement our work. Our main
goal is to identify userʼs interests based on the web pages he
visits, and deliver personalized web search results by utilizing the
identified user interests. We learn and maintain implicitly an
ontological profile of userʼs interests through passive observation
of the userʼs click stream. The userʼs interest profile is stored
locally on his mobile device and updated with every web page
visit. Personalization is achieved by re-ranking standard web
search results using the userʼs interest profile.

2. BACKGROUND
2.1 Web Directories
Web Directories, also referred to as knowledge bases, are a
popular means of organizing information resources on the web. A
web directory is a repository of web pages that are organized in a
hierarchical structure, usually like a tree or a directed acyclic
graph (DAG). Each web page cataloged in a web directory is
annotated with a short description by one of the editors of the
directory. Many web directories have become available in recent
years. The Librarianʼs Internet Index (LII) [2], The Internet Public
Library (IPL) [3], Yahoo Web Directory [4] and the Open
Directory Project (ODP) [5] are examples of general purpose web
directories. These web directories catalog huge numbers of URLs
organized in an elaborate hierarchy. Since the actual process of
creating such ontologies can be a very tedious, most hierarchical
classification systems utilize existing web directories as their
predefined class hierarchies.

2.1.1 Open Directory Project (ODP)
In this work, we use the Open Directory Project (ODP) as our
knowledge base. ODP is one of the largest collaborative efforts to
manually annotate web pages and is widely regarded as “the
largest human-edited directory of the web”. Currently ODP
catalogues over 4.6 million URLs that have been categorized into
nearly 600,000 categories by over 80,000 human editors. ODPʼs
data structure is organized as a DAG. The textual data contained
in the leaf nodes can be utilized as training data for the parent
concept of the leaf node. Web directories like ODP cover most, if
not all, information domains, and can therefore be used for
representing user interests. Nodes at the top levels of the hierarchy
represent broad user interests and the ones below them narrow
down the scope of their ancestors. In this work, we select a subset
of concepts from the top four levels of ODP for representing user
interests. We focus on the top levels of the hierarchy since we
believe that many search results can be usefully disambiguated at
this level.

2.2 Text Classification Using Rainbow
We use the open source Rainbow text classification library [7] by
Andrew McCallum at CMU as the “kernel” of our text
classification module. The Rainbow Text Classifier, is perhaps the
most well known and most downloaded text classifier today. It
supports a number of text classification methods for classifying
text into a set of topics. Rainbow must be trained before using it
for classification. This involves creating a model of a set of
training documents. The training set is read in as directories (one
per category) containing text files that serve as examples for those
categories. Once Rainbow is trained, it can be set up as a server
that received classification requests over a port. After a model is
learnt from the training set, classification can be performed using
one of the many classification methods supported by Rainbow (
Näıve Bayes, Term Frequency - Inverse Document
Frequency (TFIDF), probabilistic indexing, k-nearest neighbor
and support vector machines (SVMs)).

In this work, we train the rainbow classifier on a subset of the first
four levels of the ODP categories and set the classifier to be run as
a continuous background server process. The classifier listens for
document classification requests over a port.

2.3 Yahoo BOSS API
Yahoo BOSS (Build Your Own Search Service) is an open
platform that offers programmatic access to the Yahoo Search
indices via an API. As of this writing, the Yahoo BOSS API is
offered free of charge to developers. There is no limit to the
number of queries that can be made. However, a maximum of 50
search results can be fetched per query. The search API allows
developers to specify the start position of search results. So
fetching the top 500 search results for a query would involve
sending 10 API requests, starting with a start position of 0 and
incrementing the start position by 50 with each request. We use
the BOSS Mashup Framework [8] -- a Python library provided by
Yahoo to access the Yahoo search results. We note that other
search engine APIs can be used for retrieving standard search
results, in pace of Yahoo API. We decided to use the Yahoo API
mainly because it provides us access to “key terms” for each
search result. Key terms are keywords Yahoo's search index has
assigned to a page. It is a finite list of words that explain what a
document is about and allow for better categorization. The key
terms are obtained by Yahoo based on each termʼs frequency, and
positional attributes in the document. Key terms are particularly
useful in our work, as they save us valuable post-processing time,
which would otherwise be required for processing result pages
and obtaining the key words representing each page. For the
purpose of classifying web search results, we consider the
combination of key terms, title and snippet of each search result as
sufficient information for representing what the web page is
about.

3. METHODOLOGY
In the previous sections, we gave some background about the
Open Directory Project [5], text classification, and Rainbow text
classification library [7]. In this section, we present our
methodology to put these components together for personalizing
web search on a mobile device.

3.1 Programmatically Accessing ODP
We start with a MySQL database dump of ODP, published in [1].
The MySQL dump provides us a convenient SQL interface to the
entire ODP hierarchy. The database contains several tables that
together capture all the information in the ODP hierarchy. We
query the database using a Java program that connects to the
database through a MySQL JDBC connector. Using the Java
program, we create a directory structure on the local file system
that replicates the ODP hierarchy. The procedure for doing this is
shown in fig (1). The output of the procedure is a directory
structure where each directory represents a concept. Each
directory contains subdirectories representing its sub-concepts,
and a Super Document containing the title and description of
every web page categorized under that concept.

PROCEDURE: CREATE_ODP_STRUCTURE
For every category C in the ODP hierarchy:
 path <--- path of C in the ODP hierarchy
 numSubTopics <--- Number of subcategories of C
 numLinks <--- Number of web pages under C
 if numSubTopics == 0 AND numLinks == 0
 Ignore category C
 else
 Create directory for category C at location ‘path’
 if numLinks > 0

 Create Super Document SDc
 For every web page W categorized under C:

Add the Title & Description of W to SDc
Save SDc in C’s directory

Fig 1: Procedure to replicate ODP on a local drive

3.2 Removing Structural Noise from ODP
However elaborate knowledge repositories are, they contain
concepts that are detrimental to feature generation [6]. These
include concepts too deep in the hierarchy, or having too few
textual objects to build a representative attribute vector. In [6],
they have identified potential sources of noise in ODP. In our
work, we use their findings to prune the Top/World, Top/Adult,
Top/Kids_And_Teens and Top/Regional branches of ODP:

3.3 Training a Text Classifier on ODP
As discussed in section 2.2, we use the Rainbow text classification
library to train a flat multi-label text classifier on a subset of
categories from the top four levels of ODP. We first flatten the top
four levels of ODP, i.e., bring all categories from those levels
under a common parent. We therefore carefully remove all the
categories that do not make sense individually. The text classifier
is central to our personalization system. Sub-optimal classification
results will lead to an inaccurate user model, which may
eventually cause irrelevant search results to be returned to the
user. We therefore designed a number of experiments around the
text classifier. These experiments and their results are shown in
section 5. In this section, we present our approaches for training a
classifier.

APPROACH I:

1. Select a subset 'S' of concepts from ODP to be used in
user modeling.

a. S = {C1, C2, C3, C4, C5, C6 Cn}
2. Since the concepts in S are from different levels in

ODP, flatten them, i.e., move them (along with their
sub-trees) to a common level. This is done because we
need to train a flat classifier over categories in S.

3. Train the text classifier, using all textual documents

under a concept as the training data for that concept.
4. Set up Rainbow to receive classification requests on a

specific server port.

DISCUSSION of APPROACH I:
Since we use all documents for training purpose, the number of
features per category is very large. A large feature set leads to a

performance loss in many cases. Moreover, since different classes
have different amounts of textual data under them, classes with
larger amounts of textual data appear much more often in
classification results as compared to the ones with smaller
amounts of textual data. This is because the classification results
are based on word probabilities and occurrence counts, which
creates a bias towards the classes with more data. This clearly
leads to a sub-optimal quality of classification results, and in turn
a lower quality of the system generated user profile. To overcome
the data imbalance problem, we need a way to ‘equalize’ the
classes and reduce the feature set.

APPROACH II:

Steps 1 and 2 as in APPROACH I.
3. Run Rainbow document classifier at the level 'Top', this

time indexing only 20 randomly selected documents under each
class. Selecting the same number of documents for each class
overcomes the data imbalance problem of APPROACH I.

4. Set up Rainbow as a server on a specific port.

DISCUSSION OF APPROACH II:
In this approach, we intend to reduce the feature set of the TF IDF
based classifier. Feature selection in text classification has been
repeatedly shown to lead to little accuracy loss, and to a
performance gain in many cases. Our method of reducing the
features is to select a smaller, fixed number of training documents
per category. Selecting a fixed number of training documents per
category equalizes the categories, and since each of training
documents contain rich textual information about a number web
pages, selecting even a small number of training documents per
category results in a rich feature set.

3.4 System Software Architecture
In this section, we describe the software architecture of our
personalization system. Figure 2 gives an overview of the system.
The system is composed of two parts: i) the server-side part which
is implemented on a server, and ii) the client-side part which
resides on user’s iPhone.

3.4.1 Server-Side
The server-side of our system consists of three main components:

1. A text classifier, trained as described in section 3.3
2. A socket program that communicates with the text

classifier over a server port.
3. A Django application that receives search query from

the user, retrieves Yahoo search results for the query,
forwards them for classification and returns the search
results along with their classification back to the client
device.

Django Application
Django is an open source web application framework, written in
Python. The ‘Django App’ component of Figure 2 is an integral
server-side component of our system. It integrates with the Yahoo
BOSS search framework. Specifically, the Django App receives
search query from the client device and retrieves Yahoo search
results for the query using the “BOSS Mashup Framework”. It
then sends the search results to the ‘Socket Program’ component,
and receives the classification results back from the ‘Socket
program’ component. Finally, it sends the results back to the user.

Fig 2: System Architecture

Socket Program
The Socket Program component in Figure 2 is a C program that
performs socket communication. We set our Rainbow classifier to
be run as a continuous background server process. The classifier
listens for document classification requests over a port and
produces a classification score for each category for which it was
trained. The socket program does the job of sending document
classification requests to the port on which Rainbow is running,
and reading the document classification result scores back from
the port.

Whenever the user performs a search on his iPhone, an HTTP
GET request containing the user query is sent to our web server.
The web server is configured to forward such requests to the
Django application. The Django application receives the HTTP
request URL from the web server and extracts the query from the
URL. It then performs Yahoo web search for the query through
the BOSS API. We fetch the top 100 search results from Yahoo.
That corresponds to the first 10 pages of search results. Given that
users typically browse up to the top 2 to 3 result pages on an
average, we believe that 100 search results will be reasonable in
most cases. The search results are returned as a JavaScript Object
Notation (JSON) formatted string. JSON is a lightweight data-
interchange format that is based on a subset of the JavaScript
Programming Language [10]. For each search result, the JSON
string contains the Title, URL, abstract and key terms (among
other data) corresponding to the web page. In our Django
application, we combine the title, abstract and key terms for each
search result into a single string. We believe that the combination
of title, abstract and key terms for a web page provides sufficient
information of what the web page is about. A more sophisticated
approach would be to extract the complete text of the search result
web page and analyze it to understand what the web page is about
but that requires additional steps such as parsing out all the
HTML content and performing text analysis, both of which add
significantly to the post-processing time. Besides, the key terms
were extracted by Yahoo by performing text analysis in the first

place and provide much valuable information about a search result
web page in addition to its abstract. Therefore, using the Yahoo
key terms is the same as performing text analysis on the web page
content. In [9], they take a similar approach as ours wherein they
used the Google SOAP API to access Google search results and
used the search snippets as representing the search result web
page.

Table 1: User Profile on Client Side

3.4.2 Client-Side
As discussed earlier, we do not store any type of user information
on the server. The userʼs interest profile is maintained locally on
the userʼs iPhone. We model user interests using the same
concepts that we trained our text classifier on.

Table 1 shows the structure of the user profile. The first column
contains concept names and the second column contains concept
weights in the user model. Initially, all concept weights are zero.
The concept weights are constantly updated by our system based
on the userʼs interaction with the search results and based on the
links the user visits after clicking one of the search results. At any
time, the concepts with higher weights are the ones the user is
more likely to be interested in. Figure 3 below shows what
information about each search result is returned from the server.

Fig 3: Search Result Details Stored on User’s iPhone

For each search result, we return the Title, URL, Abstract, Web
Rank and the top three categories assigned to that result by our
document classifier. Once the Yahoo search results are received,
the next step on the client-side is to re- rank the results so that the
ones that are more likely to be of interest to the user are shown
above others.

Fig 4: Re-ranking Search Results on the Client Side

The re-ranking is achieved through a matching function, which
calculates the degree of similarity between each search result and
the user profile.

where

wpi,k = weight of concept k in user profile,
wdj,k = weight of the concept k in the result j,
N = number of concepts returned to the client.

The final weight of the document used for reordering is calculated
by combining the previous degree of similarity with Yahooʼs
original rank, using the following weighting scheme:

where α gets values between 0 and 1. When α is 0, conceptual
rank is not given any weight, and the match is equivalent to the
original rank assigned by Yahoo. If α has a value of 1, the search
engine ranking is ignored and pure conceptual match is
considered. Obviously, the conceptual and search engine-based
rankings can be blended in different proportions by varying the
value of α.

The final score of each search result is assigned to the search
result as shown in Figure 5. Finally, the search results are sorted
based on their final scores, so that the ones with higher scores are
ranked higher.

Fig 5: Post Re-ranking, and Search Result Details Stored on

the iPhone

Once the user is presented the re-ranked search results, the system
enters into observation mode. Whenever the user clicks a search
result, the categories that were assigned to that search result by the
classifier are updated. For instance, if categories C1, C2 and C3
were assigned to the search result by the server, C1 being the best
match and C2 and C3 being the second and the third best matches,
the system would increase the weight of C1 by 3, C2 by 2 and C3
by 1 in the user model. After the user clicks a search result and is
viewing a web page, we also monitor the hyperlinks that the user
visits from the web page. When the user clicks on a hyperlink, we
extract the text from all the paragraph elements of the target
webpage. The extracted text is sent to the server for classification.
Once the classification results are returned from the server, the top
three category matches are updated proportionally in the user
model.

4. EXPERIMENTS
To evaluate the effectiveness of our personalized search results,
we built an evaluation version of our client-side system. The
evaluation version was designed to run on the ʻiPhone Simulatorʼ
software that is part of the iPhone SDK. In the evaluation version,
we combine the top 10 web search results from Yahoo and the top
10 personalized search results. If there is overlap (e.g., when some
of the top 10 personalized search results come from the top 10
Yahoo search results), we add an equal number of personalized
and Yahoo search results so that the final count of search results
displayed to the user is 20. The search results are shuffled before
they are displayed to the user so as to remove any bias. Upon
clicking a search result we record the fact that the user considered
the selected search result relevant. We communicate this to the
user by displaying a small tick mark next to the visited search
results. If in fact the user thinks otherwise, he can uncheck the
search result and the record for that search result will be removed.
We asked 5 graduate students (3 from Computer Science, 1 from
Textile Science and 1 from Bio Technology) from University of
Georgia to use the evaluation version of our app over a period of 7
days. In the rest of the discussion, we refer them as User 1, User
2, etc. The users were first given an overview of our system and
were explained the experimental setup (describe above). They
were asked to use our application for performing web search just
as they would normally query a search engine. Before clicking on
any search result for a given query, the users were asked to
carefully review the title, abstracts and URLs of all search results
and then click on the ones they thought were relevant to them.

Experiment 1: System Generated User Profile vs. True User
Profile
Given that our primary goal is to learn a model of user interests
based on his interaction with search results, and use this model to
personalize search ranking, one natural way to evaluate our

learning method is to measure the difference between the userʼs
actual interest vector and the learned interest vector. At the end of
the 10 day period of user evaluation, the users were shown the top
20 system predicted user interests were asked to re-order the
interests based on what they thought were their true interests. To
measure the degree of agreement between the two lists, we
calculate normalized Kendall tau distance (see [11], for how
normalized Kendall tau distance is calculated) between them. The
normalized Kendall tau distance lies in the interval [0, 1], where 0
indicates that the two lists are identical and 1 indicated maximum
disagreement.

Table 2: Normalized Kendall Tau Distance between the

System Predicted Interest Vector and the True Interest Vector

Table 2 shows the normalized Kendall Tau distance value for the
five users. We note that the value for all users are closer to 0,
which indicates agreement between the system generated interest
vector and the true user interest vector. We can therefore assert
that our learning method does a good job of identifying user
interests.

Experiment 2: Comparing User Interaction with Standard
and Personalized Results
In this experiment, we wished to determine which search results
the users tended to view more often - personalized search results
or the standard search results. For each query, we recorded which
search results the user considered relevant. The search results
were tagged as ʻPʼ if they came from the personalized results and
ʻYʼ if they came from standard Yahoo search results and ʻYPʼ if
they were common to both, the top 10 Yahoo search results and
the top 10 personalized results. At the end of the evaluation, we
calculated the total number of search results clicked by each user
and how many of them were personalized results.

Table 3 compares the percentage of standard and personalized
search results clicked by users. It is clear that the users considered
the personalized results more relevant compared to the standard
search results. And since the experiment presented search results
in an unbiased manner, we can assert that the personalized search
results were indeed relevant to user needs and that integrating user
interests can help improve the quality of web search.

6. CONCLUSION
This research was about personalizing web search on mobile
devices. As a case study, we used Appleʼs iPhone as the client
mobile device. Our approach involved building an interest profile

on the userʼs iPhone based on his interaction with web search
results and his browsing behavior. Personalization of search
results was achieved by re- ranking search results returned by a
standard web search engine (Yahoo) based on proximity to the
userʼs interest profile. The ability to recognize user interests in a
completely non-invasive way and the accuracy of the personalized
results are some of the major advantages of our approach. The
average response time of our system for displaying the top 100
personalized search results was found to be less than 2 seconds
which is reasonable in a mobile environment. Our
experimentation showed that, when presented with an unbiased,
randomized list of standard web search results and personalized
search results, users viewed personalized results more often than
standard web search results. We can therefore assert that search
personalization can not only be achieved but can be effective in
the mobile environment.

Table 3: Statistics of the search results clicked

REFERENCES
[1] Jansen, B J, Spink, A, Bateman, J, and Saracevic, T, 1998.

Real life information retrieval : A study of user queries on
the Web. ACM SIGIR Forum 32, 1, 5 –17

[2] The Librarianʼs Internet Index - http://lii.org
[3] The Internet Public Library - http://ipl.org
[4] Yahoo Web Directory - http://dir.yahoo.com
[5] Open Directory Project - http://dmoz.org

[6] Evgeniy Gabrilovich, Shaul Markovitch: Harnessing the
Expertise of 70,000 Human Editors: Knowledge-Based
Feature Generation for Text Categorization. Journal of
Machine Learning Research 8 (2007) 2297-2345

[7] http://www.cs.cmu.edu/~mccallum/bow/rainbow/
[8] http://developer.yahoo.com/search/boss/mashup.html
[9] Mirco Speretta, Personalizing Search Based on User Search

Histories, Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (2005) 622 -
628

[10] JSON-http://www.json.org/

[11] Calculating Kendall Tau Distance http://en.
wikipedia.org/wiki/Kendall_tau_distance

