
CSCI 2670, Fall 2012

Introduction to Theory of Computing

Department of Computer Science

University of Georgia

Athens, GA 30602

Instructor: Liming Cai

www.cs.uga.edu/∼cai

0

Lecture Note 1
Introduction and Review

1

A Tentative Schedule

I. Review (less than 1 week)

chapter 0: set, function, relation, string, language, logic,

theorem, proof

II. Automata and Languages (7-8 weeks)

chapter 1: regular language, finite automata, nondeterminism,

regular expression, non-regular language (3-4 weeks)

The first exam

chapter 2. context-free grammar, context-free language,

push-down automata, non-context-free language (3-4 weeks)

The second exam

2

III. Computability Theory (3 weeks)

chapter 3: Turing machine, Chomsky hierarchy,

chapter 4: decidable language, Halting problem,

chapter 5: undecidable language, reduction

IV. Complexity Theory (2 weeks)

chapter 7: time complexity, P, NP-completness,

chapter 8: space complexity

The final exam

3

Motivations

Theory of computing:

1. foundation of computer science,

the theory existed before the first computer model

2. theory and techniques for core CS subdisciplines

programming language and compiler design, text processing,

algorithm design, complexity theory, parallel computing, etc.

3. elegant, simple way to think about computation

fundamental issues remain regardless advanced technologies

4. new applications

bio-medical sciences

non-traditional computation models

4

What is this course about? goals?

Summarized as the Chomsky Hierarchy and extension

Model Languages/Grammar What are they?

finite automata regular constant memory

push-down FA context-free an additional stack

linear-bounded TMs context-sensitive linear memory

Turing machines decidable unlimited memory

unknown undecidable unknown

Polynomial-time TMs class P tractable problems

Polynomial-time NTMs class NP intractable

polynomial-space TMs class PSPACE P=?NP =?PSPACE

5

Some explanations for Chomsky Hierarchy

How powerful (powerless) are programs with a limited memory?

e.g.,

Program Foo;

Int X, Y, Z, W;

what can it do? how can those integers be?

can examine the input but does not memorize much

what can it not do?

can it count or does matching?

cannot recognize even parenthesization!

like (x+ 20)× (((y − z)× (w + u)− 40)× v) or simply

() ((() ()))

6

The case is “context-free”.

Your program may be able to count the number of ’(’s and ’)’s.

But what if only a limited number bits are used?

A stack can help

How?

Remember for now:

stack

= tree structure

= recursion

= “context-free”

= nested + parallel relationships

7

Can a single stack be powerful enough to recognize “crossing

relationships”

([) (] ([])) ?

(Note: you are only allowed to read the string ONCE)

A single stack is not that powerful enough for “context-sensitive”

thing.

BTW, where did you see this before?

Two stacks would work. But how to recognize

([) ({] ([}] {) }) ?

Two stacks can do “anything”.

8

I. Review

Chapter 0. Introduction

sets, basic operations, properties

relations, functions, predicates

strings, languages,

Boolean logic, theorem, proofs

9

Set: a collection of (related, discrete) objects

elements of a set: x ∈ S
empty set: φ

cardinality of a set: |S|, infinite set

subset: A ⊆ B, and superset, proper subset A ⊂ B
complement of a set: S̄

union of two sets: A ∪B, intersection of two sets: A ∩B
Cartesian product (cross product): A×B = {(a, b) : a ∈ A, b ∈ B}
Power set: 2A = {B : B ⊆ A},

how many elements in 2A?

10

Relation and Function: subsets of Cartesian production of two

sets

many-many, many-1, 1-many, and 1-1 relations

function f : A→ B, a many-1 relation Rf , not 1-many.

f(x) = y if and only (x, y) ∈ Rf

domain: A, range: B

1-1 function (injection): an 1-1 relation

onto function (surjection) f :

for every y ∈ B, there is an x ∈ A, (x, y) ∈ Rf

bijection: a both 1-1 and onto function.

k-ary relation: a subset of A×A× . . .×A (k times)

predicate: range is {TRUE,FALSE}

11

equivalence relation: a binary relation R satisfying

(1) reflexive: (x, x) ∈ R
(2) symmetric: if (x, y) ∈ R then (y, x) ∈ R
(3) transitive: if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R

12

Graph: defined by a pair of sets (V,E), in which E ⊆ V × V .

vertex v ∈ V , edge (u, v) ∈ E
directed edge if (u, v) 6= (v, u)

subgraph: H = (U,F) of G, if U ⊆ V and F ⊆ E ∩ (U × U). path:

a sequence of vertices in V simple path: the vertices do not repeat

cycle: path in which the start and end are the same

tree: graph without cycles

connected graph: a path between every two vertices

13

String and Language

alphabet: Σ, a finite set of symbols

string: s, a finite sequence of symbols taken from an alphabet

empty string: ε

Σ0 = {ε}, Σk = {xy : x ∈ Σk−1, y ∈ Σ}, for k=1, 2, . . .

transitive closure of Σ: Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ . . .
string s ∈ Σ∗

reverse of string w: wR

string length: the number of symbols in a string

concatenation of strings x = x1 . . . xm and y = y1 . . . yn:

xy = x1 . . . xmy1 . . . yn

lexicographical order of strings: dictionary order

language L: a set of strings, L ⊆ Σ∗

14

Boolean Logic:

boolean values: 0, 1

boolean operands: ∧,∨,¬
boolean variables: x, y, z

boolean expressions: P,Q,R, formed by

boolean values, operands, variables, and expressions.

15

Definition, theorem, and proof:

definition: describing objects precisely

mathematical statement: stating objects that have certain property.

proof: a convincing logical argument that a statement is true

theorem: a mathematical statement proved true

lemma: a theorem assisting the proof of an more significant

theorem

corollary: conclusion easily derived from a theorem

16

Constructing Proofs:

not alway easy

be patient

be logical

be neat/concise

type of proofs:

proof by construction

proof by contradiction

proof by induction

17

proof by construction

Some theorems claim that some type of object (or property) exists.

Example: For every even number n > 2, there is a 3-regular grapha

Proof: Construct such a graph for every given n > 2 even.

Construct a ”cycle” using all n vertices, and create edges

(i, i+ n/2) for all i = 1, 2, . . . , n/2− 1.

aA k-regular graph is a graph in which every vertex has degree k.

18

proof by contradiction

Example 1. ”Pigeonhole principle”: Putting n pigeons in k holes,

k < n, there is at least one hole hosting more than one pigeon.

Proof:

Assume otherwise.

Then the total number of pigeons is ≤ k < n. Contradicts.

19

Example 2:
√

2 is irrationala

Proof: Assume otherwise, i.e.,
√

2 = m/n for some m and n

(at least one of m and n is odd!).

Then n
√

2 = m.

2n2 = m2; m2 is even. And m is even too.

(as the square of an odd number is always odd!)

So m can be written as m = 2k for some integer k. So we have

2n2 = 4k2 =⇒ n2 = 2k2

So n2 is even; so n is also even.

contradicts with that at least one of m and n is odd!
aA number is rational if it can be expressed as m/n for two integers m and

n.

20

proof by induction

To show certain property P holds for every integer n = 1, 2, . . . ,

It suffices to show

(1) P holds for n = 1,

(2) P holds k −→ P holds for k + 1.

where (2) is “chain reaction” or “property propagation”, while (1)

is the ”starting point”.

Consider the following theorem (knocking dominos): If the first

domino was knocked down, then for every n, the nth domino will be

down.

Can you use proof by induction to prove?

21

Example: For all n ≥ 1, summation 1 + 2 + . . .+ n = n
2 (n+ 1)

What is P here?

P(n) = “1 + 2 + . . .+ n = n
2 (n+ 1)”

Proof. n = 1, P holds because 1 = 1
2 (1 + 1)

Assume P(k) holds, i.e., 1 + 2 + . . .+ k = k
2 (k + 1)

We now show P(k + 1) holds as well:

1 + 2 + . . .+ k + k + 1 = (1 + 2 + . . .+ k) + (k + 1)

= k
2 (k + 1) + (k + 1) = (k + 1)(k/2 + 1)

= (k + 1)(k/2 + 2/2) = k+1
2 ((k + 1) + 1)

22

