
0

Chapter 1. Regular Languages

We use languages to represent computation problems
Two kinds of computation problems:
(1) computing functions:
with a possibly long, desired answer - called search problems
(2) computing predicates:
with a short, yes/no answer - called decision problems

Decision problems are presented as languages;
A language is simply encoding of a decision problem.
I.e., It contains all strings, each encoding a problem instance having the 'yes' answer.

We only study decision problems, thus languages. But why is this enough?

Because, algorithms for decision problems can be used to solve search problems, though indirectly!

Search problem Shortest Path
Input: graph G, vertices s, t;
Output: a shortest path between s and t.

How an algorithm A for decision problem Shortest Distance can help solve this search problem?
hint: construct a simple algorithm for Shortest Path that calls A as a subroutine.

1.1 FINITE AUTOMATA

Now we begin to discuss a class of languages

- called regular languages
and study them based on a weak computation model

Intuitively, a finite automaton is a machine consists of
(1) a finite number of states
(2) it reads one symbol at a time from the input (left to right)
(3) the currently read symbol determine the next state to transit
(4) the input is accepted if it ends at an "acceptance" state.
(5) otherwise, the input is "rejected".

An example of finite state machine: an automatic door

- it has two states: Open and Closed
- people standing at the door: front, rear, both, neither
draw a finite state machine for this.

State transition table:

	neither	front	rear	both
Closed	Closed	Open	Closed	Closed
Open	Closed	Open	Open	Open

7
a finite automaton (FA) has

- exactly one starting state (where computation starts)
- usually one acceptance state (where computation may end)
- transitions are labelled with symbols that make the transitions.
e.g, finite automaton called M_{1} (Figure 1.4 on page 34).

Does it accept string 1001?
How about 10001?
10010 ? and 100100 ?
So it accepts a set of strings, i.e., the language accepted by the FA.

9

Formally describe M_{1} (Figure 1.4 on page 34) as $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

1. $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$,
2. Sigma $=\{0,1\}$,
3. δ is described as

	0	1
q_{1}	q_{1}	q_{2}
q_{2}	q_{3}	q_{2}
q_{3}	q_{2}	q_{2}

4. q_{1} is the start state,
5. $F=\left\{q_{2}\right\}$.

What language does M_{1} accept?
More FA examples
FA M_{2} (Figure 1.8 page 37).
FA M_{3} (Figure 1.10, page 38)
FA M_{4} (Figure 1.12 page 38).
FA M_{5} (Figure 1.13 page 39).
Example 1.15 page 40, when number of states is too large
(or unspecific) to draw. Similar to M_{5} but modulo i instead of 3.

Formal definition of computation

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton.
Let $w=w_{1} w_{2} \ldots w_{n}$ be a string where each symbol $w_{i} \in \Sigma$.
Then M accepts w if a sequence states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exist with three conditions:

1. $r_{0}=q_{0}$;
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$, for $i=0,1, \ldots, n-1$, and
3. $r_{n} \in F$.

We say M recognizes language L if $L=\{w: M$ accepts $w\}$.

Definition 1.16
A language is called a regular language if it can be recognized by
some finite automaton.
Some basic questions:
1. Is $\{\epsilon\}$ regular?
2. Is Σ^{*} regular?
3. Is $\}$ regular?
4. Can two FA recognize the same languages?
5. Is L always regular, for any L that is finite?

Designing Finite Automata

- put yourself in the position of an automaton
- small amount of memory (which is a few states) to use
- scan the input from left to right
e.g., construct an FA to recognize the language consisting of all strings, each containing an odd number 1s.
- only need to pay attention to 1s.
- the current state is either even or odd
- switching state if additional 1 is encountered.

Figures 1.18, 1.19 (page 42), and 1.20 (page 43).

Another example, construct an FA to recognize all strings that contain 001 as a substring.
four possibilities:

1. have not see any symbols of the pattern 001
2. have seen just a 0
3. have seen 00
4. have seen 001

You may assign 4 states for these 4 possibilities.
Figure 1.22 (page 43)

The Regular Operations

There are some set operations to consider:
UNION
INTERSECTION
COMPLEMENT
CONCATENATION
e.g,
L_{1} contains all strings with substring 11
L_{2} contains all strings with substring 000
$L_{1} \cup L_{2}$
$L_{1} \cap L_{2}$
$\overline{L_{1}}$
$L_{1} L_{2}$
\square

Technically, we can define a new FA, whose states are $[q, p]$
How do we define the transition function?
$[q, p]$ and symbol a, transit to $\left[q^{\prime}, p^{\prime}\right]$
where $q^{\prime}=\delta_{1}(q, a), p^{\prime}=\delta_{2}(p, a)$
For UNION, we need $q_{n} \in F_{1}$ or $p_{n} \in F_{2}$
For INTERSECTION, we need $q_{n} \in F_{1}$ AND $p_{n} \in F_{2}$

```
L
L
with the corresponding FA M}\mp@subsup{M}{1}{}\mathrm{ and }\mp@subsup{M}{2}{}\mathrm{ .
            M
            0}
q
        M}\mp@subsup{M}{2}{}\mathrm{ has start state p, state po accepting state po0
            0 1
p por p
po pon p
p00 pon po0
```

Then the new machine M has 6 states:
$[q, p],\left[q, p_{0}\right],\left[q, p_{00}\right],\left[q_{1}, p\right],\left[q_{1}, p_{0}\right],\left[q_{1}, p_{00}\right]$ with the transition function:

	0	1
$[q, p]$	$\left[q, p_{0}\right]$	$\left[q_{1}, p\right]$
$\left[q, p_{0}\right]$	$\left[q, p_{00}\right]$	$\left[q_{1}, p_{00}\right]$
$\left[q, p_{00}\right]$	$\left[q, p_{00}\right]$	$\left[q_{1}, p_{00}\right]$
$\left[q_{1}, p\right]$	$\left[q_{1}, p_{0}\right]$	$\left[q_{1}, p\right]$
$\left[q_{1}, p_{0}\right]$	$\left[q_{1}, p_{00}\right]\left[q_{1}, p\right]$	
$\left[q_{1}, p_{00}\right]$	$\left[q_{1}, p_{00}\right]\left[q_{1}, p_{00}\right]$	

For accepting $L_{1} \cap L_{2},\left[q_{1}, p_{00}\right]$ is the only accepting state
For accepting $L_{1} \cup L_{2}$, there are 4 states as accepting states. what are they?

How to construct an FA for complement of L, if L is regular?

- flipping all states between accepting to rejecting, does it work?

How to construct an FA for concatenation of two regular languages?

- making the accepting state of the first FA the same as the start state of the second FA, does it work?
Need a notion of nondeterminism to make things easier.

1.2 NONDETERMINISM

What is deterministic computation?
The state to be transited to is completely determined by

- the current state and
- the current symbol

Figure 1.28 (page 49)

How about "nondeterministic computation'?

- there are possibly more than one state option to transit to - more than one "computation path" for the same input - the input is accepted if one of the paths accepts it.

Figure 1.20 (page 49)
"Signatures" of a nondeterministic FA

- for the same symbol, more than one transitions from a state - a transition is labeled with the empty string/symbol ϵ
e.g., nondeterministic FA N_{1} in Figure 1.27 page 48
- from q_{1}, symbol 1 allows to stay in q_{1} or transit to q_{2}.
- what does the empty symbol on a transition mean?

Examples:
Construct a DFA for all strings whose third position is a 1 relatively easy, but how?

Construct a DFA for all strings whose third position from the end is a 1
a little hard, why?
how about construct an NFA?
nondeterministic computation can do "guessing".
Figure 1.31 page 51.
compared to Figure 1.32 on the same page

More examples: Figure 1.34 (page 52) and Figure 1.36 (page 53)

Formal Definition of a nondeterministic FA

Definition 1.37 (page 35)
A nondeterministic finite automaton is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma_{\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function,
4. $q_{0} \in Q$ is the start state, and
5. $F \subseteq Q$ is the set of accept states.
where
$\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}$
$\mathcal{P}(Q)$ is the power set of Q, also written as 2^{Q}

Examples of NFAs
Example 1.38 (page 54)

Formal definition of computation with NFA

Let $N=\left(Q, \Sigma_{\epsilon}, \delta, q_{0}, F\right)$ be a nondeterministic finite automaton. Let $w=w_{1} w_{2} \ldots w_{n}$ be a string where each symbol $w_{i} \in \Sigma_{\epsilon}$.
Then N accepts w if a sequence states $r_{0}, r_{1}, \ldots, r_{n}$ in Q exist with three conditions:

1. $r_{0}=q_{0}$;
2. $r_{i+1} \in \delta\left(r_{i}, w_{i+1}\right)$, for $i=0,1, \ldots, n-1$, and 3. $r_{n} \in F$.

We say N recognizes language L if $L=\{w: N$ accepts $w\}$.

Equivalence of NFA and DFA

An DFA is an NFA. This is because
(1) $\Sigma \subseteq \Sigma_{\epsilon}$
(2) $\delta(q, a)=p$ can be redefined as $\delta(q, a)=\{p\}$.

To show NFA are not more powerful than DFA,
we only need to show
that for every NFA, there is a DFA accepting the same language.

Theorem 1.39 (page 55)
Every NFA has an equivalent DFA.

Proof idea

To use a DFA to keep tracking on all the transitions of the NFA and to "simulate the latter's computation"

- assume the NFA has k states
- given state q and symbol a, there may be k or less transitions
- that is a subset of the k states
- each such subset is remembered with one state in the DFA, so the DFA needs 2^{k} states

Example: NFA N that has two states: start state q and accepting state q_{1}, with transition function δ as:
$0 \quad 1$
$q \quad\{q\} \quad\left\{q, q_{1}\right\}$
$q_{1} \quad\{q\} \quad\{ \}$
(What language does N recognize by the way?)

In the DFA M, there will be 2^{2} states: $p_{00}, p_{01}, p_{10}, p_{11}$
$0 \quad 1$
p_{00}
$p_{01} \quad p_{10} \quad p_{00}$
$p_{10} \quad p_{10} \quad p_{11}$
$p_{11} \quad p_{10} \quad p_{11}$
with p_{01}, p_{11} as accepting states and p_{10}

Note:

- p_{01} is a unnecessary state since there is no in-coming transition
- p_{00} is a unnecessary state since there is no out-going transition and it is not an accepting state
- In M, a state is an accepting state if it represents the subset of states in N that contains an accepting state of N.
- In M, the state is designated as the start state if its represents the subset of states in N that contains exact the start state of N.
- But in all these, we did not consider ϵ transitions.

Proof of Theorem 1.39
Assume $N=\left(Q, \Sigma_{\epsilon}, \delta, q_{0}, F\right)$ be the NFA recognizing a language L.
We construct a DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ to recognize L.

1. Q^{\prime} contains $2^{|Q|}$ states, one for each subset of Q
2. Let $p_{R} \in Q^{\prime}$, where $R \subseteq Q$ representing a subset of Q. define $\delta^{\prime}\left(p_{R}, a\right)=p_{S}$, where
$S=\{q: q \in \delta(r, a)$, for some $r \in R\}$
3. $q_{0}^{\prime}=p_{\left\{q_{0}\right\}}$
4. $F^{\prime}=\left\{p_{R}: R\right.$ contains an accepting state of $\left.N\right\}$

When ϵ transitions are involved
2. Let $p_{R} \in Q^{\prime}$, where $R \subseteq Q$ representing a subset of Q. define $\delta^{\prime}\left(p_{R}, a\right)=p_{S}$, where
$S=\{q: q \in \mathbf{E}(\delta(r, a))$, for some $r \in R\}$
3. $q_{0}^{\prime}=p_{\mathbf{E}\left(\left\{q_{0}\right\}\right)}$
where $\mathbf{E}(S)$ includes all the states in S and those reachable through the ϵ transitions from the states in S.

Apparently M simulates the computation of N on the input and accepts it iff N accepts it.

Corollary 1.40 (page 56)
A language is regular if and only if some NFA recognizes it.

1.3 REGULAR EXPRESSIONS

Used to bridge between regular languages and finite automata.

- sometimes we may describe a regular language vaguely,
- but want to get a precise definition
- without resorting to building an FA
e.g.,
a language in which each string contains either substring 11 or 001
expressed as:
"anything" followed by either 00 or 001 followed by "anything"

But how to express "anything"?
note for this we should represent a set of "all things"

1. Use 0 to represent the set of single element 0 , likewise, 1 for $\{1\}$.
2. Use * to represent "repeats", e.g., 1^{*} is the set of strings, each
consisting of k many 1 's, for some $k \geq 0$. That is $1^{*}=\{\epsilon, 1,11,111, \ldots\}$
3. Use \cup for 'OR', e.g., $1 \cup 0$ represents $\{0,1\}$
4. Use \circ for 'concatenation',
e.g., $0 \circ 1^{*}$ represents $\{0,01,011,0111, \ldots\}$, or
simply with \circ removed: 01*
5. Use '(', ')' whenever needed (as in arithmetic expressions).

Formal Definition of a Regular Expression

Definition 1.52 (page 64)

R is a regular expression if R is one of the followings:

1. a symbol $q \in \Sigma$ the alphabet
2. ϵ
3. ϕ
4. $\left(R_{1} \cup R_{2}\right)$, where R_{1}, R_{2} are regular expressions
5. $\left(R_{1} \circ R_{2}\right)$, where R_{1}, R_{2} are regular expressions
$6\left(R_{1}^{*}\right)$, where R_{1} is a regular expression.
Without the parentheses, evaluation of a regular expression is done in the precedence order: star, then concatenation, then union.

Also we use R^{+}for $R R^{*}$, for example, $1^{+}=\{1,11,111, \ldots\}$

Equivalence with Finite Automata

Theorem 1.54 (page 66)
A language is regular if and only some regular expression describe it.

It has two directions (stated in the following lemmas.)
Lemma 1.55 (page 67)
If a language is described by a regular expression, then it is regular.
Lemma 1.60 (page 69)
If a language is regular, then it is described by a regular expression.

Lemma 1.55 (page 67)
If a language is described by a regular expression, then it is regular. proof idea

Converting a regular expression R into an NFA by using the constructing rules of regular expressions and identifying the atomic components of R.

Example:
building an NFA for regular expression $(a b \cup a)^{*}$ (Figure 1.57, page 68).

Lemma 1.55 (page 67)
If a language is described by a regular expression, then it is regular.
Proof: [Using structural induction]
We consider the six cases that R may have been constructed:

1. $R=a$ for some $a \in \Sigma$. We have an FA for R (page 67).
2. $R=\epsilon$, the set with single string ϵ. We also have an FA for R
3. $R=\phi$. the empty set. We have an FA for R.
$4 R=R_{1} \cup R_{2}$
4. $R=R_{1} \circ R_{2}$
5. R_{1}^{*}

The last three cases are proved using the proofs that the class of regular languages is closed under union, concatenation, and star operations. (page 67)

Lemma 1.60 (page 69)
If a language is regular, it is described by a regular expression.
Proof:
The idea is to convert the DFA for the regular language

- to a generalized NFA
- then to a 2 -state GNFA, which is a regular expression

A GNFA is an NFA whose transition edges have regular expressions instead of just symbols from the alphabet.
E.g., Figure 1.61 (page 70)

We require GNFA to meet the following condition:

- no incoming edge to the start state; (how to satisfy this?)
- only one accepting state; (how to satisfy this?)
- between every pair of states, there are two edges; (how to satisfy this?)
- every state has a self-loop edge; (how to satisfy this?)

Now constructing such a GNFA, using the following steps:
(1) Let DFA M be the one to recognize the regular language L; make it a GNFA G
(2) If G has only two states, then they are start and accept states. The regular expression on the edge is the desired expression. Stop.
(3) Remove one state $q_{r i p}$ from N and repair so the new G recognizes the same language:

- $q_{\text {rip }}$ is neither the start state nor accepting state.
- assume q_{i} and q_{j} to be two states connecting to $q_{\text {rip }}, i$ may be the same as j
- re-designate regular expressions over edges between q_{i} and q_{j} by considering the paths between q_{i} and q_{j} through $q_{\text {rip }}$

Definition 1.64 (page 73)

A generalized NFA is a 5 -tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, q_{\text {accept }}\right)$, where

1. Q is the finite set of states;
2. Σ is the input alphabet;
3. δ is transition function: $\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{Q_{\text {start }}\right\}\right) \rightarrow \mathcal{R}$;
4. $q_{\text {start }}$ is the start state;
5. accept is the accepting state.

The GNFA accepts a string $w=w_{1} w_{2} \ldots w_{k}$, where $w_{i} \in \Sigma^{*}$ if there is a sequence of states $q_{0} q_{1} \ldots q_{k}$ such that
(1) $q_{0}=q_{\text {start }}$
(2) $q_{k}=q_{\text {accept }}$
(3) $w_{i} \in$ set of strings represented by regular expression R_{i}, where $R_{i}=\delta\left(q_{i-1}, q_{i}\right)$, for all $i=1,2, \ldots, k$.

THe proof consists of the following steps to convert M, the DFA for the original regular language, to a GNFA.

- add new start and accepting states to M, let the GNFA be G
- call the procedure $\operatorname{Convert}(G)$ recursively.

Convert (G) :

1. Let k be the number of states in G;

2 . If $k=2$, then a single edge connecting from $q_{\text {statr }}$ to $q_{\text {accept }}$ with label R, return R and stop.
3. Select $q_{\text {rip }}$, for every pair of states q_{i}, q_{j} that are not $q_{r i p}$, or start, or accept state, set $\delta^{\prime}\left(q_{i}, q_{j}\right)=R_{1} R_{2} * R_{3} \cup R_{4}$, where $R_{1}=\delta\left(q_{i}, q_{r i p}\right), R_{2}=\delta\left(q_{r i p}, q_{r i p}\right)$,
$R_{3}=\delta\left(q_{r i p}, q_{j}\right), R_{4}=\delta\left(q_{i}, q_{j}\right)$
4. Let $G^{\prime}=\left(Q-\left\{q_{\text {rip }}, \Sigma, \delta^{\prime}, q_{\text {start }}, q_{\text {accept }}\right)\right.$
5. Call Convert (G^{\prime}).

- prove that for any $G, \operatorname{Convert}(G)$ is equivalent to G.

We prove this claim by induction on k.
basis: $k=2$. The claim is true since the regular
expression on the only edge described the same lang. assumption: the claim is true for $k-1$ states.
induction: k states. We show removing state $q_{\text {rip }}$
still allows the recognition of the same language.
Let w be accepted by the k state GNFA, with path $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$
Case 1. $q_{\text {rip }}$ does not occur in it.
Case 2. $q_{\text {rip }}$ occurred in it.
Convert (G) step 3 guarantees the claim true.

1.4 NONREGULAR LANGUAGES

To answer the following related questions:

- How powerful is a finite state machine?
- What problems may (not) be defined as regular languages?
- What makes a finite state (not) powerful?
- what languages cannot be recognized by FA?

Revisit the case of matching parentheses in arithmetic expressions
It is all because the small memory FA are limited to have!

Examples:

$$
\begin{aligned}
& L_{1}=\{w: w \text { contains the same number of } 1 \text { and } 0\} . \\
& L_{2}=\left\{0^{k} 1^{k}: k \geq 0\right\} \\
& L_{3}=\left\{w w^{-1}: w \in \Sigma\right\}
\end{aligned}
$$

Why these languages may not be regular?
Consider L_{2}, when $x=0^{k} 1^{k}$ is long enough, say

$$
|x|=2 k=l>|Q|
$$

Then the path leading to x 's acceptance would go through the same state at least twice, i.e., the path is NOT a simple path

- there is a circular subpath on this path
- it accommodates "non-empty string"
- it is not "too long"
- it makes the acceptance of "abnormal" strings possible

Using the Pumping lemma to prove certain languages are not regular

Example 1.73 (page 80)
Show that $L_{2}=\left\{0^{k} 1^{k}: k \geq 0\right\}$ is not regular.

Example 1.74
Show that $L_{1}=\{w: w$ contains the same number of 1 and 0$\}$. is not regular [Note the use of condition 3]

Example 1.75 (page 81)
Show that $L_{3}=\{w w: w \in \Sigma\}$ is not regular

