
CSCI 2670, Fall 2012

Introduction to Theory of Computing

Department of Computer Science

University of Georgia

Athens, GA 30602

Instructor: Liming Cai

www.cs.uga.edu/∼cai

0

Lecture Note 2
Automata and Languages

1

II. Automata and Languages

2

Chapter 1. Regular Languages

We use languages to represent computation problems

Two kinds of computation problems:

(1) computing functions:

with a possibly long, desired answer – called search problems

(2) computing predicates:

with a short, yes/no answer – called decision problems

Decision problems are presented as languages;

A language is simply encoding of a decision problem.

I.e., It contains all strings, each encoding a problem instance

having the ‘yes’ answer.

3

E.g.,

Decision problem Shortest Distance

Input: graph G, vertices s, t, distance k;

Output: ‘yes’ iff the shortest distance between s and t is ≤ k.

The corresponding language Lsd

={ G#s#t#k: the shortest distance between s and t is ≤ k}

where G#s#t#k is an encoding of G, s, t, and k over the alphabet.

Your algorithm that can determine any given string

G#s#t#k belongs to Lsd or not

can also be used to solve the decision problem Shortest Distanc.

4

We only study decision problems, thus languages. But why is this

enough?

Because, algorithms for decision problems can be used to solve

search problems, though indirectly!

Search problem Shortest Path

Input: graph G, vertices s, t;

Output: a shortest path between s and t.

How an algorithm A for decision problem Shortest Distance

can help solve this search problem?

hint: construct a simple algorithm for Shortest Path that calls A

as a subroutine.

5

1.1 FINITE AUTOMATA

Now we begin to discuss a class of languages

– called regular languages

and study them based on a weak computation model

Intuitively, a finite automaton is a machine consists of

(1) a finite number of states

(2) it reads one symbol at a time from the input (left to right)

(3) the currently read symbol determine the next state to transit

(4) the input is accepted if it ends at an “acceptance” state.

(5) otherwise, the input is “rejected”.

6

An example of finite state machine: an automatic door

- it has two states: Open and Closed

- people standing at the door: front, rear, both, neither

draw a finite state machine for this.

State transition table:

neither front rear both

Closed Closed Open Closed Closed

Open Closed Open Open Open

7

a finite automaton (FA) has

- exactly one starting state (where computation starts)

- usually one acceptance state (where computation may end)

- transitions are labelled with symbols that make the transitions.

e.g, finite automaton called M1 (Figure 1.4 on page 34).

Does it accept string 1001?

How about 10001?

10010? and 100100?

So it accepts a set of strings, i.e., the language accepted by the FA.

8

Formal definition of an FA

Definition 1.5 (page 35)

A finite automaton is a 5-tuple (Q,Σ, δ, q0, F), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q× Σ→ Q is teh transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

9

Formally describe M1 (Figure 1.4 on page 34) as (Q,Σ, δ, q0, F),

where

1. Q = {q1, q2, q3},
2. Sigma = {0, 1},
3. δ is described as

0 1

q1 q1 q2

q2 q3 q2

q3 q2 q2

4. q1 is the start state,

5. F = {q2}.

What language does M1 accept?

10

More FA examples

FA M2 (Figure 1.8 page 37).

FA M3 (Figure 1.10, page 38)

FA M4 (Figure 1.12 page 38).

FA M5 (Figure 1.13 page 39).

Example 1.15 page 40, when number of states is too large

(or unspecific) to draw. Similar to M5 but modulo i instead of 3.

11

Formal definition of computation

Let M = (Q,Σ, δ, q0, F) be a finite automaton.

Let w = w1w2 . . . wn be a string where each symbol wi ∈ Σ.

Then M accepts w if a sequence states r0, r1, . . . , rn in Q exist with

three conditions:

1. r0 = q0;

2. δ(ri, wi+1) = ri+1, for i = 0, 1, . . . , n− 1, and

3. rn ∈ F .

We say M recognizes language L if L = {w : M accepts w}.

12

Definition 1.16

A language is called a regular language if it can be recognized by

some finite automaton.

Some basic questions:

1. Is {ε} regular?

2. Is Σ∗ regular?

3. Is {} regular?

4. Can two FA recognize the same languages?

5. Is L always regular, for any L that is finite?

13

Designing Finite Automata

- put yourself in the position of an automaton

- small amount of memory (which is a few states) to use

- scan the input from left to right

e.g., construct an FA to recognize the language consisting of all

strings, each containing an odd number 1s.

- only need to pay attention to 1s.

- the current state is either even or odd

- switching state if additional 1 is encountered.

Figures 1.18, 1.19 (page 42), and 1.20 (page 43).

14

Another example, construct an FA to recognize all strings that

contain 001 as a substring.

four possibilities:

1. have not see any symbols of the pattern 001

2. have seen just a 0

3. have seen 00

4. have seen 001

You may assign 4 states for these 4 possibilities.

Figure 1.22 (page 43)

15

The Regular Operations

There are some set operations to consider:

UNION

INTERSECTION

COMPLEMENT

CONCATENATION

e.g,

L1 contains all strings with substring 11

L2 contains all strings with substring 000

L1 ∪ L2

L1 ∩ L2

L1

L1L2

16

Consider the recognitions by two FAs at the same time

M1 = (Q1,Σ, δ1, q0, F1)

M2 = (Q2,Σ, δ2, p0, F2)

for input: b1b2 . . . bn

q0b1q1b2q2 . . . bnqn

p0b1p1b2p2 . . . bnpn

In the UNION case, it suffices if either sequence holds

In the INTERSECTION case, both sequences should hold.

17

Technically, we can define a new FA, whose states are [q, p]

How do we define the transition function?

[q, p] and symbol a, transit to [q′, p′]

where q′ = δ1(q, a), p′ = δ2(p, a)

For UNION, we need qn ∈ F1 or pn ∈ F2

For INTERSECTION, we need qn ∈ F1 AND pn ∈ F2

18

L1 = {x : x contains substring 1}
L2 = {x : x contains substring 00}

with the corresponding FA M1 and M2.

M1 has start state q and accepting state q1

0 1

q q q1

q1 q1 q1

M2 has start state p, state p0 accepting state p00

0 1

p p0 p

p0 p00 p

p00 p00 p00

19

Then the new machine M has 6 states:

[q, p], [q, p0], [q, p00], [q1, p], [q1, p0], [q1, p00] with the transition

function:

0 1

[q, p] [q, p0] [q1, p]

[q, p0] [q, p00] [q1, p00]

[q, p00] [q, p00] [q1, p00]

[q1, p] [q1, p0] [q1, p]

[q1, p0] [q1, p00] [q1, p]

[q1, p00] [q1, p00] [q1, p00]

For accepting L1 ∩ L2, [q1, p00] is the only accepting state

For accepting L1 ∪ L2, there are 4 states as accepting states.

what are they?

20

How to construct an FA for complement of L, if L is regular?

- flipping all states between accepting to rejecting, does it work?

How to construct an FA for concatenation of two regular languages?

- making the accepting state of the first FA the same as

the start state of the second FA, does it work?

Need a notion of nondeterminism to make things easier.

21

1.2 NONDETERMINISM

What is deterministic computation?

The state to be transited to is completely determined by

- the current state and

- the current symbol

Figure 1.28 (page 49)

How about “nondeterministic computation’?

- there are possibly more than one state option to transit to

- more than one “computation path” for the same input

- the input is accepted if one of the paths accepts it.

Figure 1.20 (page 49)

22

“Signatures” of a nondeterministic FA

- for the same symbol, more than one transitions from a state

- a transition is labeled with the empty string/symbol ε

e.g., nondeterministic FA N1 in Figure 1.27 page 48

- from q1, symbol 1 allows to stay in q1 or transit to q2.

- what does the empty symbol on a transition mean?

23

Examples:

Construct a DFA for all strings whose third position is a 1

relatively easy, but how?

Construct a DFA for all strings whose third position from the end

is a 1

a little hard, why?

how about construct an NFA?

nondeterministic computation can do “guessing”.

Figure 1.31 page 51.

compared to Figure 1.32 on the same page

More examples: Figure 1.34 (page 52) and Figure 1.36 (page 53)

24

Formal Definition of a nondeterministic FA

Definition 1.37 (page 35)

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F),

where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ : Q× Σε → P(Q) is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accept states.

where

Σε = Σ ∪ {ε}
P(Q) is the power set of Q, also written as 2Q

25

Examples of NFAs

Example 1.38 (page 54)

Formal definition of computation with NFA

Let N = (Q,Σε, δ, q0, F) be a nondeterministic finite automaton.

Let w = w1w2 . . . wn be a string where each symbol wi ∈ Σε.

Then N accepts w if a sequence states r0, r1, . . . , rn in Q exist with

three conditions:

1. r0 = q0;

2. ri+1 ∈ δ(ri, wi+1), for i = 0, 1, . . . , n− 1, and

3. rn ∈ F .

We say N recognizes language L if L = {w : N accepts w}.

26

Equivalence of NFA and DFA

An DFA is an NFA. This is because

(1) Σ ⊆ Σε

(2) δ(q, a) = p can be redefined as δ(q, a) = {p}.

To show NFA are not more powerful than DFA,

we only need to show

that for every NFA, there is a DFA accepting the same language.

27

Theorem 1.39 (page 55)

Every NFA has an equivalent DFA.

Proof idea

To use a DFA to keep tracking on all the transitions of the NFA

and to “simulate the latter’s computation”

- assume the NFA has k states

- given state q and symbol a, there may be k or less transitions

- that is a subset of the k states

- each such subset is remembered with one state in the DFA,

so the DFA needs 2k states

28

E.g., 3 states in the NFA,

23 = 8 states: p000 ∼ p111 are in the DFA

where p011 is to remember subset {q2, q3}

The transition is explained with the example:

δ′(p011, a) = p101 because

δ(q2, a) ⊆ {q1, q3} and

δ(q3, a) ⊆ {q1, q3}

29

Example: NFA N that has two states: start state q and

accepting state q1, with transition function δ as:

0 1

q {q} {q, q1}
q1 {q} {}

(What language does N recognize by the way?)

In the DFA M , there will be 22 states: p00, p01, p10, p11

0 1

p00

p01 p10 p00

p10 p10 p11

p11 p10 p11

with p01, p11 as accepting states and p10

30

Note:

- p01 is a unnecessary state since there is no in-coming transition

- p00 is a unnecessary state since there is no out-going transition

and it is not an accepting state

- In M , a state is an accepting state if it represents the subset of

states in N that contains an accepting state of N .

- In M , the state is designated as the start state if its represents

the subset of states in N that contains exact the start state of N .

- But in all these, we did not consider ε transitions.

31

Proof of Theorem 1.39

Assume N = (Q,Σε, δ, q0, F) be the NFA recognizing a language L.

We construct a DFA M = (Q′,Σ, δ′, q′0, F
′) to recognize L.

1. Q′ contains 2|Q| states, one for each subset of Q

2. Let pR ∈ Q′, where R ⊆ Q representing a subset of Q.

define δ′(pR, a) = pS , where

S = {q : q ∈ δ(r, a), for some r ∈ R}
3. q′0 = p{q0}
4. F ′ = {pR : R contains an accepting state of N}

32

When ε transitions are involved

2. Let pR ∈ Q′, where R ⊆ Q representing a subset of Q.

define δ′(pR, a) = pS , where

S = {q : q ∈ E(δ(r, a)), for some r ∈ R}
3. q′0 = pE({q0})

where E(S) includes all the states in S and those reachable through

the ε transitions from the states in S.

Apparently M simulates the computation of N on the input and

accepts it iff N accepts it.

Corollary 1.40 (page 56)

A language is regular if and only if some NFA recognizes it.

33

Example: 1.41 (page 57), Figure 1.42.

constructing a DFA for an NFA:

- determine the states for the DFA

- determine the start and accepting states

- determine the transition function

- simplify the DFA by removing unnecessary states

34

Regular Operations (revisited)

Theorem 1.45 (page 59)

The class of regular languages is closed under the union

operation.

(What does it mean that a class is closed under certain operation?)

Proof: construct an NFA to recognize L1 ∪ L2.

Figure 1.46 (page 59)

35

Theorem 1.46 (page 60)

The class of regular languages is closed under the concatenation

operation.

(concatenation of two languages L1L2 or L1 ◦ L2)

Proof: construct an NFA to recognize L1L2.

Figure 1.48 (page 61)

36

Start operation ∗ (transitive closure):

L∗ = {ε} ∪ L ∪ L2 ∪ L3 ∪ . . .

Theorem 1.49 (page 62)

The class of regular languages is closed under the start

operation.

Proof construct an NFA to recognize L∗.

Figure 1.50 page 62.

37

Various issues arising from the first homework assignment

empty language φ = {}, size (i.e., cardinality) |φ| = 0

language E = {ε}, size |E| = 1

ε is a string of length 0, i.e., |ε| = 0.

‘ ’ is a string of length 1, i.e., |‘ ’| = 1

FA for φ, and

FA for E.

38

1.3 REGULAR EXPRESSIONS

Used to bridge between regular languages and finite automata.

- sometimes we may describe a regular language vaguely,

- but want to get a precise definition

- without resorting to building an FA

e.g.,

a language in which each string contains either substring 11 or

001

expressed as:

“anything” followed by either 00 or 001 followed by “anything”

39

But how to express “anything”?

note for this we should represent a set of “all things”

1. Use 0 to represent the set of single element 0, likewise, 1 for {1}.

2. Use ∗ to represent “repeats”, e.g., 1∗ is the set of strings, each

consisting of k many 1’s, for some k ≥ 0. That is

1∗ = {ε, 1, 11, 111, . . .}

3. Use ∪ for ’OR’, e.g., 1 ∪ 0 represents {0, 1}

4. Use ◦ for ’concatenation’,

e.g., 0 ◦ 1∗ represents {0, 01, 011, 0111, . . .}, or

simply with ◦ removed: 01∗

5. Use ’(’, ’)’ whenever needed (as in arithmetic expressions).

40

More examples:

(1 ∪ 0) ◦ (1 ∪ 0) represents {00, 01, 10, 11}

(0 ∪ 1)∗ = {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .} = Σ∗

(0 ∪ 1)∗ ◦ 1 ◦ 1 ◦ 1 ◦ (1 ∪ 0)∗, or simply Σ∗111Σ∗

0Σ∗0 ∪ 1Σ∗1 ∪ 1 ∪ 0

(0 ∪ ε)1∗ = 01∗ ∪ 1∗

(0 ∪ ε)(1 ∪ ε) = {ε, 1, 0, 01}

1 ∗ φ = φ

φ∗

41

Formal Definition of a Regular Expression

Definition 1.52 (page 64)

R is a regular expression if R is one of the followings:

1. a symbol q ∈ Σ the alphabet

2. ε

3. φ

4. (R1 ∪R2), where R1, R2 are regular expressions

5. (R1 ◦R2), where R1, R2 are regular expressions

6 (R∗1), where R1 is a regular expression.

Without the parentheses, evaluation of a regular expression is done

in the precedence order: star, then concatenation, then union.

Also we use R+ for RR∗, for example, 1+ = {1, 11, 111, . . .}

42

Additional special cases:

R ∪ ε =?

R ◦ ε =?

R ∪ φ =?

R ◦ φ =?

43

Equivalence with Finite Automata

Theorem 1.54 (page 66)

A language is regular if and only some regular expression describe

it.

It has two directions (stated in the following lemmas.)

Lemma 1.55 (page 67)

If a language is described by a regular expression, then it is regular.

Lemma 1.60 (page 69)

If a language is regular, then it is described by a regular expression.

44

Lemma 1.55 (page 67)

If a language is described by a regular expression, then it is regular.

proof idea

Converting a regular expression R into an NFA by using the

constructing rules of regular expressions and identifying the atomic

components of R.

Example:

building an NFA for regular expression (ab ∪ a)∗ (Figure 1.57,

page 68).

45

Lemma 1.55 (page 67)

If a language is described by a regular expression, then it is regular.

Proof: [Using structural induction]

We consider the six cases that R may have been constructed:

1. R = a for some a ∈ Σ. We have an FA for R (page 67).

2. R = ε, the set with single string ε. We also have an FA for R

3. R = φ. the empty set. We have an FA for R.

4 R = R1 ∪R2

5. R = R1 ◦R2

6. R∗1

The last three cases are proved using the proofs that the class of

regular languages is closed under union, concatenation, and star

operations. (page 67)

46

Another example: Building an NFA for regular expression

(a ∪ b)∗aba (Figure 1.59, page 69)

47

Lemma 1.60 (page 69)

If a language is regular, it is described by a regular expression.

Proof:

The idea is to convert the DFA for the regular language

- to a generalized NFA

- then to a 2-state GNFA, which is a regular expression

A GNFA is an NFA whose transition edges have regular expressions

instead of just symbols from the alphabet.

E.g., Figure 1.61 (page 70)

48

We require GNFA to meet the following condition:

- no incoming edge to the start state; (how to satisfy this?)

- only one accepting state; (how to satisfy this?)

- between every pair of states, there are two edges; (how to satisfy

this?)

- every state has a self-loop edge; (how to satisfy this?)

49

Now constructing such a GNFA, using the following steps:

(1) Let DFA M be the one to recognize the regular language L;

make it a GNFA G

(2) If G has only two states, then they are start and accept states.

The regular expression on the edge is the desired expression. Stop.

(3) Remove one state qrip from N and repair so the new G

recognizes the same language:

- qrip is neither the start state nor accepting state.

- assume qi and qj to be two states connecting to qrip, i may be

the same as j

- re-designate regular expressions over edges between qi and qj

by considering the paths between qi and qj through qrip

50

Proof:

Need a formal definition for GNFA. The transition function is

slightly different now:

δ : (Q− {qaccept})× (Q− {Qstart})→ R

which designates one regular expression to every directed edge,

where R is the set of all regular expressions.

51

Definition 1.64 (page 73)

A generalized NFA is a 5-tuple (Q,Σ, δ, qstart, qaccept), where

1. Q is the finite set of states;

2. Σ is the input alphabet;

3. δ is transition function: (Q− {qaccept})× (Q− {Qstart})→R;

4. qstart is the start state;

5. accept is the accepting state.

The GNFA accepts a string w = w1w2 . . . wk, where wi ∈ Σ∗ if

there is a sequence of states q0q1 . . . qk such that

(1) q0 = qstart

(2) qk = qaccept

(3) wi ∈ set of strings represented by regular expression Ri,

where Ri = δ(qi−1, qi), for all i = 1, 2, . . . , k.

52

THe proof consists of the following steps to convert M , the DFA

for the original regular language, to a GNFA.

- add new start and accepting states to M , let the GNFA be G

- call the procedure Convert(G) recursively.

Convert(G):

1. Let k be the number of states in G;

2. If k = 2, then a single edge connecting from qstatr

to qaccept with label R, return R and stop.

3. Select qrip, for every pair of states qi, qj

that are not qrip, or start, or accept state, set

δ′(qi, qj) = R1R2 ∗R3 ∪R4,

where R1 = δ(qi, qrip), R2 = δ(qrip, qrip),

R3 = δ(qrip, qj), R4 = δ(qi, qj)

4. Let G′ = (Q− {qrip,Σ, δ′, qstart, qaccept)
5. Call Convert(G′).

53

- prove that for any G, Convert(G) is equivalent to G.

We prove this claim by induction on k.

basis: k = 2. The claim is true since the regular

expression on the only edge described the same lang.

assumption: the claim is true for k − 1 states.

induction: k states. We show removing state qrip

still allows the recognition of the same language.

Let w be accepted by the k state GNFA, with path

qstart, q1, q2, . . . , qaccept

Case 1. qrip does not occur in it.

Case 2. qrip occurred in it.

Convert(G) step 3 guarantees the claim true.

54

Examples:

Figure 1.67 Converting a 2-state DFA to an equivalent regular

expression (page 75)

Figure 1.69 Converting a 3-state DFA to an equivalent regular

expression (page 76)

55

1.4 NONREGULAR LANGUAGES

To answer the following related questions:

- How powerful is a finite state machine?

- What problems may (not) be defined as regular languages?

- What makes a finite state (not) powerful?

- what languages cannot be recognized by FA?

Revisit the case of matching parentheses in arithmetic expressions

It is all because the small memory FA are limited to have!

56

Examples:

L1 = {w : w contains the same number of 1 and 0}.

L2 = {0k1k : k ≥ 0}

L3 = {ww−1 : w ∈ Σ}

Why these languages may not be regular?

Consider L2, when x = 0k1k is long enough, say

|x| = 2k = l > |Q|

Then the path leading to x’s acceptance would go through the

same state at least twice, i.e., the path is NOT a simple path

- there is a circular subpath on this path

- it accommodates “non-empty string”

- it is not “too long”

- it makes the acceptance of “abnormal” strings possible

57

The Pumping Lemma For Regular Languages

Theorem 1.70 (Pumping lemma) (page 78)

If A is a regular language, then there is a number p (the pumping

length) where, for any string s ∈ A of length at least p, s can be

divided into three pieces, i.e., s = xyz, such that

1. for each i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p

58

proof idea

- p = |Q|
- pigeonhole principle to get repetition of a state in the path

- the string between repetition of the state is not empty

- the first p+ 1 states must contain a repetition.

59

Proof

Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A and p = |Q|.

Let s = s1s2 . . . sn, n ≥ p.
Let r1, r2, . . . , rn+1 be the states on the path to accept s

Among the first p+ 1 states, two must be the same: rj = rl, j 6= l

Let x = s1 . . . sj−1, y = sj . . . sl−1, and z = sl . . . sn.

Assume rn+1 an accept state.

Then M must accept xyiz for any i ≥ 0.

|y| > 0 because j 6= l.

|xy| ≤ p because l ≤ p+ 1.

60

Using the Pumping lemma to prove certain languages are not

regular

Example 1.73 (page 80)

Show that L2 = {0k1k : k ≥ 0} is not regular.

Example 1.74

Show that L1 = {w : w contains the same number of 1 and 0}.
is not regular [Note the use of condition 3]

Example 1.75 (page 81)

Show that L3 = {ww : w ∈ Σ} is not regular

61

