
CSCI 2670, Fall 2012

Introduction to Theory of Computing

Department of Computer Science

University of Georgia

Athens, GA 30602

Instructor: Liming Cai

www.cs.uga.edu/∼cai

0

Lecture Note 3
Context-Free Languages

1

Chapter 2. Context-free Languages

- We know there are languages that are NOT regular;

- Are all these non-regular languages of the ‘same difficulty’?

- How can we define these non-regular languages rigorously?

- Are there more difficult languages than {0n1n : n ≥ 0}?

2

- We first investigate a class of languages

called ’context-free languages’

- Context-free languages have extensive applications in

programming language and compiler designs.

- CFL can be defined in a rigorous way, similar to regular languages

formal system (Push-down automata) to recognize

formal system (context-free grammars) to define

pumping lemma also

- context-free grammars ALSO allow us to see how to define

regular languages syntactically.

3

2.1 Context-free grammars

We begin by examining finite automata that recognize regular

languages, as an introduction to grammar systems.

Example 1: A DFA without a circular path for L = {01, 1, 00}

- draw a DFA with start state S, accept states B, C, and D,

and another state A.

- convert the DFA to ‘grammar rules’:

S → 0A, A→ 0C, A→ 1D, S → 1B.

- generating strings of the language L (called derivation) by

applications of rules: LHS letter is replaced by RHS letters

- we can remove the symbols representing accepting states.

- derivation path:

the sequence of rule applications to get a string,

deriving: string 00: S ⇒ 0A⇒ 00

4

Example 2: DFA with a loop: L = {01n : n ≥ 1}

- draw a DFA of start state S, accepting state B and

another state A

- convert the DFA to ’grammar rules’:

S → 0A, but A→ 1B, B → 1B?

Two solutions:

(a) ‘combine’ A and B: A→ 1, A→ 1A

(b) add ‘ε-rule’: B → 1B, B → ε

- deriving string 0111:

S ⇒ 0A⇒ 01B ⇒ 011B ⇒ 0111B ⇒ 0111ε = 0111

5

Example-3 A little more complicated regular language: 011∗0∗

- draw a DFA, but how?

- convert it to ’grammar rules’:

S → 0A, A→ 1B, B → 1B, B → ε,

B → C, C → ε, C → 0C.

- deriving string 011, 0110, 011000?

we can consolidate rules to simply the grammar.

6

Summarize the regular grammar rules:

Y → γ

- a single substitutable symbol, called nonterminal, as LHS

- γ contains at most 2 symbols as RHS:

(1) aX, a ∈ Σ, called terminal, X is nonterminal, or

(2) a, a ∈ Σ, or

(3) X, a nonterminal, or

(4) ε, empty string.

7

Now we consider to loosen constraints to the regular grammar rules:

(1) allow more than one terminals in the rules

S → 01A, A→ ε, A→ 1A.

- does not seem to increase the power, but

(2) allow more than terminals on both sides of a nonterminal

S → 0A1, A→ S, S → ε

- what language does it generates?

- it contains ε, 01, 0011, 000111, etc..

(3) only allow terminals one side nonterminal X at a time

e.g., S → 0A, A→ S1, S → ε

what language does it generates?

- it contains ε, 01, 0011, 000111, etc..

called a linear grammar

8

(4) How about the following language whose strings are paired

parentheses, like ((()())())

- (2) and (3) only allow to generate ((())) type of strings

- allow more than one nonterminals in RHS

S → (S), S → ε, S → AB, A→ S, B → S. (simplify it!)

deriving ((()())())

S ⇒ (S)⇒ (SS)⇒ ((S)S)⇒ ((SS)S)

⇒ (((S)S)S)⇒ ((()S)S)⇒ ((()(S))S)⇒ ((()())S)

⇒ ((()())(S))⇒ ((()())())

How about L = {w : w contains the same number of 1s and 0s}?

9

Derivation tree (parsing tree):

Drawing a tree for a derivation process for a generated string:

((()())())

- the start symbol is the root;

- LHS nonterminal symbol is a parent

- symbols in the RHS are children

chaining all the leaves results in the generated/derived string.

10

Formal Definition of a context-free grammar

Definition 2.2

A context-free grammar is a 4-tuple (V,Σ, R, S), where

1. V is a finite set called variables;

2. Σ is a finite set, disjoint from V , called terminals;

3. R is a finite set of rules, each of the format

X → γ, where X ∈ V , γ ∈ (Σ ∪ V)∗; and

4. S ∈ V is the start variable.

11

Formal definition of dervation:

Let u, vw ∈ (Σ ∪ V)∗, and A→ w be a rule. Then we say string

uAv yields string uwv, written as uAV ⇒ uwv.

Let α, β ∈ (Σ ∪ V)∗. We say α derives β, written as α⇒∗ β, if

(1) α = β, or

(2) α⇒ α1, and α1 ⇒ αk ⇒ β,

for some α1, α2, . . . , αk ∈ (Σ ∪ V)∗, for some k ≥ 0.

Note condition (2) can be written as:

(2) α⇒ γ, and γ ⇒∗ β, for some γ ∈ (Σ ∪ V)∗

12

Now back to

Formal Definition of a context-free grammar

Definition 2.2

A context-free grammar is a 4-tuple G = (V,Σ, R, S), where

1. V is a finite set called variables;

2. Σ is a finite set, disjoint from V , called terminals;

3. R is a finite set of rules, each of the format

X → γ, where X ∈ V , γ ∈ (Σ ∪ V)∗; and

4. S ∈ V is the start variable.

Define the language of the grammar G to be

L(G) = {w : w ∈ Σ∗, S ⇒∗ w}

13

Example 2.3, page 103

G3 = ({S}, {a, b}, R, S), where the set of rules, R, is

S → aSb |SS | ε

where | represents ‘or’ for multiple rules sharing the same LHS.

derivation, parsing tree for string abaababa

14

Example 2.4 the language of “arithmetic expressions”

G4 = (V,Σ, R, S} where

V = {〈exp〉, 〈term〉, 〈factor〉}, Σ = {a,+,×}, S = 〈exp〉
R is:

〈exp〉 → 〈exp〉+ 〈term〉 | 〈term〉
〈term〉 → 〈term〉 × 〈factor〉 | 〈factor〉
〈factor〉 → a

add parentheses (and) to the expressions:

〈factor〉 → (〈exp〉) | a

parsing trees for a+ a× a and (a+ a)× a.

15

Designing context-free grammars

1. familiar with rules

- simple rules

- recursive rules - almost always needed

- ε-rule - almost always needed for recursive patterns

- bifurcation rules - other than purely nested structure

2. simplification of rules

- make sure the grammar is correct first - removable

rules - how simple is simple?

16

Ambiguity

A grammar is ambiguous if it can derive the same string in more

than one way.

Examples:

E → E + E

E → E × E
E → a

17

Formally, a derivation of a string w in a grammar G is a

leftmost derivation

if at every step the leftmost remaining variable is the one replaced.

Definition 2.7 A string w is derived ambiguously in grammar G

if it has two or more different leftmost derivations.

A grammar G is ambiguous if it generates some string ambiguously.

Note: Sometimes for an ambiguous grammar, we can find a

non-ambiguous grammar that generated the same language.

A language is inherently ambiguous if it can only be generated

by ambiguous grammars.

18

Chomsky Normal Form

Motivation: We simplify context-free grammar rules, for the

purpose of designing simpler algorithms to recognize the languages

generated by CF grammars.

Definition 2.8 A context-free grammar is in Chomsky normal

form if every rule is of the form

A→ BC, or

A→ a

where a is a terminal and A,B, and C are variables - except that B

and C may not be the start variable. In addition, we permit the

rule S → ε for start variable only.

19

Theorem 2.9 Any CFL is generated by some CFG in Chomsky

normal form.

(1) That is, for every CFG, there is a CFG in Chomsky normal

form that generates the same language.

(2) The proof of the theorem explicits transforms a CFG into

Chomsky normal form.

- add a new start variable

- remove all ε-rules: A→ ε

- eliminate all unit rules: A→ B

- path up the grammar to generate the same language

- convert remaining rules into the desired form.

20

Work on examples – before do a formal proof for the theorem!

Example 2.10

S → ASA S → aB

A→ B A→ S

B → b B → ε

Steps:

(1) add S0 → S

(2) remove B → ε (but also create A→ ε) and remove A→ ε

(3) remove S → S, S0 → S

(4) remove A→ B, A→ S

(5) add new variables

- replacing a terminal

- replacing two variables

21

Proof:

Show that all steps of transforming a CFG to a Chomsky normal

form does not change the language it accepts.

(1) add a new start variable S0 and rule S0 → S

where S is the old start variable.

(2) remove ε rules A→ ε

for every rule B → αAβ and every occurrence of A,

add new rule B → αβ, where α, β ∈ (V ∪ Σ)∗

note: removing A→ ε may create new ε rules for B.

so repeating the process when needed.

22

(3) remove unit rules A→ B

for every rule B → α, add a new rule A→ α.

note: this may create unit rules for A as well,

so repeat the process when needed.

(4) convert to the proper form (patching up the rules)

for every rule A→ x1x2 . . . xk

(a) if xi ∈ Σ, add rule Xi → xi
(b) if xi ∈ V , then Xi = xi (keep the variable).

(c) add new rules:

A→ X1A1

A1 → X2A2

A2 → X3A3

· · ·
Ak−2 → Xk−1Xk

23

Example for step (4): A→ aBcD,

in the general format A→ x1x2x3x4,

where x1 = a, x2 = B = X2, x3 = c, x4 = D = X4.

so add rules X1 → a, X3 → c

Then add rules

A→ X1A1

A1 → BA2

A2 → X3D

24

2.2 Pushdown Automata PDA

finite state machines equipped with a stack

every time a symbol is read,

- there is a state transition

- there is an operation in the stack

25

Recall: operations on a stack S:

- Push(S, a)

- Pop(S)

- Top(S)

combined rule: old top-of-stack −→ new top-of-stack

- Push(S, a): ε −→ a

- Pop(S): a −→ ε

- Top(S): a −→ a

26

Formal definition of a PDA

working of a PDA: given

a input symbol, current state, current stack top content

state change, stack top content change

So we need

Σ, Γ, Q, but to allow nondeterminism,

use Σε = Σ ∪ {ε}, Γε = Γ ∪ {ε}

domain of transition function: Q× Σε × Γε

range of transition function: P(Q× Γε)

27

Definition 2.13 page 111

A pushdown automaton is a 6-tuple (Q,Σ,Γ, δ, q0, F), where Q,Σ,Γ

and F are all finite sets, and

1. Q is the set of states,

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q× Σε × Γε −→ P(Q× Γε),

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of accept states.

28

See some examples before formal definition of computation with

PDAs.

The following PDA recognizes language {0n1n|n ≥ 0}

(Q,Σ,Γ, δ, q0, F)

where Q = {q1, q2, q3, q4},
Σ = {0, 1}, Γ = {0, $}, F = {q1, q4}

and δ

- δ(q1, ε, ε) = {(q2, $)}, δ(q2, 0, ε) = {(q2, 0)},
- δ(q2, 1, 0) = {(q3, ε)}, δ(q3, 1, 0) = {(q3, ε)},
- δ(q3, ε, $) = {(q4, ε)}, and

- mapping to empty set for all others domain values.

Follow the PDA on some string examples

29

State diagrams for PDAs

- following FA diagrams

- on the transition edge, stack operation as well as the symbol

a, b −→ c :

read input symbol a, stack top b, update stack with c

a, ε −→ c means push

a, b −→ ε means pop

a, b −→ c means replace

Figure 2.15 (page 113)

try to relate this to a DFA recognizing regular language 0∗1∗.

30

Issues about testing empty stack and testing the end of input

- we can put special symbol $ to the stack in the beginning and

once we see it again, it is the end of stack

- a PDA cannot test the end of the input string, accepting

a string when at an accept state and the end of string

(as defined!)

We need a formal definition of accepting a language by a PDA

31

A PDA (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts string w if

(a) w can be written as w = w1w2 . . . wm,

where wi ∈ Σε, i = 1, 2, . . . ,m,

(b) there is a sequence of states r0, r1, . . . , rm, and

(c) there are strings s0, s1, . . . , sm ∈ Γ∗

such that

1. r0 = q0 and s0 = ε,

2. For i = 0, 1, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a),

where si = at, si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3. rm ∈ F .

32

Again, use of nondeterminism

- nondeterministic computation model is hypothetical

- endowed with the power to guess ‘correctly’

- particularly useful in computation with many options

that include the correct one

- nondeterminism is able to ‘guess’ and ’pursue’ the correct

judgement

e.g., NFA to recognize strings that contain pattern ‘11’.

33

Example 2.16 page 113

PDA to recognize language

{aibjck | i, j, k ≥ 0, and i = j or i = k}

- for the input string a...ab...bc...c, there are two possibilities

(1) aibick, or

(2) aibkci

- computation nondeterministically choose (1) or (2)

- but PDA has to accommodate both scenarios and

let the computation choose

- Figure 2.17 page 114

34

Example 2.18 page 114

PDA to recognize {wwR |w ∈ {0, 1}∗}, wR is w written backward.

Idea:

- pushing symbols in w to the stack

- popping them out to match symbols in wR

- how do we know when to stop pushing (and start popping)?

- use nondeterminism!

35

At each encounter with a symbol in the input,

the PDA nondeterministically choose the following two options

(a) it is right past the midpoint: start popping the stack

(b) it is still before the midpoint: keep pushing to the stack

which implies a branching in the PDA

Figure 2.19 page 114

36

Equivalence with Context-Free Grammars

Theorem 2.20 A language is context-free if and only if some PDA

recognizes it.

Lemma 2.21 Every CFL is recognized by a PDA.

Lemma 2.27 Every language recognized by PDA is CFL.

37

Lemma 2.21 Every CFL is recognized by a PDA.

proof idea;

- assume a CFG for the given language L

- following the production rules simulate string derivations

- use nondeterminism for the multiple options of rules

- example: L = {0k1k | k ≥ 0}, with the corresponding

grammar of rules:

S → ε | 0S1

a PDA will use production rules nondeterministically to

derive a string that matches the query string

38

Question: without knowing L explicitly, how do you recognize

the language defined by a CFG ?

A PDA simulates derivation of s based on grammar rules.

For example s = 0011

input derivation stack rule selected to use

0011 S S S → 0S1

0011 0S1 0S1

0011 0S1 S1 S → 0S1

0011 00S11 0S11

0011 00S11 S11 S → ε

0011 0011 11

0011 0011 1

0011 0011 empty

Matches are underscored; bold nonterminal to be expanded.

39

A more systematic idea:

S → 0S1 | 1S0 |SS | ε
(yes, only one nonterminal S but it has 4 alternative rules!)

e.g., s = 0110, the following are steps to recognize s

input derivation stack rule selected to use

0110 S S S → SS

0110 SS SS S → 0S1

0110 0S1S 0S1S

0110 0S1S S1S S → ε

0110 01S 1S

0110 01S S S → 1S0

0110 011S0 1S0

0110 011S0 S0 S → ε

0110 0110 0

0110 0110 empty

40

A PDA that can accomplish the work in the previous table needs

to:

1. if the stack top is a variable, nondeterministically

select a rule to apply, and replace the stack top (LHS of the

selected rule) with RHS

2. if the stack top is a terminal, match the current input symbol

pop the stack

3. if does not match, reject

4. if match all input symbols and stack is empty, accept

5. if stack is empty but not finish all symbols and not at the

start state, reject

41

See if we can construct a PDA based on the grammar!

- Σ = {0, 1}, Γ = {0, 1, S, $}

- need a q0, but Q and F to be determined

transition function δ is defined as

δ(q0, ε, ε) = {(q1, S$)} what should S be in general?

δ(q1, ε, S) = {(q1, 0S1), (q1, 1S0), (q1, SS), (q1, ε)}
δ(q1, 0, 0) = {(q1, ε)} δ(q1, 1, 1) = {(q1, ε)}
δ(q1, ε, $) = {(q2, ε}

How to push multiple symbols?

δ(q0, ε, ε) = {(q1, S$)} can be accomplished with

δ(q0, ε, ε) = {(q′1, $)}, δ(q′1, ε, ε) = {(q1, S)}

42

Also δ(q1, ε, S) = {(q1, 0S1), (q1, 1S0), (q1, SS), (q1, ε)} can be

accomplished with

δ(q1, ε, S) = {(q3, 1), (q4, 0), (q5, S), (q1, ε)}

δ(q3, ε, ε) = {(q′3, S)}, δ(q′3, ε, ε) = {(q1, 0)}

δ(q4, ε, ε) = {(q′4, S)}, δ(q′4, ε, ε) = {(q1, 1)}

δ(q5, ε, ε) = {(q1, S)}

PDA diagram to illustrate!

43

Procedure to construct a PDA from a CFG (page 116)

1. Push the special symbl $ and start nonterminal in the stack

2. Do the following steps

(1). If the top of stack is a nonterminal A,

- nondeterministically select one of its rules, and

- substitute A with the RHS, goto step 2

(2). If the top of stack is a terminal a,

- read the next symbol from the input and compare to a,

- if match, goto step 2; otherwise, reject and stop.

(3). If the top of stack is $, enter the accept state.

- if all input has been read, accept and stop,

otherwise goto step 2.

44

Proof (outline, details page 116-117)

1. The PDA has Σ the same as the alphabet as the grammar.

2. Γ consists of both terminals and nonterminals of the grammar.

3. Q = {qstart, qloop, qaccept} ∪ E, where E contains those states

needed by pushing mutliple symbols into stacks.

4. qaccept is the only accept state.

5. δ(qstart, ε, ε) = {(qloop, S$)}
δ(qloop, ε, A) = {(qloop, w) |A→ w is a grammar rule}
δ(qloop, a, a) = {(qloop, ε)}
δ(qloop, ε, $) = {qaccept, ε)}

Figure 2.24: schematic diagram for the constructed PDA (page 118)

45

Example 2.25

Construct a PDA for the language described by the following

grammar:

S → aTb | b
T → Ta | ε

What do the strings look like BTW?

We following proof of Lemma 2.21.

46

Lemma 2.27 Every language recognized by PDA is CFL.

proof idea:

To construct a CFG for each PDA.

(Recall how we did to prove every language recognized by DFA has

a regular expression)

For every pair of states p and q,

define a nonterminal Ap,q, and rules

- such that Apq generates all strings taking the PDA from p to q

- leaving the stack at q the same condition as it was at p

- (the same as from empty stack to empty stack)

47

The PDA moves from p to q by pushing and popping stack

(1) either push some x at the beginning and pop x at the end

(2) or push x at the beginning and pop it out in the middle

For (1), we create rule Apq → aArsb, where

r is a state following p and s preceeds q, and

a is the first symbol on the string, and b is the last

For (2), we create rule Apq → AprArq, where

r is the state with the stack returning to the same status as

state p.

48

Example, recall the PDA we construct for language {0n1n |n ≥ 0}

Q = {q1, q2, q3, q4}, Σ = {0, 1}, Γ = {0, $}, F = {q4}

- δ(q1, ε, ε) = {(q2, $)}, δ(q2, 0, ε) = {(q2, 0)},

- δ(q2, ε, ε) = {(q3, ε)}, δ(q3, 1, 0) = {(q3, ε)},

- δ(q3, ε, $) = {(q4, ε)}, and

Create Aq2q3 → ε, Aq2q3 → 0Aq2q31

also Aq1q4 → εAq2q3ε.

Convert these rule into (simplified):

S → A

A→ ε|0A1

or more simply:

S → ε|0S1

49

Another example: Figure 2.17 (Page 114), a PDA to recognize

language {aibjck | i, j, k ≥ 0, and i = j or i = k}

Create nonterminals and production rules:

Aq2,q3 → ε X → ε

Aq2,q3 → aAq2,q3b X → aXb

Aq4,q4 → ε Y → ε

Aq4,q4 → cAq4,q4 Y → cY

Aq1,q4 → Aq2,q3Aq4,q4 S1 → XY

Aq5,q5 → ε W → ε

Aq5,q5 → bAq5,q5 W → bW

Aq2,q6 → aAq2,q6c U → aUc

Aq2,q6 → Aq5,q5 U →W

Aq1,q7 → Aq2,q6 S2 → U

50

Proof: Assume that the PDA has the following features:

(1) It has a single accepting state, qaccept.

(2) It empties its stack before accepting.

(3) Each transition either pushes a symbol or pop a symbol, but

not both at the same time.

Assume PDA (Q,Σ,Γ, δ, q0, {qaccept}) and construct a CFG

grammar , such that

- variable set V = {Ap,q | p, q ∈ Q}.

- start variable Aq0,qaccept .

- for each p, q, r, s ∈ Q, t ∈ Γ and a, b ∈ Σε,

if δ(p, a, ε) contains (r, t) and δ(s, b, t) contains (q, ε)

create rule Ap,q → aAr,sb

- for each p, q, r ∈ Q, create rule Ap,q → Ap,rAr,q.

- for each q ∈ Q, create rule Aq,q → ε.

51

Claim 2.30

Ap,q generates string x, then x takes the PDA from state p with

empty stack to state q with empty stack.

Claim 2.31

If string x takes the PDA from state p with empty stack to

state q with empty stack, then Ap,q generates x

52

Claim 2.30

Ap,q generates string x, then x takes the PDA from state p with

empty stack to state q with empty stack.

Proof: Consider Ap,q ⇒∗ x and induction on the derivation length

m.

Assume that the claim is true for derivation m ≤ k.

Show for derivation of length k + 1, all three cases give the claimed

result.

Page 121.

53

Claim 2.31

If string x takes the PDA from state p with empty stack to

state q with empty stack, then Ap,q generates x

Proof: by induction on the number of steps that the PDA goes

from state p with empty stack to state q with empty stack on input

x

Page 122.

54

Non-Context-Free Languages

Is language {anbncn |n ≥ 0} context-free?

try to use a single stack and finite number of memory cells

to recognize such strings.

It is not context-free!

But how to prove?

Answer: Pumping lemma.

55

Recall the Pumping Lemma for regular language is based on the

observations

- there are many strings longer than ’pump length’.

- the accepting path for such a long string goes

through the same state twice.

- the substring on the circular subpath can be repeated/pumped

so that some longer strings belong to the language.

To use the Pumping Lemma to prove a language is not regular,

- one needs to show those longer (pumped) strings do not

maintain some property critical to the language,

i.e., they do not belong to the language.

56

Circular paths are essential for a regular language

to contain long strings.

What is essential for a CFL to contain long strings?

Assume that s is a very long string in language A.

- Then s has a very tall derivation/parsing tree.

- There is a very long path from the root to some terminal in s.

- On this very long path, some nonterminal appear twice.

- That means, there is a derivation R⇒∗ vRy.

- So the grammar allows pumping:

R⇒∗ v2Ry2, R⇒∗ v3Ry3,

57

So if s is long enough, there exists a partition s into 5 parts:

s = uvxyz, in which v and y can be simultaneously pumped.

Theorem 2.34 Pumping Lemma for context-free grammar

(page 123)

If A is a CFL, then there is a number p (the pumping length)

such that, if s ∈ A, and |s| ≥ p, then s can be written as s = uvxyz

satisfying conditions:

1. for each i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0, and

3. |vxy| ≤ p.

58

Proof of Theorem 2.34

We already outlined the proof idea for why s can be pumped.

It remains to show

- what p is,

- proof for |vy| > 0 (what does it mean?)

- proof for |vxy| ≤ p.

59

We want p to be such that

if |s| ≥ p, there are multiple occurrences of some nonterminal R

in a path from the root to a leaf in the parsing tree of s.

The biggest derivation tree, without repetition of nonterminals on

paths, is a full b-ary tree.

If the grammar has |V | nonterminals, the number of leaves is b|V |.

So adding another level would make repetition of nonterminals on

paths.

We set p = b|V |+1

60

To prove |vy| > 0,

we want the parsing tree τ generating s to be the minimum,

consisting of the smallest number of nodes.

If |v| = |y| = 0, there will be a small parsing tree generating s.

To ensure |vxy| ≤ p,

we pick R in the bottom |V |+ 1 nonterminals on the path.

61

Using the Pumping Lemma to prove that L = {anbncn |n ≥ 0} is

not context-free.

Assume L to be CF. Then there is a p, such that,

string s = apbpcp ∈ L can be written as s = uvxyz

(1) if v is empty,

(i) y contains exclusively as or bs or cs.

(ii) y contains as and bs OR bs and cs.

(2) if y is empty,

(i) v contains exclusively as or bs or cs.

(ii) v contains as and bs OR bs and cs.

62

(3) Neither v nor y is empty

(i) v contains exclusively as or bs or cs, and

y contains exclusively as or bs or cs.

(ii) v contains exclusively as or bs or cs, and

y contains as and bs OR bs and cs.

(iii) v contains as and bs OR bs and cs, and

y contains exclusively as or bs or cs.

(iv) v contains as and bs OR bs and cs, and

y contains as and bs OR bs and cs.

63

