
0

Chapter 2. Context-free Languages

- We know there are languages that are NOT regular;
- Are all these non-regular languages of the 'same difficulty'?
- How can we define these non-regular languages rigorously?
- Are there more difficult languages than $\left\{0^{n} 1^{n}: n \geq 0\right\}$?

2

- We first investigate a class of languages called 'context-free languages'
- Context-free languages have extensive applications in programming language and compiler designs.
- CFL can be defined in a rigorous way, similar to regular languages formal system (Push-down automata) to recognize formal system (context-free grammars) to define pumping lemma also
- context-free grammars ALSO allow us to see how to define regular languages syntactically.

2.1 Context-free grammars

We begin by examining finite automata that recognize regular languages, as an introduction to grammar systems.

Example 1: A DFA without a circular path for $L=\{01,1,00\}$

- draw a DFA with start state S, accept states B, C, and D, and another state A.
- convert the DFA to 'grammar rules':
$S \rightarrow 0 A, A \rightarrow 0 C, A \rightarrow 1 D, S \rightarrow 1 B$.
- generating strings of the language L (called derivation) by applications of rules: LHS letter is replaced by RHS letters
- we can remove the symbols representing accepting states.
- derivation path:
the sequence of rule applications to get a string,
deriving: string 00 : $S \Rightarrow 0 A \Rightarrow 00$
Example 2: DFA with a loop: $L=\left\{01^{n}: n \geq 1\right\}$
- draw a DFA of start state S, accepting state B and another state A
- convert the DFA to 'grammar rules':

$$
S \rightarrow 0 A, \quad \text { but } A \rightarrow 1 B, B \rightarrow 1 B ?
$$

Two solutions:
(a) 'combine' A and $B: A \rightarrow 1, A \rightarrow 1 A$
(b) add ' ϵ-rule': $B \rightarrow 1 B, B \rightarrow \epsilon$

- deriving string 0111:

$$
S \Rightarrow 0 A \Rightarrow 01 B \Rightarrow 011 B \Rightarrow 0111 B \Rightarrow 0111 \epsilon=0111
$$

5

6

7

Now we consider to loosen constraints to the regular grammar rules:
(1) allow more than one terminals in the rules
$S \rightarrow 01 A, A \rightarrow \epsilon, A \rightarrow 1 A$.

- does not seem to increase the power, but
(2) allow more than terminals on both sides of a nonterminal $S \rightarrow 0 A 1, A \rightarrow S, S \rightarrow \epsilon$
- what language does it generates?
- it contains $\epsilon, 01,0011,000111$, etc..
(3) only allow terminals one side nonterminal X at a time
e.g., $S \rightarrow 0 A, A \rightarrow S 1, S \rightarrow \epsilon$
what language does it generates?
- it contains $\epsilon, 01,0011,000111$, etc..
called a linear grammar

8
(4) How about the following language whose strings are paired parentheses, like $((()())())$

- (2) and (3) only allow to generate $((()))$ type of strings - allow more than one nonterminals in RHS

$$
\begin{aligned}
& S \rightarrow(S), S \rightarrow \epsilon, S \rightarrow A B, A \rightarrow S, B \rightarrow S \text {. (simplify it!) } \\
& \text { deriving }((()())()) \\
& \quad S \Rightarrow(S) \Rightarrow(S S) \Rightarrow((S) S) \Rightarrow((S S) S) \\
& \quad \Rightarrow(((S) S) S) \Rightarrow((() S) S) \Rightarrow((()(S)) S) \Rightarrow((()()) S) \\
& \quad \Rightarrow((()())(S)) \Rightarrow((()())())
\end{aligned}
$$

How about $L=\{w: w$ contains the same number of 1 s and 0 s$\}$?

Formal definition of dervation:
Let $u, v w \in(\Sigma \cup V)^{*}$, and $A \rightarrow w$ be a rule. Then we say string $u A v$ yields string $u w v$, written as $u A V \Rightarrow u w v$.

Let $\alpha, \beta \in(\Sigma \cup V)^{*}$. We say α derives β, written as $\alpha \Rightarrow^{*} \beta$, if
(1) $\alpha=\beta$, or
(2) $\alpha \Rightarrow \alpha_{1}$, and $\alpha_{1} \Rightarrow \alpha_{k} \Rightarrow \beta$, for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in(\Sigma \cup V)^{*}$, for some $k \geq 0$.

Note condition (2) can be written as:
(2) $\alpha \Rightarrow \gamma$, and $\gamma \Rightarrow^{*} \beta$, for some $\gamma \in(\Sigma \cup V)^{*}$

Now back to
Formal Definition of a context-free grammar
Definition 2.2
A context-free grammar is a 4 -tuple $G=(V, \Sigma, R, S)$, where

1. V is a finite set called variables;
2. Σ is a finite set, disjoint from V, called terminals;
3. R is a finite set of rules, each of the format $X \rightarrow \gamma$, where $X \in V, \gamma \in(\Sigma \cup V)^{*}$; and
4. $S \in V$ is the start variable.

Define the language of the grammar G to be $L(G)=\left\{w: w \in \Sigma^{*}, S \Rightarrow^{*} w\right\}$

Formally, a derivation of a string w in a grammar G is a leftmost derivation
if at every step the leftmost remaining variable is the one replaced.

Definition 2.7 A string w is derived ambiguously in grammar G if it has two or more different leftmost derivations.

A grammar G is ambiguous if it generates some string ambiguously.

Note: Sometimes for an ambiguous grammar, we can find a non-ambiguous grammar that generated the same language.

A language is inherently ambiguous if it can only be generated by ambiguous grammars.

Chomsky Normal Form

Motivation: We simplify context-free grammar rules, for the purpose of designing simpler algorithms to recognize the languages generated by CF grammars.

Definition 2.8 A context-free grammar is in Chomsky normal form if every rule is of the form
$A \rightarrow B C$, or
$A \rightarrow a$
where a is a terminal and A, B, and C are variables - except that B and C may not be the start variable. In addition, we permit the rule $S \rightarrow \epsilon$ for start variable only.

Theorem 2.9 Any CFL is generated by some CFG in Chomsky normal form.
(1) That is, for every CFG, there is a CFG in Chomsky normal form that generates the same language.
(2) The proof of the theorem explicits transforms a CFG into Chomsky normal form.

- add a new start variable
- remove all ϵ-rules: $A \rightarrow \epsilon$
- eliminate all unit rules: $A \rightarrow B$
- path up the grammar to generate the same language
- convert remaining rules into the desired form.

Work on examples - before do a formal proof for the theorem!
Example 2.10

$$
\begin{aligned}
& S \rightarrow A S A \quad S \rightarrow a B \\
& A \rightarrow B \quad A \rightarrow S \\
& B \rightarrow b \quad B \rightarrow \epsilon
\end{aligned}
$$

Steps:
(1) add $S_{0} \rightarrow S$
(2) remove $B \rightarrow \epsilon$ (but also create $A \rightarrow \epsilon$) and remove $A \rightarrow \epsilon$
(3) remove $S \rightarrow S, S_{0} \rightarrow S$
(4) remove $A \rightarrow B, A \rightarrow S$
(5) add new variables

- replacing a terminal
- replacing two variables

Proof:

Show that all steps of transforming a CFG to a Chomsky normal form does not change the language it accepts.
(1) add a new start variable S_{0} and rule $S_{0} \rightarrow S$ where S is the old start variable.
(2) remove ϵ rules $A \rightarrow \epsilon$
for every rule $B \rightarrow \alpha A \beta$ and every occurrence of A, add new rule $B \rightarrow \alpha \beta$, where $\alpha, \beta \in(V \cup \Sigma)^{*}$ note: removing $A \rightarrow \epsilon$ may create new ϵ rules for B. so repeating the process when needed.
(3) remove unit rules $A \rightarrow B$
for every rule $B \rightarrow \alpha$, add a new rule $A \rightarrow \alpha$. note: this may create unit rules for A as well, so repeat the process when needed.
(4) convert to the proper form (patching up the rules)
for every rule $A \rightarrow x_{1} x_{2} \ldots x_{k}$
(a) if $x_{i} \in \Sigma$, add rule $X_{i} \rightarrow x_{i}$
(b) if $x_{i} \in V$, then $X_{i}=x_{i}$ (keep the variable).
(c) add new rules:

$$
\begin{aligned}
& A \rightarrow X_{1} A_{1} \\
& A_{1} \rightarrow X_{2} A_{2} \\
& A_{2} \rightarrow X_{3} A_{3} \\
& \cdots \\
& A_{k-2} \rightarrow X_{k-1} X_{k}
\end{aligned}
$$

\square

Formal definition of a PDA
working of a PDA: given
\quad a input symbol, current state, current stack top content
state change, stack top content change
So we need Σ, Γ, Q, but to allow nondeterminism, \quad use $\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}, \Gamma_{\epsilon}=\Gamma \cup\{\epsilon\}$ domain of transition function: $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon}$ range of transition function: $\mathcal{P}\left(Q \times \Gamma_{\epsilon}\right)$ 2

See some examples before formal definition of computation with PDAs.

The following PDA recognizes language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

$$
\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)
$$

where $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$,
$\Sigma=\{0,1\}, \Gamma=\{0, \$\}, F=\left\{q_{1}, q_{4}\right\}$
and δ
$-\delta\left(q_{1}, \epsilon, \epsilon\right)=\left\{\left(q_{2}, \$\right)\right\}, \delta\left(q_{2}, 0, \epsilon\right)=\left\{\left(q_{2}, 0\right)\right\}$,
$-\delta\left(q_{2}, 1,0\right)=\left\{\left(q_{3}, \epsilon\right)\right\}, \delta\left(q_{3}, 1,0\right)=\left\{\left(q_{3}, \epsilon\right)\right\}$,
$-\delta\left(q_{3}, \epsilon, \$\right)=\left\{\left(q_{4}, \epsilon\right)\right\}$, and

- mapping to empty set for all others domain values.

Follow the PDA on some string examples

State diagrams for PDAs

- following FA diagrams
- on the transition edge, stack operation as well as the symbol

$$
a, b \longrightarrow c:
$$

read input symbol a, stack top b, update stack with c $a, \epsilon \longrightarrow c$ means push
$a, b \longrightarrow \epsilon$ means pop
$a, b \longrightarrow c$ means replace
Figure 2.15 (page 113)
try to relate this to a DFA recognizing regular language $0^{*} 1^{*}$.

Issues about testing empty stack and testing the end of input - we can put special symbol $\$$ to the stack in the beginning and once we see it again, it is the end of stack

- a PDA cannot test the end of the input string, accepting a string when at an accept state and the end of string (as defined!)

We need a formal definition of accepting a language by a PDA

A PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ computes as follows.
It accepts string w if
(a) w can be written as $w=w_{1} w_{2} \ldots w_{m}$, where $w_{i} \in \Sigma_{\epsilon}, i=1,2, \ldots, m$,
(b) there is a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$, and
(c) there are strings $s_{0}, s_{1}, \ldots, s_{m} \in \Gamma^{*}$
such that

1. $r_{0}=q_{0}$ and $s_{0}=\epsilon$,
2. For $i=0,1, \ldots, m-1$, we have $\left(r_{i+1}, b\right) \in \delta\left(r_{i}, w_{i+1}, a\right)$, where $s_{i}=a t, s_{i+1}=b t$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^{*}$
3. $r_{m} \in F$.

Example 2.16 page 113
PDA to recognize language

$$
\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0, \text { and } i=j \text { or } i=k\right\}
$$

- for the input string $a \ldots a b \ldots b c \ldots c$, there are two possibilities
(1) $a^{i} b^{i} c^{k}$, or
(2) $a^{i} b^{k} c^{i}$
- computation nondeterministically choose (1) or (2)
- but PDA has to accommodate both scenarios and let the computation choose
- Figure 2.17 page 114

\square

Lemma 2.21 Every CFL is recognized by a PDA.
proof idea;

- assume a CFG for the given language L
- following the production rules simulate string derivations
- use nondeterminism for the multiple options of rules - example: $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$, with the corresponding grammar of rules:
$S \rightarrow \epsilon \mid 0 S 1$
a PDA will use production rules nondeterministically to derive a string that matches the query string

Question: without knowing L explicitly, how do you recognize the language defined by a CFG ?

A PDA simulates derivation of s based on grammar rules.
For example $s=0011$

input	derivation	stack	rule selected to use
0011	\mathbf{S}	\mathbf{S}	$S \rightarrow 0 S 1$
$\underline{0011}$	$\underline{0} S 1$	$\underline{0} S 1$	
$\underline{0} 011$	$\underline{0} \mathbf{S} 1$	$\underline{S} 1$	$S \rightarrow 0 S 1$
$\underline{0011}$	$\underline{00} S 11$	$\underline{\mathbf{S}} S 11$	
$\underline{0011}$	$\underline{00} \mathbf{S} 11$	$\underline{11}$	$S \rightarrow \epsilon$
$\underline{0011}$	$\underline{0011}$	$\underline{1}$	
$\underline{0011}$	$\underline{0011}$	$\underline{0011}$	$\underline{0011}$

Matches are underscored; bold nonterminal to be expanded.

A PDA that can accomplish the work in the previous table needs to:

1. if the stack top is a variable, nondeterministically select a rule to apply, and replace the stack top (LHS of the selected rule) with RHS
2. if the stack top is a terminal, match the current input symbol pop the stack
3. if does not match, reject
4. if match all input symbols and stack is empty, accept
5. if stack is empty but not finish all symbols and not at the start state, reject

See if we can construct a PDA based on the grammar!
$-\Sigma=\{0,1\}, \Gamma=\{0,1, S, \$\}$

- need a q_{0}, but Q and F to be determined transition function δ is defined as

$$
\begin{aligned}
& \delta\left(q_{0}, \epsilon, \epsilon\right)=\left\{\left(q_{1}, S \$\right)\right\} \quad \text { what should } S \text { be in general? } \\
& \delta\left(q_{1}, \epsilon, S\right)=\left\{\left(q_{1}, 0 S 1\right),\left(q_{1}, 1 S 0\right),\left(q_{1}, S S\right),\left(q_{1}, \epsilon\right)\right\} \\
& \delta\left(q_{1}, 0,0\right)=\left\{\left(q_{1}, \epsilon\right)\right\} \quad \delta\left(q_{1}, 1,1\right)=\left\{\left(q_{1}, \epsilon\right)\right\} \\
& \delta\left(q_{1}, \epsilon, \$\right)=\left\{\left(q_{2}, \epsilon\right\}\right.
\end{aligned}
$$

How to push multiple symbols?
$\delta\left(q_{0}, \epsilon, \epsilon\right)=\left\{\left(q_{1}, S \$\right)\right\}$ can be accomplished with

$$
\delta\left(q_{0}, \epsilon, \epsilon\right)=\left\{\left(q_{1}^{\prime}, \$\right)\right\}, \quad \delta\left(q_{1}^{\prime}, \epsilon, \epsilon\right)=\left\{\left(q_{1}, S\right)\right\}
$$

Also $\delta\left(q_{1}, \epsilon, S\right)=\left\{\left(q_{1}, 0 S 1\right),\left(q_{1}, 1 S 0\right),\left(q_{1}, S S\right),\left(q_{1}, \epsilon\right)\right\}$ can be accomplished with

$$
\begin{aligned}
& \delta\left(q_{1}, \epsilon, S\right)=\left\{\left(q_{3}, 1\right),\left(q_{4}, 0\right),\left(q_{5}, S\right),\left(q_{1}, \epsilon\right)\right\} \\
& \delta\left(q_{3}, \epsilon, \epsilon\right)=\left\{\left(q_{3}^{\prime}, S\right)\right\}, \quad \delta\left(q_{3}^{\prime}, \epsilon, \epsilon\right)=\left\{\left(q_{1}, 0\right)\right\} \\
& \delta\left(q_{4}, \epsilon, \epsilon\right)=\left\{\left(q_{4}^{\prime}, S\right)\right\}, \quad \delta\left(q_{4}^{\prime}, \epsilon, \epsilon\right)=\left\{\left(q_{1}, 1\right)\right\} \\
& \delta\left(q_{5}, \epsilon, \epsilon\right)=\left\{\left(q_{1}, S\right)\right\}
\end{aligned}
$$

PDA diagram to illustrate!

Procedure to construct a PDA from a CFG (page 116)

1. Push the special symbl $\$$ and start nonterminal in the stack
2. Do the following steps
(1). If the top of stack is a nonterminal A,

- nondeterministically select one of its rules, and - substitute A with the RHS, goto step 2
(2). If the top of stack is a terminal a,
- read the next symbol from the input and compare to a, - if match, goto step 2; otherwise, reject and stop.
(3). If the top of stack is $\$$, enter the accept state.
- if all input has been read, accept and stop, otherwise goto step 2.

Proof (outline, details page 116-117)

1. The PDA has Σ the same as the alphabet as the grammar.
2. Γ consists of both terminals and nonterminals of the grammar.
3. $Q=\left\{q_{\text {start }}, q_{\text {loop }}, q_{\text {accept }}\right\} \cup E$, where E contains those states needed by pushing mutliple symbols into stacks.
4. $q_{\text {accept }}$ is the only accept state.
5. $\delta\left(q_{\text {start }}, \epsilon, \epsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$
$\delta\left(q_{\text {loop }}, \epsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right) \mid A \rightarrow w\right.$ is a grammar rule $\}$
$\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \epsilon\right)\right\}$
$\left.\delta\left(q_{\text {loop }}, \epsilon, \$\right)=\left\{q_{\text {accept }}, \epsilon\right)\right\}$

Figure 2.24: schematic diagram for the constructed PDA (page 118)

Lemma 2.27 Every language recognized by PDA is CFL. proof idea:

To construct a CFG for each PDA.
(Recall how we did to prove every language recognized by DFA has a regular expression)

For every pair of states p and q,
define a nonterminal $A_{p, q}$, and rules

- such that $A_{p q}$ generates all strings taking the PDA from p to q
- leaving the stack at q the same condition as it was at p
- (the same as from empty stack to empty stack)

The PDA moves from p to q by pushing and popping stack
(1) either push some x at the beginning and pop x at the end (2) or push x at the beginning and pop it out in the middle

For (1), we create rule $A_{p q} \rightarrow a A_{r s} b$, where
r is a state following p and s preceeds q, and
a is the first symbol on the string, and b is the last
For (2), we create rule $A_{p q} \rightarrow A_{p r} A_{r q}$, where
r is the state with the stack returning to the same status as state p.

Example, recall the PDA we construct for language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

$$
\begin{aligned}
& Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}, \Sigma=\{0,1\}, \Gamma=\{0, \$\}, F=\left\{q_{4}\right\} \\
& -\delta\left(q_{1}, \epsilon, \epsilon\right)=\left\{\left(q_{2}, \$\right)\right\}, \delta\left(q_{2}, 0, \epsilon\right)=\left\{\left(q_{2}, 0\right)\right\}, \\
& -\delta\left(q_{2}, \epsilon, \epsilon\right)=\left\{\left(q_{3}, \epsilon\right)\right\}, \delta\left(q_{3}, 1,0\right)=\left\{\left(q_{3}, \epsilon\right)\right\}, \\
& -\delta\left(q_{3}, \epsilon, \$\right)=\left\{\left(q_{4}, \epsilon\right)\right\}, \text { and }
\end{aligned}
$$

Create $A_{q_{2} q_{3}} \rightarrow \epsilon, \quad A_{q_{2} q_{3}} \rightarrow 0 A_{q_{2} q_{3}} 1$ also $A_{q_{1} q_{4}} \rightarrow \epsilon A_{q_{2} q_{3}} \epsilon$.
Convert these rule into (simplified):

$$
S \rightarrow A
$$

$$
A \rightarrow \epsilon \mid 0 A 1
$$

or more simply:
$S \rightarrow \epsilon \mid 0 S 1$

Another example: Figure 2.17 (Page 114), a PDA to recognize language $\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$, and $i=j$ or $\left.i=k\right\}$

Create nonterminals and production rules:

$$
\begin{array}{ll}
A_{q_{2}, q_{3}} \rightarrow \epsilon & X \rightarrow \epsilon \\
A_{q_{2}, q_{3}} \rightarrow a A_{q_{2}, q_{3}} b & X \rightarrow a X b \\
A_{q_{4}, q_{4}} \rightarrow \epsilon & Y \rightarrow \epsilon \\
A_{q_{4}, q_{4}} \rightarrow c A_{q_{4}, q_{4}} & Y \rightarrow c Y \\
A_{q_{1}, q_{4}} \rightarrow A_{q_{2}, q_{3}} A_{q_{4}, q_{4}} & S_{1} \rightarrow X Y \\
& \\
A_{q_{5}, q_{5}} \rightarrow \epsilon & W \rightarrow \epsilon \\
A_{q_{5}, q_{5}} \rightarrow b A_{q_{5}, q_{5}} & W \rightarrow b W \\
A_{q_{2}, q_{6}} \rightarrow a A_{q_{2}, q_{6}} c & U \rightarrow a U c \\
A_{q_{2}, q_{6}} \rightarrow A_{q_{5}, q_{5}} & U \rightarrow W \\
A_{q_{1}, q_{7}} \rightarrow A_{q_{2}, q_{6}} & S_{2} \rightarrow U
\end{array}
$$

Proof: Assume that the PDA has the following features:
(1) It has a single accepting state, $q_{\text {accept }}$.
(2) It empties its stack before accepting.
(3) Each transition either pushes a symbol or pop a symbol, but not both at the same time.

Assume PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0},\left\{q_{\text {accept }}\right\}\right)$ and construct a CFG grammar, such that

- variable set $V=\left\{A_{p, q} \mid p, q \in Q\right\}$.
- start variable $A_{q_{0}, q_{\text {accept }}}$.
- for each $p, q, r, s \in Q, t \in \Gamma$ and $a, b \in \Sigma_{\epsilon}$, if $\delta(p, a, \epsilon)$ contains (r, t) and $\delta(s, b, t)$ contains (q, ϵ)
create rule $A_{p, q} \rightarrow a A_{r, s} b$
- for each $p, q, r \in Q$, create rule $A_{p, q} \rightarrow A_{p, r} A_{r, q}$.
- for each $q \in Q$, create rule $A_{q, q} \rightarrow \epsilon$.
\square

Claim 2.30
$A_{p, q}$ generates string x, then x takes the PDA from state p with empty stack to state q with empty stack.

Proof: Consider $A_{p, q} \Rightarrow^{*} x$ and induction on the derivation length m.

Assume that the claim is true for derivation $m \leq k$.
Show for derivation of length $k+1$, all three cases give the claimed result.

Page 121.

Claim 2.31
If string x takes the PDA from state p with empty stack to state q with empty stack, then $A_{p, q}$ generates x

Proof: by induction on the number of steps that the PDA goes from state p with empty stack to state q with empty stack on input x

Page 122.

Recall the Pumping Lemma for regular language is based on the observations

- there are many strings longer than 'pump length'.
- the accepting path for such a long string goes
through the same state twice.
- the substring on the circular subpath can be repeated/pumped so that some longer strings belong to the language.

To use the Pumping Lemma to prove a language is not regular, - one needs to show those longer (pumped) strings do not maintain some property critical to the language, i.e., they do not belong to the language.

Circular paths are essential for a regular language
to contain long strings.
What is essential for a CFL to contain long strings?

Assume that s is a very long string in language A.

- Then s has a very tall derivation/parsing tree.
- There is a very long path from the root to some terminal in s.
- On this very long path, some nonterminal appear twice.
- That means, there is a derivation $R \Rightarrow^{*} v R y$.
- So the grammar allows pumping:

$$
R \Rightarrow^{*} v^{2} R y^{2}, \quad R \Rightarrow^{*} v^{3} R y^{3}, \ldots .
$$

So if s is long enough, there exists a partition s into 5 parts: $s=u v x y z$, in which v and y can be simultaneously pumped.

Theorem 2.34 Pumping Lemma for context-free grammar (page 123)

If A is a CFL, then there is a number p (the pumping length)
such that, if $s \in A$, and $|s| \geq p$, then s can be written as $s=u v x y z$ satisfying conditions:

1. for each $i \geq 0, u v^{i} x y^{i} z \in A$,
2. $|v y|>0$, and
3. $|v x y| \leq p$.

We want p to be such that
if $|s| \geq p$, there are multiple occurrences of some nonterminal R in a path from the root to a leaf in the parsing tree of s.

The biggest derivation tree, without repetition of nonterminals on paths, is a full b-ary tree.

If the grammar has $|V|$ nonterminals, the number of leaves is $b^{|V|}$.
So adding another level would make repetition of nonterminals on paths.
We set $p=b^{|V|+1}$

Using the Pumping Lemma to prove that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.

Assume L to be CF. Then there is a p, such that,
string $s=a^{p} b^{p} c^{p} \in L$ can be written as $s=u v x y z$
(1) if v is empty,
(i) y contains exclusively $a \mathrm{~s}$ or $b \mathrm{~s}$ or $c \mathrm{~s}$.
(ii) y contains $a \mathrm{~s}$ and $b \mathrm{~s}$ OR $b \mathrm{~s}$ and $c \mathrm{~s}$.
(2) if y is empty,
(i) v contains exclusively $a s$ or $b s$ or $c s$.
(ii) v contains $a \mathrm{~s}$ and $b \mathrm{~s}$ OR $b \mathrm{~s}$ and $c \mathrm{~s}$.
(3) Neither v nor y is empty
(i) v contains exclusively $a \mathrm{~s}$ or $b \mathrm{~s}$ or $c \mathrm{~s}$, and y contains exclusively $a s$ or $b s$ or cs.
(ii) v contains exclusively $a \mathrm{~s}$ or $b \mathrm{~s}$ or $c \mathrm{~s}$, and y contains $a \mathrm{~s}$ and $b \mathrm{~s}$ OR $b \mathrm{~s}$ and $c \mathrm{~s}$.
(iii) v contains $a \mathrm{~s}$ and $b \mathrm{~s} \mathrm{OR} b \mathrm{~s}$ and $c \mathrm{~s}$, and y contains exclusively $a s$ or $b s$ or $c s$.
(iv) v contains $a \mathrm{~s}$ and $b \mathrm{~s} \mathrm{OR} b \mathrm{~s}$ and $c \mathrm{~s}$, and y contains $a \mathrm{~s}$ and $b \mathrm{~s}$ OR $b \mathrm{~s}$ and $c \mathrm{~s}$.

