
0

What is Part Two about?

- to investigate computability, i.e., what problems are computable.
- but this requires a precise definition on computability
- to achieve the definition, we need a formal computation model

Chapter 3 - defines Turing machine as the computation model
Chapter 4 - study some problems that are decidable/not decidable
Chapter 5-study the equivalence between decidable problems
\square
4

5

Turing machines can do what PDA/CFG cannot do.
E.g., to recognize language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
how?
the read head can count the numbers of a, b, and c, by

- scanning back and forth, and
- marking the read ones with special symbols.

Another example: $\quad\left\{w \# w \mid w \in \Sigma^{*}\right\}$

- This looks different from $\left\{w w \mid w \in \Sigma^{*}\right\}$
- But can it be recognized by a PDA?
- Turing machines can recognize it!

Formal definition of a Turing machine

Definition 3.3

A Turing machine is a 7 -tuple, $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where Q, Σ, Γ are all finite sets, and

1. Q is the set of states,
2. Σ is the input alphabet, not including the blank symbol \sqcup,
3. Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times\{L, R\}$ is the transition function,
5. $q_{0} \in Q$ is the start state,
6. $q_{\text {accept }} \in Q$ is the accept state, and
7. $q_{\text {reject }} \in Q$ is the reject state, where $q_{\text {accept }} \neq q_{\text {reject }}$.
\square

- about input tape:
when it starts, the input tape has content $x_{1} x_{2} \ldots x_{n}$, and the rest of the tape consists of blank symbols ப's
- about transition function δ :
$\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times\{L, R\}$
cannot move off the leftmost position, even if L is used.
- about halting:
entering $q_{\text {accept }}$ and $q_{\text {reject }}$ halts the machine immediately, infinite loop, if neither state is entered.

Use configuration to define the machine status at any moment

- consisting of current state,
- current read head position,
- current tape content,
e.g., configuration $1011 q_{7} 01111$, assume $\Sigma=\{0,1\}$,
e.g., initial input content, assume $\Sigma=\{a, b, c\}, \Gamma=\Sigma \cup\{\#, \$, \&, \sqcup\}$
a a a a b b b b c c c c
a few steps later:
\# \#q4a a \$ \$ b b \& \& c c
Note that the read head points to the symbol to the right of the state id.

Formalizing the intuitive way a Turing machine computes:
Configuration C_{1} yields configuration C_{2} if the machine can go from C_{1} to C_{2} in a single step.

Formally, let $a, b, c \in \Gamma, u, v \in \Gamma^{*}$, and $q_{i}, q_{j} \in Q$. We say
$u a q_{i} b v$ yields $u q_{j} a c v$
if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$, and
$u a q_{i} b v$ yields $u a c q_{j} v$
if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$.

Definition. A Turing machine M accepts an input w if a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$, for some $k \geq 1$, exists, such that

1. C_{1} is the start configuration of M on input w,
2. C_{i} yields C_{i+1}, for $i=1,2, \ldots, k-1$, and
3. C_{k} is an accepting configuration.

The collection of strings accepted by M is
the language of M, or
the language recognized by M.
Denoted $L(M)$.

Definition 3.5 A language A is Turing recognizable if $A=L(M)$ for some Turing machine M. (A is also called recursively enumerable)

Note that on an input w, a Turing machine may accept and halt, reject and half, or never halt.
A Turing machine decides if it halts. It is called decider.

Definition 3.6 A language A is Turing decidable or simply decidable if $A=L(M)$ for some Turing machine decider M. (A is also called recursive)

Explanation for Figure 3.8.

- from q_{1} to q_{2}, mark the first 0 as \sqcup to indicate the leftmost
- if no $\quad-q_{2}$ move right, skips all \times 's, if no more 0 , go to
$q_{\text {accept }}$, or
- cross the first encountered 0 , go to q_{3}
- q_{3} together with q_{4} skip all \times 's, cross every other 0
- if not even number of 0 , from q_{4} go to $q_{\text {reject }}$
- reach the rightmost, move left, go to q_{5}
- move left, q_{5} skips all \times 's and 0's
- reach the leftmost, go to q_{2}

Configuration changes for input 0000 at the bottom of page 144.

18

Explanation for Figure 3.10

- from q_{1}, go to q_{2} if read 0 ; go to q_{3} if read 1 , cross current symbol - from q_{2}, move right, skip all 0 's and 1 's, until reach $\#$, go to q_{4}, - from q_{4}, move right, skip all \times 's until 0 , go to q_{6}, move left
- from q_{6}, move left, skip all 0 's, 1 's, \times 's, until \#, go to q_{7}, move left
- from q_{7}, move left, skip all 0 's, 1 's until \times, go to q_{1}, move right
- from q_{3}, symmetrically similar to from q_{2}.
- from q_{1}, if \# (no more 0 's or 1's on its left), go to q_{8}, move right
- from q_{8}, if no more 0 's or 1 's, go to $q_{\text {accept }}$

Can you trace configuration changes for input 010\#010?

3.2 Variants of Turing Machines

Multitape Turing machines

- Have k tapes, each with a head to read and write
- $k-1$ tapes start out blank
- Transition function $\delta: Q \times \Gamma^{k} \longrightarrow Q \times \Gamma^{k} \times\{L, R, S\}^{k}$

Theorem 3.13 Every multitape Turing machine has an equivalent single-tape Turing machine.

Proof idea:

- assigning space for k tapes using delimiter, e.g., \#
- shift right to get more space

Nondeterministic Turing machines

- Transition function $\delta: Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times\{L, R\})$

Theorem 3.16 Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Proof idea:

- computation of NTM is a tree (possiblyinfinite)
- each node is a configuration, the root is the start configuration
- from a parent, there can be m children configuration
- breadth-first-search (why depth-first-search may not work?)

[^0]

Theorem 3.21 A language can be recognized by a TM if and only if there is an enumerator enumerates it.

Proof ideas for:
(1). Turing enumerable \Longrightarrow Turing recognizable.

- assume E an enumerator for language L,
- construct M to recognize input w by run E, and compare w with all strings output by E if w ever appears in the output of E, M accepts w
- if w is in $L(E)$, it will get printed on the tape eventually, so will be accepted by M.
strings outputted may repeat
(2) Turing recognizable \Longrightarrow Turing enumerable.
- assume M a Turing machine that recognizes language L.
- construct E to enumerate $L(M)$ by
- for each string $w=\epsilon, 0,1,00,01,10,11,000,001, \ldots$,
simulate M on w
if M accepts w, print w out.
(but would this work?)
- Let $s_{1}=\epsilon, s_{2}=0, s_{3}, s_{4}=00, \ldots$,
- for $i=1,2, \ldots$,
run $M i$ steps on each of $s_{1}, s_{2}, \ldots, s_{i}$
if M accepts s_{j}, print s_{j}.

Other equivalent models

Turing machines with two-way tapes
Turing machines with multi-cells at each position of tapes
Parallel models

- PRAM
- Boolean circuits
- parallel computers (shared memory, message passing)
- distributed systems

Other models
quantum computers
bio-computers
chemical computers

3.3 Definition of Algorithm

$\underline{\text { But first, an old slide (Slide 13): }}$

Definition 3.5 A language A is Turing recognizable if $A=L(M)$ for some Turing machine M. (A is also called recursively enumerable)

Note that on an input w, a Turing machine may accept and halt, reject and half, or never halt.

A Turing machine decides if it halts. It is called decider.

Definition 3.6 A language A is Turing decidable or simply decidable if $A=L(M)$ for some Turing machine decider M. $(A$ is also called recursive)

Church-Turing Thesis:
Everything computable is computable by a Turing machine.

Three formal systems:
The first-order logic,
λ-calculus, and
Turing machines

Three programming (language) paradigms: logic programming languages: prolog functional programming languages: LISP
procedural programming languages: C, etc

Examples of problems that have Algorithms

Problem 1: Testing if a single-variable polynomial, e.g., $6 x^{3}-3 x^{2}+24 x-17$ has an integral root

That is to test if there is an integer solution for the equation $6 x^{3}-3 x^{2}+24 x-17=0$

There is a finite process to decide the question, given such a polynomial.

- enumerating all integers $0,-1,1,-2,2, \ldots$
- the process is not infinite because
the root should be within the range $\left[-k \frac{c_{\text {max }}}{c_{1}},+k \frac{c_{\text {max }}}{c_{1}}\right]$

Problems 2: Testing if a given graph is connected (Example 3.23, page 157)

$$
A=\{\langle G\rangle \mid G \text { is connected }\}
$$

A is decidable, i.e., there is an algorithm (TM that halts) for it. on input $\langle G\rangle$, encoding of G,

1. select the first node and mark it
2. repeat the following until no new nodes are marked
3. for each node in G, mark it if it shares an edge with a marked node
4. if all nodes are mark, accept, otherwise reject

Illustration by Figure 3.24 (page 158)

Problem 3. Testing if a polynomial has an integral root

$$
\text { e.g., } 6 x^{3} y z^{2}+3 x y^{2}-x^{3}-10
$$

- the polynomial may contain multiple variables (e.g., x, y, z)
- it is not possible to get bounds for these variables
- an enumerating process similar to the algorithm for Problem 1 may not halt
- it is not decidable
- But it is solvable by a TM (which may not stop)
- The corresponding encoded language is recursively enumerable/Turing recognizable.

[^0]: Technical details for the proof:

 - A DTM simulates the computation of a given NTM on input
 - search through the computation/configuration tree
 - use input tape, address tape
 - address store current path from the root to the current level - in the form of 121323 at level 6 , excluding the root level - assuming 3 branches
 - simulation tape (simulate deterministically, given the path)

