
CSCI 2670, Spring Fall 2012

Introduction to Theory of Computing

Department of Computer Science

University of Georgia

Athens, GA 30602

Instructor: Liming Cai

www.cs.uga.edu/∼cai

0

Lecture Note 5
Decidability and Reducibility of Computational Problems

1

Chapter 4. Decidability

A part of Part Two: Computability Theory consisting of

Chapter 3. The Church-Turing Thesis

Chapter 4. Decidability

Chapter 5. Reducibility

Other advanced topics

2

Figure 1: The Chomsky Hierarchy

3

4.1 Decidable Languages

We will discuss computational problems (languages) concerning

computational systems we have learned so far.

We will use a lot of “simulation techniques”.

4

Decidable problems concerning regular language

Accepting problem for DFAs: testing if a given DFA accepts a given

string

ADFA = {〈B,w〉 |B is a DFA that accepts string w}

Theorem 4.1 ADFA is a decidable language.

5

Theorem 4.1 ADFA is a decidable language.

proof idea

Use a TM, on input 〈B,w〉, to simulate B on w.

- keep track of B’s current state and position on w.

- the TM accepts 〈B,w〉 iff B accepts w

Details:

- how is B encoded?

- how to keep track of B states?

- how to keep track of positions on w?

6

Similarly

ANFA = {〈B,w〉 |B is an NFA that accepts string w}

Theorem 4.2 ANFA is a decidable language.

proof ideas

1. Use an NTM to simulate NFA B on w,

- accepts 〈B,w〉 iff B accepts w.

2. Alternatively, convert B an equivalent DFA B′,

- then run the TM M1 for Theorem 4.1 on w

- accepts 〈B,w〉 iff M1 accepts 〈B′, w〉.

7

AREX = {〈R,w〉 | regular expression R generates w}

Theorem 4.3 AREX is a decidable language.

proof idea?

8

Testing if a finite automaton accepts the empty language (rejecting

all strings)

EDFA = {〈A〉 |A is a DFA and L(A) = φ}

Theorem 4.4 EDFA is a decidable language.

proof idea ?

To determine if there is path from the initial state to a accept state.

9

Testing if two DFAs are equivalent

EQDFA = {〈A,B〉 |A,B are DFAs and L(A) = L(B)}

Theorem 4.5 EQDFA is a decidable language.

proof idea:

To relate testing L(A) = L(B) to a empty language testing. How?

10

Differences L(A)− L(B) and L(B)− L(A) are both empty

if and only if L(A) = L(B)

L(A)− L(B) = L(A) ∩ L(B)

So there is a DFA C, constructed from A and B

such that L(C) = L(A)− L(B)

L(B)− L(A) = L(B) ∩ L(A)

So there is a DFA C ′, constructed from A and B

such that L(C ′) = L(B)− L(A)

Construct a TM to check emptiness of L(C) and L(C ′) according

to the proof of Theorem 4.4.

11

Decidable problems concerning context-free languages

ACFG = {〈G,w〉 |G is a CFG that generates stri ng w}

Theorem 4.7 ACFG is a decidable language.

proof idea:

Use G to try all possible derivations to see if any of them derive w.

- However, the process may not stop;

- Would only prove Turing recognizable for ACFG.

12

To use Chomsky normal form

(S0 → ε, X → Y Z,X → a)

(1) can check if w = ε

(2) let |w| = l, assume there is a derivation,

- how many steps needed to derive w?

- each use of rule X → Y Z generates at least one symbol

- like X ⇒ Y Z ⇒ aZ, two steps

Derivation of one symbol needs two steps except the last one.

So totally 2l − 1 steps

Try all derivations of 2l − 1 steps.

(how many of them? |R|2l−1)

13

Also we have the problem of testing if a CFG generates the empty

language.

ECFG = {〈G〉 |G is a CFG and L(G) = φ}

Theorem 4.8 ECFG is a decidable language.

proof idea:

Not work: enumerating all strings w and checking if the given

grammar generates it.

Check if the start variable derives a terminal string?

- but the start variables depends on other variables

Check if each variable derives a terminal string?

14

Theorem 4.8 ECFG is a decidable language.

Proof:

On input 〈G〉, encoding of G,

- mark all terminal symbols in G,

- repeat until no new variables get marked:

mark any variable A if A→ α is a rule

and all symbols in α has been marked.

- if the start variable is not marked, accept; otherwise reject.

15

We would hope the following language is also decidable, but it is

not.

EQCFG = {〈G,H〉 |G,H are CFGs and L(G) = L(H)}

The technique used to prove Theorem 4.5 is not applicable to CFLs.

- There language intersection and complement are used to

create a difference language

- But the class of CFLs are not closed under intersection or

complement

16

(1) Why is the class of CFLs not closed under intersection?

{anbncn|n ≥ 0} = {anbncm|m,n ≥ 0} ∩ {ambncn|m,n ≥ 0}

non-CFL = CFL, contradiction!

(2) Why is the class of CFLs not closed under complement?

Otherwise,

{anbncn|n ≥ 0} = {anbncm|m,n ≥ 0} ∩ {ambncn|m,n ≥ 0}

{anbncn|n ≥ 0} = {anbncm|m,n ≥ 0} ∪ {ambncn|m,n ≥ 0}

non-CFL = CFL, contradiction!

17

Theorem 4.9 Every CFL is decidable.

proof idea:

- Let G be the CFG for the language under consideration.

- A TM can be used to simulate G on input w,

as it is done in Theorem 4.7.

Figure 4.10 The relationship among classes of languages

regular ⊂ context-free ⊂ decidable ⊂ Turing-recognizable

18

4.2 The Halting Problem

Similar to the DFA and CFG settings, we define

ATM = {〈M,w〉 |M is a Turing machine and M accepts w}

However, unlike ADFA and ACFG, ATM is not decidable.

But ATM is Turing-recognizable.

Proof by constructing an ’universal’ Turing machine to simulate

M on w.

19

The Diagonalization Method [Georg Cantor, 1873]

For two infinite sets, how to tell which one is larger?

- how to compare the two infinite sets?

- pairing elements in the two sets.

Definition 4.12

Let A and B are two sets and f : A→ B.

(1) f is one-to-one if f(a) 6= f(b) whenever a 6 b,
(2) f is onto if for every b ∈ B, there is an a, f(a) = b, and

(3) f is correspondence if it is both one-to-one and onto.

Two sets are the same size if there is a correspondence

between them.

20

Example 4.13.

Natural number set N and even number set E are the same size.

Definition 4.14

A set is countable if either it is finite or it has the same size as N .

Figure 4.16

A correspondence between N and the rational number set Q.

21

R, the real number set is actually much larger!

Theorem 4.17 R is not countable.

proof idea

- Assume that there is a correspondence between R and N .

- Construct a real number x that does not have a natural number

to pair.

(1) align all real numbers based on their decimal points,

(2) let x = 0.x1x2 . . . such that

xi is different from the ith digit after the decimal point

of the real number ri that corresponds to the natural i.

- Then x is different from all the real numbers

Yet it has NO natural number to correspond. Contradict!

22

Using almost the same idea to prove

Theorem 4.11 ATM is not decidable.

proof idea:

- Assume TM H that can decides if M accepts w

for any given M and w. That is

(1) H(〈M,w〉) =

{
accepts M accepts w

reject M rejects w

- Built another TM D that checks if a given TM accepts itself

On input 〈M〉, encoding a TM M ,

- D simulates H on 〈M,w〉, where w = M

- D accepts 〈M〉 iff H rejects 〈M,M〉. That is

(2) D(〈M〉) =

{
accepts H rejects 〈M,M〉

reject H accepts 〈M,M〉

23

(3) Consider input 〈D〉 to TM D,

Will D accepts 〈D〉?

Scenario 1:

D accepts D. That is H rejects 〈D,D〉 by formula (2).

However, by formula (1) D should rejects D. Contradicts!

Scenario 2:

D rejects D. That is H accepts 〈D,D〉 by formula (2).

However, by formula (1) D should accept D. Contradicts!

Called paradox. So neither H nor D can exist.

Where is the diagonalization?

Figures 4.19, 4.20, 4.21.

24

Logical paradox exists in some statements.

e.g., A barber said he serves anyone who does not cut his own hair.

Question: does the barber cuts his own hair?

(1) If yes, then he is one of those who cuts his own hair.

Then he should not serve himself. Contradics.

(2) If not, then is one of those who does not cut his own

hair. Then he should himself. Contradics.

25

Russell’s paradox (Russell’s antinomy):

Let R be the set of all sets that are not members of themselves, i.e.,

assume

R = {x |x 6∈ x}

Question: R ∈ R?

Both the set of people who the Barber serves and the Turing

machine D constructed for Theorem 4.14 can be thought of such a

set R.

26

So we proved that some languages are not decidable, e.g., ATM .

But ATM is Turing-recognizable.

Are there languages that are NOT Turing-recognizable?

Lemma If language L is Turing-recognizable and its complement L

is also Turing-recognizable, then L is decidable.

Corollary 4.23: ATM is Turing-recognizable but not decidable, so

its complement ATM is NOT Turing-recognizable.

27

Lemma If language L is Turing-recognizable and its complement L is

also Turing-recognizable, then L is decidable.

proof idea.

Simulate both TMs (A for L, B for L) on input w,

accept w if A accepts w; reject w if B accepts w.

Lemma If L is decidable, then both L and L are at least

Turing-recognizable.

Theorem 4.22 A language is decidable if and only if it is

Turing-recognizable and co-Turing-recognizable.

(co-Turing-recognizable means the complement is

Turing-recognizable).

28

Chapter 5. Reducibility

A part of Part Two: Computability Theory consisting of

Chapter 3. The Church-Turing Thesis

Chapter 4. Decidability

Chapter 5. Reducibility

Other advanced topics

29

We will investigate how to use solutions for one problem to solve

another problem.

This will allow us to show more problems that are undecidable.

- Two problems A and B. If A is reduced to B, a solution for B can

be used to solve problem A

- That is, if you have solutions for B, you have solutions for A.

- In other words, if there is no solution for A, then there is no

solution for B.

- I.e., A is NOT more difficult than B

- But B is at least as difficult as A (may be more difficult than A).

30

5.1 Undecidable Problems from Language Theory

HALTTM = {{〈M,w〉 |M is a TM and M halts on input w}

The problem is as hard as ATM , undecidable.

Theorem 5.1 HALTTM is undecidable.

proof idea:

(1) assume the opposite, HALTTM is decidable, admitting a TM R.

(2) construct a TM to decide ATM , on input 〈M,w〉

- simulate R on 〈M,w〉,

- if R rejects, reject,

- if R accepts, simulate M on w until it halts

accept if M accepts w; reject if M rejects w.

This is a decider for ATM , contradicts!

31

Testing the emptiness:

ETM = {〈M〉 |M is a Turing machine and L(M) = φ}

Theorem 5.2 ETM is undecidable.

proof idea:

We want to show that if ETM is decidable then ATM is also

decidable, leading to a contradiction. We assume there is an

algorithm R for ETM .

- Input 〈M,w〉 for the ATM , run R on M can only know if

L(M) = φ or not.

- How to construct a TM M1 such that

L(M1 = φ if and only 〈M,w〉 ∈ ATM (i.e., M accepts w) ?

32

On the input 〈M,w〉;

(1) Construct M1 such that it will reject all strings x 6= w

and the rest construction is the same as M .

(so M1 accepts at most one string w.)

(2) Now run R on M1 to see if L(M1) = φ.

reject the input 〈M,w〉 iff R accepts M1.

Step (1) is finite. Step (2) can halt since R can halt.

So this results in a decider for ATM . Contradicts!

33

What do you conclude from the previous proof?

ATM reduced to ETM

Given input 〈M,w〉 construct TM M1

M accepts w =⇒ L(M1) = {w}

M rejects w =⇒ L(M1) = φ

So if there is a decider R solves the second question, the first

question can be answered as well.

NOTE: the reduction does not run M on w.

34

Testing the regularity:

REGULARTM = {〈M〉 |M is a Turing machine & L(M) is regular}

Theorem 5.3 REGULARTM is undecidable.

proof idea: Use the previous proof idea:

ATM reduced to REGULARTM

Given input 〈M,w〉 construct TM M2

M accepts w =⇒ L(M2) = {0n1n|n ≥ 0} ∪ Σ∗

M rejects w =⇒ L(M2) = {0n1n|n ≥ 0}

35

Assume a decider R for REGULATTM .

On the input 〈M,w〉;

(1) Construct M2 so it accepts any input x in the form of 0n1n

and if the input is not in that form, it follows execution

of M on w.

(NOTE: M2 accepts Σ∗ in the case M accepts w.)

(NOTE: M2 accepts {0n1n|n ≥ 0} in the cas M rejects w)

(2) Now run R on M2 to see if L(M2) is regular;

accept the input 〈M,w〉 iff R accepts M2.

Step (1) is finite. Step (2) can halt since R can halt.

So this results in a decider for ATM . Contradicts!

36

Testing the equality of two languages recognized by TMs.

EQTM = {〈M1,M2〉 |L(M1) = L(M2)}

Theorem 5.4 EQTM is undecidable.

proof idea?

37

3.2 Mapping Reducibility

In previously used reductions:

language A =⇒ language B

mapping an instance of A to some instance of B

To use the reduction to prove property for A

answers for A ⇐= answers for B.

- no rules set for what =⇒ should be

- no rules set for what ⇐= should be

a reduction can be used as long as it works.

38

A refined way to define reduction

the reduction needs to be done by an algorithm

the answers for B can be interpreted in finite steps

39

Definition 5.17

A function f : Σ∗ −→ Σ∗ is a computable function if some TM

M , on every input w, halts with just f(w) on its tape.

Picture it:

Note: some inputs w may not have defined f(w)

Examples:

(1) f(x, y) = x+ y

based on unary representation

based on binary representation

(2) f(w) = w−1, reversing strings

40

Formal definition of mapping reduction

Definition 5.20 language A is mapping reducible to language

B, denoted as A ≤m B, if there is a computable function

f : Σ∗ −→ Σ∗, such that for every w

w ∈ A if and only if f(w) ∈ B

The function f is called the reduction from A to B.

Picture it (figure 5.21, page 207)

A mapping reduction transforms each membership testing for A to

some membership testing for B.

41

Theorem 5.22

If A ≤m B and B is decidable, then A is decidable.

Proof:

Assume M to be the decidable for B and f be the mapping

reduction. Construct a decidable N for A as follows.

N = “On input w

1. Compute f(w).

2. Run M on input f(w) and

accepts (rejects) w iff M accepts (rejects) f(w) ”

42

Is the other way also true?

Corollary 5.23

If A ≤m B and A is undecidable, then B is undecidable.

Also similar to Theorem 5.22

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.

43

Now we re-visit some old proofs using the concept of mapping

reduction.

Example 5.26. Proof for that EQTM is not decidable

- by mapping reduction from ETM , ETM ≤ EQTM , vis f

- f is such: f(〈M〉) = 〈M,M1〉, where

M1 is a Turing machine accepting no strings.

〈M〉 ∈ ETM if and only if 〈M,M1〉 ∈ EQTM

44

Example: Proof for that REGULARTM is not decidable

- by mapping reduction from ATM , ATM ≤ REGULARTM ,

- f is such: f(〈M,w〉) = 〈M1〉, where

M1 is a Turing machine constructed as follows

(a) it accepts all strings of format 0n1n,

(b) it accepts all other strings if M accepts w

〈M,w〉 ∈ ATM if and only if 〈M1〉 ∈ REGULARTM

That is

〈M,w〉 ∈ ATM =⇒ L(M1) = Σ∗

〈M,w〉 6∈ ATM =⇒ L(M1) = {0n1n|n ≥ 0}

45

Theorem 5.28

If A ≤m B and B is Turing-recognizable, then A is

Turing-recognizable.

Corollary 5.29

If A ≤m B and A is not Turing-recognizable, then B is not

Turing-recognizable.

46

There are problems that are not Turing-recognizable.

For example, ATM is Turing-recognizable but not decidable. So

- ATM is not Turing-recognizable, or equivalently,

- ATM is NOT co-Turing-recognizable.

Theorem 5.30

EQTM is neither Turing-recognizable nor co-Turing-recognizable.

proof idea

- Note that A ≤m B is the same as A ≤m B

- To prove EQTM is not Turing recognizable, we construct

ATM ≤m EQTM , or equivalently, ATM ≤m EQTM

47

proof idea (cont.)

we construct ATM ≤m EQTM via the mapping reduction function:

f : f(〈M,w〉) = 〈M1,M2〉, where

M1 = ”rejects all strings”.

M2 = “accepts all strings if M accepts w [How ?].

That is, M rejects w iff L(M1) = L(M2).

This proves that EQTM is not-Turing-recognizable.

48

To prove EQTM is not-Turing-recognizable, we construct

ATM ≤m EQTM via the mapping reduction function:

f : f(〈M,w〉) = 〈M1,M2〉, where

M1 = ”accept all strings”.

M2 = “accepts all strings if M accepts w.

That is, M rejects w iff L(M1) 6= L(M2).

49

Review:

Chapter 1. Regular Languages

- DFA, NFA, regular expressions,

- equivalence of NFAs and DFAs

- equivalence of FAs and regular expressions

- closure under the regular operations

- non-regular languages, pumping lemma

50

Chapter 2. Context-Free Languages

- CFG, ambiguity, Chomsky normal form

- PDA

- equivalence of CFGs and PDAs

- non-CFL, pumping lemma

- CFLs are not closed under intersection and complement

51

Chapter 3.

- TM, configuration

- variants, nondeterministic TM

- definition of algorithms, Turing-recognizability

Chapter 4.

- decidable languages, examples

- proving decidability

- diagonalization, proof ATM is undecidable

Chapter 5.

- proving undecidability

- mapping reduction, computable functions

52

The End of Lecture Notes for CSCI 2670 Fall 2012

Please email typos and other errors to cai@cs.uga.edu.

53

