
Stochastic k-Tree Grammar and Its Application

in Biomolecular Structure Modeling

Liang Ding1, Abdul Samad1, Xingran Xue1, Xiuzhen Huang4,
Russell L. Malmberg2,3, and Liming Cai1,2,�

1 Department of Computer Science
2 Institute of Bioinformatics

3 Department of Plant Biology
University of Georgia, GA 30602, USA

{lding,samad,xrxue,russell,cai}@uga.edu
4 Dept. of Computer Science, Arkansas State University

Jonesboro, AR 72467, USA
xhuang@astate.edu

Abstract. Stochastic context-free grammar (SCFG) has been successful
in modeling biomolecular structures, typically RNA secondary structure,
for statistical analysis and structure prediction. Context-free grammar
rules specify parallel and nested co-occurren-ces of terminals, and thus
are ideal for modeling nucleotide canonical base pairs that constitute the
RNA secondary structure. Stochastic grammars have been sought, which
may adequately model biomolecular tertiary structures that are beyond
context-free. Some of the existing linguistic grammars, developed mostly
for natural language processing, appear insufficient to account for cross-
ing relationships incurred by distant interactions of bio-residues, while
others are overly powerful and cause excessive computational complexity.

This paper introduces a novel stochastic grammar, called stochastic
k-tree grammar (SkTG), for the analysis of context-sensitive languages.
With the new grammar rules, co-occurrences of distant terminals are
characterized and recursively organized into k-tree graphs. The new
grammar offers a viable approach to modeling context-sensitive inter-
actions between bioresidues because such relationships are often con-
strained by k-trees, for small values of k, as demonstrated by earlier
investigations. In this paper it is shown, for the first time, that proba-
bilistic analysis of k-trees over strings are computable in polynomial time
nO(k). Hence, SkTG permits not only modeling of biomolecular tertiary
structures but also efficient analysis and prediction of such structures.

Keywords: stochastic grammar, context-sensitive language, k-tree, dy-
namic programming, biomolecule, RNA tertiary structure.

1 Introduction

Stochastic formal language systems, typically the stochastic context-free gram-
mar (SCFG), have been significantly valuable to various applications. Such a

� Correspondent author.

A.-H. Dediu et al. (Eds.): LATA 2014, LNCS 8370, pp. 308–322, 2014.
c© Springer International Publishing Switzerland 2014



SkTG and Its Application in Biomolecular Structure Modeling 309

system essentially consists of a finite set of rules that syntactically dictate gen-
eration of strings for a desired language. Any generation process of a language
string is a series of Chomsky rewriting rule applications and thus yields a syntac-
tic structure associated with (the terminal occurrences in) the string. Because
syntactic rules often are nondeterministic, there may be more than one syntac-
tic process to generate the same string [26,9]. Stochastic versions of such formal
systems may be established by associating a probability distribution with the
rules. Compounding the probabilities of rules used in a generation process of
a string gives rise to the probability for the corresponding syntactic structure
admitted by the string [28,8]. Therefore, a stochastic language system defines a
probability space for all the syntactic structures admitted by the string. At the
same time, it also defines a probability space for all the strings in the language.

In addition to the apparent wide application in natural language processing
[18,15,35,16,27,2], SCFG has also been extensively adopted for statistical analy-
sis of biomolecular structures [25,8,4,5,29]. A biomolecule consists of a string of
linearly arranged residues that can spatially interact to fold the string into a 3D
structure of biological significance. Interactions between residues are interpreted
as co-occurrences of lexical objects in each parsing of the string. SCFG can con-
veniently model nested and parallel relationships of the interacting residues on a
biomolecule. Figure 1 shows an RNA molecule with parallel and nested canonical
base parings (in gray, lighter lines) between nucleotides, which is context-free.
Indeed, SCFG has enabled the development of a number of effective computer
programs for the prediction of RNA secondary structure [21,39,17,1,24]. Such
programs are also computationally efficient by taking the advantage of dynamic
programming algorithms permitted by context-free rules.

Nevertheless, SCFG cannot account for crossing interactions of a context-
sensitive nature, e.g., the interactions in Figure 1 denoted by both gray (lighter)
and pink (darker) lines. Since crossing, distant interactions are the signature
of a biomolecule forming a tertiary (3D) structure, adequate modeling of such
interactions with a stochastic grammar would have the potential for effec-
tive analysis and even prediction of biomolecular tertiary structures. Modeling
context-sensitive languages with Chomsky context-sensitive grammars can be
inconvenient and may incur computational intractability [19,9]. Previous work
in more constrained languages has studied mildly context-sensitive grammars,
typically the Tree-Adjoining Grammar [13] and its equivalent variants [14,34], to
model limited cross-serial dependencies arising in natural language processing.
There has been limited success in the applications of such grammars in biomolec-
ular structure modeling [33,29,4]; they were mostly used for the characterization
of local, secondary structures. The global structure of a biomolecule involving
cross relationships between arbitrarily distant residues may be beyond limited
cross-serial dependencies.

In this paper, we introduce a novel stochastic grammar called stochastic
k-tree grammar (SkTG), for the analysis of context-sensitive languages. With
succinct grammar rules, co-occurrences of distant terminals are recursively char-
acterized as k-trees. A k-tree is a chordal graph that does not contain cliques
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Fig. 1. A single RNA molecule can fold back on itself to form secondary and tertiary
structures through bio-residue interactions. (a) The secondary structure of tRNA (Phe
of yeast, PDB id: 1EHZ)) consists of parallel and nested canonical base parings (gray,
lighter connections) between nucleotides, which is context-free. The tertiary structure
formed with additional non-canonical tertiary interactions (pink, darker connections)
between nucleotides is context-sensitive. (b) Illustration of the bio-residues interactions
of the tRNA molecule in terms of co-occurrences of terminals on a language string.

of size more than k + 1 as a graph minor [23,3]. For small values of k, k-
trees are tree-like graphs; they are adopted in this work to constrain cross-
ing relationships of terminal occurrences on language strings. Such constrained
context-sensitivity has been discovered in biomolecular structures; recent studies
have revealed that graphs describing bio-residue interactions found in resolved
biomolecular 3D structures are actually (subgraphs of) k-trees, typically for
k ≤ 4 [36,31,37,11,10]. Therefore, the new grammar SkTG offers a viable ap-
proach to statistical modeling, analysis, and prediction of biomolecular tertiary
structures.

Previous studies showed that statistical analysis problems over general k-
trees are extremely difficult, in particular, NP-hard even for k = 2, excluding
the possibility to feasibly implement such a framework [32,40,30]. However, with
the linear chain of vertices constrained on k-trees, we are able to show, for the
first time, that the k-tree parsing problem is solvable in polynomial-time for
every fixed value of k. In particular, we will show that SkTG makes it possible
to define a probability space for all k-tree structures admitted by any given
language string. We will demonstrate efficient dynamic programming algorithms
for computing the most probable k-tree structure for any given string. In this
paper, we will also discuss the application in the prediction of biomolecular
tertiary structures that has motivated this work.

2 k-Trees and the k-Tree Grammar

Definition 1. [23] Let integer k ≥ 1. The class of k-trees are defined with the
following inductive steps:
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Fig. 2. (a) A generation of a 3-tree of 7 vertices by Definition 1. (b) A derivation of
string abcdefg with 3-tree grammar rules introduced in Definition 3, with the types
of applied grammar rules shown and the LHS of every applied rule underscored. The
derivation also results in an induced 3-tree, the same graph shown in (a).

1. A k-tree of k + 1 vertices is a clique of k + 1 vertices;
2. A k-tree of n vertices, for n > k + 1, is a graph consisting of a k-tree G of

n− 1 vertices and a vertex v, which does not occur in G, such that v forms
a new (k + 1)-clique with some size-k clique already in G.

Figure 2 (a) shows of a 3-tree with seven vertices. By Definition 1, the order
in which 4-cliques formed is: initially {1, 2, 3, 6} (black edges), vertex 5 and blue
edges added, then vertex 7 and red edges added, and finally vertex 4 and green
edges added.

2.1 The k-Tree Grammar

Chomsky grammars derive a language sentence by series of rewritings on a single
symbolic string. Instead, our new grammar derives a language sentence by rewrit-
ings onmultiple symbolic strings, thus resulting in multiple symbolic strings. The
language sentence generated in such a derivation consists of the terminal symbols
that occur in the resulting multiple symbolic strings; the positional ordering of
the derived terminals is completely determined by the derivation.

Let Σ be an alphabet, N be the set of non-terminals, and ε be the empty
string. We call a symbolic string an m-alternating string, if it has the format
X0a1X1 · · · amXm for some m ≥ 0, such that Xi ∈ N ∪ {ε} for all 0 ≤ i ≤ m
and ai ∈ Σ for all 1 ≤ i ≤ m.

Definition 2. Let α = X0a1X1 · · · amXm be an m-alternating string for some
m ≥ 0. Let ω be the substring Xiai+1 · · ·Xj in α, for some 0 ≤ i ≤ j ≤ m,
and σ ∈ (N ∪Σ)∗ be a string. Then α|ωσ is the string obtained from α with the
substring ω being substituted by σ.

For two non-overlapping substrings ω1 and ω2 in α, we use α|ω1,ω2
σ1,σ2

to denote
the string obtained from α with ω1 being replaced by σ1 and ω2 being replaced
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by σ2 at the same time. We also allow aggregation ∀i to denote multiple simul-
taneous substitutions involving all applicable indexes i. In particular, α|∀iXi

Yi
is

the string obtained from α by replacing Xi with Yi for every i

Definition 3. Let k ≥ 2 be a fixed integer. A k-tree grammar is a 6-tuple Γ =
(Σ,N ,R,M, I, S), where Σ is a finite alphabet, N is a set of nonterminals, S, I,
and M are the starting, importing and masking nonterminals in N , respectively,
and R is a set of grammar rules. Each rule has the format of α → A, where α is
either S or a (k + 1)-alternating string and A is a subset of (k + 1)-alternating
strings, and has one of the following four types. (In the following we assume
α = X0a1X1 · · · ak+1Xk+1, where ∀i = 1, · · · , k+ 1, ai ∈ Σ, and ∀j = 0, · · · , k+
1, Xj ∈ N .)

(A) S → {β}, for β = Y0b1Y1 · · · bk+1Yk+1, where ∀i = 1, · · · , k + 1, bi ∈ Σ,
and ∀j = 0, 1, · · · , k + 1, Yj ∈ N − {M, I}.

(B) α → {β, γ}, where ∃s, 0 ≤ s ≤ k + 1, Xs 	= M , such that

(1) β = α|∀iXi

Yi
, γ = α|∀iXi

Zi
, Ys = I, and Zs = M .

(2) ∀i = 0, 1, · · · , k + 1, if Xi = M then Yi = Zi = M ; else either Yi = Xi

and Zi = M , or Yi = M and Zi = Xi.

(C) α → {β}, where ∃s, 0 ≤ s ≤ k + 1, Xs = I, and ∃t, 0 ≤ t ≤ k, t − s ≥ 1

or s − t > 1, Xt = Xt+1 = M , such that β = α|Xs

Y aZ |
Xtat+1Xt+1

M , for some
Y, Z ∈ N − {M, I} and some a ∈ Σ.

(D) α → {β}, such that β|∀iXi

Yi
and ∀i = 0, 1, · · · , k+1, if Xi = M then Yi = M ;

else Yi = ε.

We note that rules of types (B) and (C) are tightly related by the importing
nonterminal I. In particular, a rule of type (C) can be used if and only if a
related rule of type (B) has been used.

Definition 4. Let Γ = (Σ,N ,R,M, I, S) be a k-tree grammar. Let set T ⊆
(Σ ∪ N )+. Let α ∈ T , α → A ∈ R, and define T ′ = T − {α} ∪ A. We say that
T derives T ′ with rule α → A and denote it by T ⇒α→A T ′ (or simply T ⇒ T ′

when the used rule is clear in the context).
We call T ⇒∗ T ′ a derivation if and only if either T = T ′ or there are T ′′

and α → A such that T ⇒α→A T ′′ and T ′′ ⇒∗ T ′ is a derivation.

Let T ⊆ (Σ∪N )+ be a subset. A terminal occurs in T if it occurs in some string
contained in T . Binary relation � on the set of all terminal occurrences in T is
such that, for any two terminal occurrences ai and aj in T , ai � aj if and only
if (a) ai = aj, or (b) ai occurs to the left of aj in the same string, or (c) there is
a terminal occurrence ah such that ai occurs to the left of ah in the same string
and ah � aj .

Theorem 5. Let T ⊆ (Σ ∪ N )+ be a subset and {S} ⇒∗ T be a derivation.
Then the binary relation � on the set of all terminal occurrences in T is a total
order.
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Proof. (Sketch) By induction on m, the number of terminal occurrences in T ,
where {S} ⇒ T .

Basis: m = k + 1. T can contain only one string and the last rule used must
be of type (D). Therefore, all the terminal occurrences are next to each other on
the only string in T , thus forming the total order.

Assumption: for m terminal occurrences in T , the claim is true.
Induction: we assume that there are m+ 1 terminal occurrences in T . Let T1

be such that {S} ⇒∗ T1 and T1 ⇒∗ T for which rule α → {β, γ} of type (B) and
β → θ of type (C) are used to introduce a new terminal occurrence a. Let L be
the set of m terminal occurrences in T1. By the assumption, the binary relation
� on L is a total order. Note that terminal a co-occurs with other k terminals in
the same string θ. Without loss of generality, we assume a occurs to the right of
terminal occurrence b and to the left of terminal occurrence c. Then b � a and
a � c, and for any other terminal occurrence d ∈ L, either d � b or c � d, thus
either d � a or a � d by the definition of �. So the binary relationship � on set
L ∪ {a} is also a total order. �

Definition 6. Let Γ = (Σ,N ,R,M, S) be a k-tree grammar and T ⊆ (Σ ∪
{M})+ such that {S} ⇒∗ T . A string a1a2 · · · an ∈ Σ+, n ≥ 3, is the underlying
string of T , if for every 1 ≤ i < n, substring aiai+1 occurs in some string in T .
In addition, the language defined by the grammar Γ is

L(Γ ) = {s ∈ Σ+ : T ⊆ (Σ ∪ {M})+, {S} ⇒∗ T , and uls(T , s)}

where predicate uls(T , s) asserts that s is the underlying string of T .

For example, Figure 2(b) shows a derivation of T that contains four symbolic
strings, for which the string abcdefg of 7 terminals is the underlying string.

2.2 Structure Space for Individual Strings

The introduced k-tree grammars are context-sensitive that can define crossing
relationships among terminals. Let subset T ⊆ (Σ ∪N )+. We call two terminal
occurrences syntactically related if they appear in the same RHS of some rule used
in some derivation {S} ⇒∗ T . We characterize such relationships of terminal
occurrences in T with notions of graphs.

Definition 7. Let Γ be a k-tree grammar. Let T ⊆ (Σ ∪ N )+ be such that
{S} ⇒∗ T . The induced graph of T is a labeled graph GT = (V,E), in which
vertices have one-to-one correspondence (i.e., labeled) with the terminal occur-
rences in T and edges connect vertices corresponding to syntactically related
terminal occurrences. The structure space E(s) of any given string s ∈ L(Γ ) is
defined as

E(s) = {GT : T ⊆ (Σ ∪ {M})+ and uls(T , s)}

For example, Figure 2(a) is the induced graph for the final set of four sym-
bolic strings in the derivation shown in Figure 2(b), for which abcdefg is the
underlying string.
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Definition 8. Let s = s1 · · · sn ∈ Σ+ be a string of length n. A (labeled) graph
G = (V,E), where V ⊆ {1, 2, · · · , n}, is faithful to s if

(a) ∀ i ∈ V , vertex i is labeled with si; and
(b) ∀ i, j ∈ V , if i < j and ¬∃ l ∈ V i < l < j, then (i, j) ∈ E.

Lemma 9. Let {S} ⇒∗ T ′ with the underlying string s = s1s2 · · · sn ∈ Σ+.
Then for any T such that {S} ⇒+ T ⇒∗ T ′, the induced graph of T is a faithful
k-tree to string s.

Proof. (Sketch) We prove by induction on l, the number of grammar rule appli-
cations in the derivation {S} ⇒+ T to show the induced graph GT of T is both
a k-tree and faithful to s.

l = 1. This is the case that rule {S} → {X0a1X1 · · · ak+1Xk+1} is first
used. Thus GT , where T = {X0a1X1 · · · ak+1Xk+1}, consists of k + 1 vertices
{i1, i2, · · · , ik+1} labeled with terminal co-occurrences {a1, a2, · · · , ak+1}. GT is
a (k + 1)-clique, thus a k-tree. It also is faithful to s since it satisfies condition
(b) as no vertices other than {i1, i2, · · · , ik+1} are present.

We assume the lemma to be true for the case that fewer than l rules are
applied. We now prove it is also true for the case that l rules applied, l ≥ 2. Let
T1 be such that {S} ⇒∗ T1 ⇒∗ T and T1 ⇒∗ T be realized by either a rule of
type (D) or a rule of type (B) and then a rule of type (C).

In the case of a rule of type (D) used to realize T1 ⇒∗ T , no new terminal
occurrences are introduced to T . Thus GT1 = GT , proving the lemma by the
assumption.

In the case of a combination of rules of types (B) and (C), one new vertex
h, labeled with the new terminal occurrence b in the RHS of the rule of type
C, is introduced to GT . New vertex h, along with the vertices labeled with
a1, · · · , at, at+2, · · · , ak+1, forms a (k+1)-clique, thus GT is a k-tree. In addition,
let i and j be two vertices in GT such that i < j and there is no vertex between
them. If neither is labeled with the terminal occurrence b, they should belong
to GT1 as well. By the assumption they satisfy condition (b) of Definition 8. If i
(resp. j) is labeled with b, the rule of type (C) ensures that (h, i) (resp. (h, j)) is
included in the new (k+1)-clique, thus in GT . Therefore, GT is a faithful k-tree
to s. �

Let {S} ⇒∗ T for which s, |s| = n, is the underlying string. Then by Lemma 9,
GT is a k-tree of n vertices faithful to s. According to Definition 7, edge (i, i+1)
is in GT , for all 1 ≤ i ≤ n− 1. Hence, GT contains the annotated Hamiltonian
path {(i, i+ 1) : 1 ≤ i ≤ n− 1}. We thus have the following.

Theorem 10. Let Γ be a k-tree grammar and string s ∈ L(Γ ). The structure
space E(s) is a set of k-trees, each containing the Hamiltonian path {(i, i+ 1) :
1 ≤ i ≤ n− 1}, where n = |s|.

On the other hand, we are interested in such k-tree grammars that for every
string s in the defined language, the structure space E(s) contains all possible
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k-trees (of size n = |s|) constrained by the annotated Hamiltonian path. In the
following, we show that such k-grammars do exist.

Recall Definition 1 for creating all possible k-trees. Let κ = {i1, i2, · · · , ik+1}
be an existing (k + 1)-clique, with i1 < i2 · · · < ik+1. We call any new (k + 1)-
clique a child of κ if it is formed by a newly introduced vertex along with exactly
k vertices already in κ.

Lemma 11. Let κ = {i1, i2, · · · , ik+1} be an existing (k + 1)-clique. Then with
the Hamiltonian path constraint, κ can have at most k + 2 children.

Proof. (Sketch) A new (k+1)-clique can be created by introducing a new vertex
in one of the k + 2 intervals (1, i1), (i1, i2), · · · , (ik+1, n) to connect to exactly k
vertices in the clique κ. Therefore, it suffices to show that, for each of the (k+2)
intervals, at most one new (k + 1)-clique can be created.

Without loss of generality, assume two different new (k+1)-cliques κ1 and κ2

are created with two new vertices h and l drawn from the same interval (ij , ij+1),
respectively, where ij < h < l < ij+1. Apparently (h, l) is not an edge. Nor can
there be a path {(h, h+1), (h+1, h+2), · · · , (h+m, l)}, where h+m = l−1, for
any m ≥ 1. This is because a new vertex between h and l will only be introduced
as a part of descendant of either κ1 or κ2 but not both. Therefore, there must
be r, 0 ≤ r ≤ m, such that edge (h+ r, h+ r+ 1) is not accounted for as a part
of the Hamiltonian path. �

Theorem 12. Let k ≥ 2 be a fixed integer. There exists a k-tree grammar Γ
such that L(Γ ) = Σ∗ and, for any given string s ∈ L(Γ ) of length n, the structure
space E(s) contains all k-trees constrained by the Hamiltonian path {(i, i+ 1) :
1 ≤ i < n}.

Proof. (Sketch) It suffices to show that such a desired k-tree grammar has a
finite number of rules.

Recall the four types of grammar rules given in Definition 3. Each rule {S} →
{β} of type (A) induces a (k + 1)-clique corresponding to the co-occurrence of
k + 1 terminals in β. Such rules can be at most O(|Σ|k+1|N |k+2) in number.
Each rule α → {β, γ} of type (B) and each rule β → ρ of type (C) work together
to induce an additional (k + 1)-clique from the (k + 1)-clique whose vertices
are labeled with the k + 1 terminals that co-occurr in α. As a result of the
rule applications two symbolic strings are derived. One symbolic string contains
k existing terminals selected from those in α to co-occur with a new terminal
occurrence b, while the other symbolic string retains the co-occurrences of k+1
terminals in α but “masks off” the segment that introduces b. The latter symbolic
string allows rules of types (B) and (C) to be repeatedly applied to induce more
(k + 1)-cliques from the same terminal occurrences in α. By Lemma 11, rules
of types (B) and (C) are bounded by O(|Σ|k+2|N |k+4k2) in number. Finally,
type (D) rules are used to terminate recursion without deriving new terminal
occurrence. They are bounded by O(|Σ|k+1|N |k+2) in number as well. �
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3 Probability Computation with k-Tree Grammars

3.1 Stochastic k-Tree Grammars

Definition 13. A stochastic k-tree grammar (SkTG) is a pair (Γ, θ), where Γ =
(Σ,N ,R,M, I, S) is a k-tree grammar and θ is a function: R → [0, 1] such that
for every α ∈ (Σ ∪ N )+,

∑

α→A∈R
θ(α → A) = 1

We interpret the probability model θ associated with grammar rules as follows.
θ(S → {β}) is the probability for co-occurrence of the k + 1 terminals in β. θ
associated with all such type (A) rules gives a probability distribution over all co-
occurrences of k + 1 terminals. In addition, θ distributes probabilities between
rules of type (B) and of type (D) to account for the expected number of co-
occurrences of k+1 terminals that share the same set of at least k− 1 terminal
occurrences. θ(α → β) of a type (C) rule is probability for co-occurrence of the
k + 1 terminals in β conditional on co-occurrence of the k + 1 terminals in α.

Definition 14. Let T ⊆ (Σ∪N )+ be such that {S} ⇒∗ T . Then the probability
of derivation {S} ⇒∗ T with (Γ, θ) is defined recursively as

Prob(T |Γ, θ) =
∑

r∈R, T ′⇒rT
Prob(T ′|Γ, θ)× θ(r)

with the base case Prob({S}|Γ, θ) = 1.

Definition 15. Let (Γ, θ) be a SkTG. Then for any given string s ∈ L(Γ ), its
probability with (Γ, θ) is defined as

Prob(s|Γ, θ) =
∑

{S}⇒∗T , uls(T ,s)

Prob(T |Γ, θ)

Therefore, the probability of s under the model (Γ, θ) is computed as the sum
of probabilities of all derivations of s by the grammar. In other word, Prob(s|Γ, θ)
is the likelihood for the string s to possess at least one k-tree structure. We
observe that

Proposition 16. Let (Γ, θ) be a SkTG, the strings in the language L(Γ ) form
a probabilistic space, i.e.,

∑

s∈L(Γ )

Prob(s|Γ, θ) = 1

Alternatively, it is of interest to know the most likely structure possessed by a
given string s. This then is to compute the maximum probability of a derivation
{S} ⇒∗ T for which s is the underlying string. Similar to the total probability
computation, we can define maximum probability recursively,
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Let T ⊆ (Σ ∪ N )+ be such that {S} ⇒∗ T . Then the maximum probability
of derivation {S} ⇒∗ T is defined recursively as

Maxp(T |Γ, θ) = max
r∈R, T ′⇒rT

Maxp(T ′|Γ, θ) × θ(r)

with the base case Maxp({S}|Γ, θ) = 1.

Definition 17. Let (Γ, θ) be a stochastic k-tree grammar. Then for every given
string s ∈ L(Γ ), the maximum probability of a derivation for s is defined as

Maxp(s|Γ, θ) = max
{S}⇒∗T , uls(T ,s)

Maxp(T |Γ, θ)

And the most likely structure for s with (Γ, θ) is the induced graph GT � of
the subset T 	 ⊆ (Σ ∪ {M})+ decoded from Maxp(s|Γ, θ), where

T 	 = arg max
{S}⇒∗T , uls(T ,s)

Maxp(T |Γ, θ)

3.2 Dynamic Programming Algorithms

We now show probability computations with SkTG can be done efficiently. We
outline a dynamic programming strategy for computing the maximum probabil-
ity function Maxp. The computation for the total probability function is similar.
Let s = s1 · · · sn, where si ∈ Σ, for 1 ≤ i ≤ n, be a given terminal string.

Definition 18. Let α = X0a1X1 · · · ak+1Xk+1 ∈ (Σ∪N )+ be a symbolic string
and κ = (l1, l2, · · · , lk+1) be k+1 ordered integers where 1 ≤ l1 < l2, · · · , lk+1 ≤
n. (α, κ) is a consistent pair if

(1) ai = sli , 1 ≤ i ≤ k + 1, and
(2) For i = 0, 1, · · · , k + 1, Xi = ε iff li = li+1 − 1 (l0 =df 1 and lk+2 =df n).

Now given a pair (α, κ), we define function f(α, κ) to be the maximum prob-
ability for a derivation {α} ⇒∗ T , where T ⊆ (Σ ∪ {M})+ for which s is the
underlying string. Then function f can be recursively defined according to types
of α and the types of rules α is involved with in R.

1. α ∈ (Σ ∪ {M})+:

f(α, κ) =

{
1 (α, κ) is a consistent pair
0 otherwise

2. α ∈ (Σ ∪ N )+ but α 	= S:

f(α, κ) = max
r∈R

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(β, κ)f(γ, κ)θ(r) r = α → {β, γ}, type (B)

max
ls<h<ls+1,κ′=κ|lt+1

h

f(β, κ′)θ(r) r = α → {β}, type (C)

f(β, κ)θ(r) r = α → {β}, type (D)

where for the case of r being a type (C) rule, s and t are known values given

in β = α|Xs

Y bZ |
Xtat+1Xt+1

M , satisfying (s− t) > 1 or (t− s) ≥ 1, and κ′ = κ|lt+1

h

represents the ordered set modified from κ by replacing lt+1 with h.
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3. α = S:
f(S, κ) = max

S→{β}∈R
f(β, κ)θ(S → {β})

Theorem 19. Maxp(s|Γ, θ) = max
κ∈[n]k+1

f(S, κ), where [n]k+1 is the set of all

combinations of k + 1 integers in [n] = {1, 2, · · · , n}.

Proof. (Sketch) We prove by induction on the number m of rule applications in
a process to generate the string s with the maximum probability, where m ≥ 2.
The base case m = 2 is obvious. The proof of inductive step examines all possible
types of rules used in the last step. �

A dynamic programming algorithm can be implemented to compute func-
tion f(α, κ). This is to establish a table to store computed values of function
f through the use of the formulae provided above (the cases 1 through 3). The
table has k+2 dimensions, one for all α’s in the grammar and the other k+1 are
for all κ’s, resulting in the O(nk+2|Γ |)-time and O(nk+1|Γ |)-space complexities,
respectively, for every fixed k.

4 Applications and Discussions

We have introduced the stochastic k-tree grammar (SkTG) for the purpose of
modeling context-sensitive yet tamable crossing co-occurrences of terminals. The
recursive rules of the new grammar permit association of probability distribu-
tions in a natural way. The resulting dynamic programming algorithms for prob-
ability computation with SkTG are efficient enough, with potential for statistical
analysis of real-world structures. This work is in progress in both application and
further theoretical investigation.

4.1 Application in Biomolecular Structure Prediction

This work was initially motivated by the need in the analysis of biomolecules
for tertiary structure prediction. A biomolecular sequence, e.g., ribonucleic acid
(RNA) or protein, is a linear chain of residues interacting spatially to form a
3D structure functionally important [22,20]. One of the most desirable com-
putational biology tasks is to predict the tertiary structure from the sequence
information only [12,38]. The newly introduced SkTG offers a viable approach
to this task. We briefly outline the application as follows.

Biomolecular sequences are natural strings definable over some finite alpha-
bet Σ (e.g., Σ = {A, C, G, U} for nucleic acids). A class of biomolecular sequences
can be defined as a language with a SkTG in which grammar rules model sta-
tistically not only the sequential composition but also structural composition of
the sequences. The task of designing SkTGs, much like that for SCFGs, is non-
trivial and may often be based on experience. Equipping a designed SkTG Γ with
probability parameters θ may be done through learning from known biomolecules
(with or without known structures) (see next subsection for a briefly discussion).
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Fig. 3. Illustration of a tertiary structure prediction from BWYV (beet west-
ern yellows virus) RNA molecule sequence (PDB ID: 1L2X) that contains 28 nu-
cleotides, coaxial helices connected with two loops, and an A-minor motif. Top
of (a): Tertiary structure (drawn via pymol) and details of nucleotide interactions
(http://www.biomath.nyu.edu/motifs/); (b) The induced 3-tree (containing desired
interactions) corresponding to a derivation of the sequence with the maximum prob-
ability. The 3-tree is presented in terms of the tree topology connecting the created
4-cliques in the 3-tree. Bottom-left of (a): 3D representation of the 3-tree with one
tetrahedron for every 4-clique; Bottom-right of (a): only backbone edges are kept from
the tetrahedron representation, serving as a preliminary structure prediction from the
sequence. We note that more accurate structural motif modeling of individual 4-cliques
would allow more accurate prediction of the overall tertiary structure.

With an SkTG (Γ, θ), using the dynamic programming algorithm (developed
in section 3) we can compute the maximum probability of an induced k-tree , e.g.,
k = 3, from a given query sequence. In such an application, every (k+1)-clique κ
in the desired k-tree may potentially admit one of many possible configurations
(i.e., all possible interaction topologies along with permissible geometry shapes)
for the k+1 residues in κ. Therefore, the dynamic programming algorithm can be
tailored to include the third argument Cκ in the probability function f defined
in section 4, where Cκ is the set of all possible configurations incurred by (k+1)-
clique κ. The information about Cκ can often be obtained from known tertiary
structures of biomolecules as well. Figure 3 illustrates this approach used in a
tertiary structure prediction for a small RNA molecule.

4.2 Further Theoretical Issues

SkTG is a natural extension from SCFG; in particular, k-tree grammars, for
k = 2, can define all context-free languages. In addition, the outlined dynamic
programming algorithm (in section 3.2) to compute the maximum probability
can be improved. In fact, in a related work [6], the authors have developed
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an algorithm of time O(nk+1), for every fixed value of k, for computing the
maximum spanning k-tree that includes a designated Hamiltonian path. On the
other hand, due to the long standing barrier of O(n3) for parsing context-free
languages, this also suggests the time complexity upper bound O(nk+1) has
optimal order of growth in n for each k ≥ 2.

We further note that the above efficiency issue is closely related with the
parameterized complexity [7] of the following problem: computing the maximum
probability of an input sentence to be produced by an input SkTG, for which k
is considered a variable parameter. By the above observation, such a problem is
likely parameterized intractable. Nevertheless, the interesting question remains
whether an additional small parameter (e.g., significant in applications) may
be associated with such problems for further improvement of computational
efficiency.

Estimation of probability parameters θ for given k-tree grammars deserves
more thorough investigation and it is not within the scope of this paper. However,
we point out that it is highly possible to develop efficient parameter estimation
algorithms for SkTG. This is because O(nk+1)-time algorithms may exist for
computing the maximum and total probabilities of given language strings. Much
like the analogous algorithms for SCFG, these algorithms can be used to re-
estimate probability parameters θ given an initial parameter θ0, through an EM
algorithm.

Finally, we feel that future work is also needed to investigate the relation-
ship between the k-tree grammar and other grammars that already exist (e.g.,
the Tree-Adjoining Grammar and its generalized versions [14]) for constrained
context-sensitive languages.
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