There are 120 points in total, including the bonus question for undergraduates.

1. (20 points) A clique C in a graph $G = (V, E)$ is a subset of V such that for every pair of vertices $u, v \in C$, $(u, v) \in E$.

Consider the following optimization problem to find a maximum size clique.

Max Clique

Input: graph $G = (V, E)$;

Output: a clique $C \subseteq V$ such that $|C|$ is the maximum.

We formulate a corresponding decision problem **Clique** as follows:

Clique

Input: graph $G = (V, E)$, and integer $k \geq 0$;

Output: YES if and only if there is a clique in G of size $\geq k$.

Claim: if **Clique** can be solved in polynomial time, so can **Max Clique**. Prove this claim.

Answers:

This exercise is similar to the one in the lecture note 5 for Hamiltonian cycle problem.

The proof idea consists two major steps. Let A be a polynomial time algorithm for decision problem **Clique**.

(1) (5 points) To use A to identify the max size of a clique in the graph G. We achieve this by calling $A(G, k)$ with $k = 1, 2, \ldots, n$. Since
a single vertex is a clique of size 1, \(A \) will answer "Yes" before giving the "No" answer on some value of \(k \). Assume \(k_0 \) is the least value of \(k \) for \(A(G, k) = "Yes" \) and \(A(G, k_0 + 1) = "No" \).

(2) (10 points) To identify a clique of size \(k_0 \). We achieve this by repeatedly trying \(A \) on modified graph \(G' = G - \{ e \} \) where an arbitrary non-"considered" edge \(e \) is removed from \(G \). That is, we run \(A \) on the modified graph \(G' \). If \(A(G', k_0) = "Yes" \), it implies that the edge \(e \) is not critical to the clique of size \(k_0 \) so it can be removed from \(G \) permanently. Otherwise, \(e \) needs to be reinstated in \(G \) and be marked with "considered". The process repeats to consider all non-"considered" edges. Eventually, only edges constitutes the clique of size \(k_0 \) remain in the graph.

(5 points) The proof also need to argue both steps (1) and (2) take only polynomial time.
2. **(15 points)** Will the claim in question 1 still hold if the inequality \(\geq k \) is replaced with equality \(= k \)? How about being replaced with \(\leq k \)?

Answers:

(8 points) Yes, because both steps (1) and (2) in question 1 are still correct when inequality \(\geq k \) is replaced with equality \(= k \).

(7 points) No, answer to the question if a graph has a clique of size \(\leq k \) is trivial. This is because a single vertex is a clique of size 1, which is \(\leq k \) for any \(k \geq 1 \). The answer is always "Yes" actually for \(k \geq 1 \).
3. **(15 points)** Prove that problem **Clique** is in the class **NP**.

Answers:

The answer has to follow the definition of NP class. That is to show that there is a polynomial time verifier A such that for every input $x = (G, k)$, where $G = (V, E)$,

$$G \text{ has a clique of size } \geq k \iff \exists y A(x, y) = 1$$

where y is a certificate.

The answer needs to design a format/content of the certificate (**6 points**) and to show how A verifies the certificate in polynomial time (**9 points**).

One simple design of the certificate is a list of k vertices $y = \{v_1, \ldots, v_k\}$. The verifier A checks the following:

1. $\forall v_i [v_i \in y \Rightarrow v_i \in V]$;
2. $\forall v_i v_j [i \neq j \Rightarrow v_i \neq v_j]$;
3. $\forall v_i v_j [v_i \in y \land v_j \in y \land v_i \neq v_j \Rightarrow (v_i, v_j) \in E]$.

The student then needs to argue that steps (1) through (3) can be done in polynomial steps.
4. **(10 points)** Give a simple reason to explain that if a reduction function f holds for $L_1 \leq L_2$, f^{-1} usually does not hold for $L_2 \leq L_1$, where f^{-1} is the inverse function of f.

Answers:

There are a couple reasons about function f that may not qualify it to be a mapping for $L_2 \leq L_1$. An answer will need to account for either of them:

1. f may be a many:1 reduction. That is, for two instances x_1, x_2, $f(x_1) = f(x_2)$. So the inverse f^{-1} does not exist.

2. Even if f is a 1:1 mapping but not on-to, i.e., there may be y for which there is no such x that $f(x) = y$. Then $f^{-1}(y)$ is not defined.
5. (20 points) Prove that Clique \leq_p Vertex Cover, i.e., problem Clique can be reduced to problem Vertex Cover in polynomial time. (Hint: you may use known facts of reductions).

Answers:

This question is to ask the student to use known reductions and the fact that polynomial time reductions compose (i.e., are transitive).

It suffices to say the known facts:

(1) **Clique \leq_p Independent Set**; the reduction f transforms a graph $G = (V, E)$ into the complementary graph $\overline{G} = (V, \overline{E})$ of the same vertex set V but with complementary edges, where $\overline{E} = V \times V - E$, such that G has a clique of size k if and only if \overline{G} has an independent set of size k.

(2) **Independent Set \leq_p Vertex Cover**; the reduction g transforms a graph $G = (V, E)$ into the same graph, but the parameter k into $|V| - k$, for the reason that G has an independent set if and only if G has a vertex cover of size $|V| - k$. (Note: here G is different from G in (1).)

(3) polynomial time reductions \leq_p compose; f and g are polynomial time computable. So is the composite transformation $(g \circ f)$ for a reduction for Clique \leq_p Vertex Cover, such that G has a clique of size k if and only if complementary \overline{G} has a vertex cover of size $|V| - k$.

6. (**20 points, Graduate students only, bonus for undergraduates**) Prove that if $L_1 \leq_p L_2$ and L_2 admits an algorithm that runs in time $O(n^{O(\log n)})$, then L_1 can be solved in time $O(n^{O(\log n)})$ as well.

Answers:

This follows one of the theorems introduced in the lecture. The major task remains the same, i.e., to show the polynomial length of $f(x)$, where f is assumed to be the mapping for the reduction $L_1 \leq_p L_2$.

Assume algorithm B decides L_2 and runs in time $O(|y|^c \log |y|)$ for some constant $c \geq 0$, on input y of length $|y|$.

Construct another algorithm A to decide L_1 which behaves as follows:

1. A takes the input x and transforms into $f(x)$ using the reduction algorithm F for $L_1 \leq_p L_2$. It takes $O(n^d)$ steps, for some constant $d \geq 0$, where $n = |x|$;

2. A calls B on instance y, where $y = f(x)$, A accepts x if and only B accepts y. Based on the reduction property, A decides language L_1 correctly. In addition, A takes time

$$O(|y|^c \log |y|) = O(|f(x)|^c \log |f(x)|) \leq O(n^{dc \log n^d}) = O(n^{d^2c \log n}) = O(n^{O(\log n)})$$

Summing the times for steps (1) and (2), we still have

$$O(n^d) + O(n^{O(\log n)}) = O(n^{O(\log n)})$$
7. (20 points) Assume two languages L and L' can be polynomially reduced to each other, i.e., $L \leq_p L'$ and $L' \leq_p L$. Prove that, if L is NP-complete, so is L'.

Answers:

The proof needs to show two conclusions, given the assumption that L is NP-complete:

1. (6 points) To prove that L' is NP-hard;

 Because L is NP-complete, it is NP-hard. That is $\forall J \in NP, J \leq_p L$.
 Because $L \leq_p L'$, by composition of polynomial time reductions, $J \leq_p L'$. So L' is NP-hard.

2. (9 points) To prove that L' is in NP.

 Because L is NP-complete, it is in NP. That is, there is a polynomial time verifier A such that for every $x \in \Sigma^*$,

 $$ x \in L \iff \exists y A(x, y) = 1 $$

 Because $L' \leq_p L$ (assuming through mapping function f), we have for every $z \in \Sigma^*$,

 $$ z \in L' \iff f(z) \in L $$

 Let $x = f(z)$ and combine the above two equivalences, we have

 $$ z \in L' \iff \exists y A(f(z), y) = 1 $$

 which can rewritten as

 $$ z \in L' \iff \exists y B(z, y) = 1 $$

 where B is an algorithm that first calls the reduction to produce $f(z)$ and then does the work of A on input $f(z)$ and y.

 Apparently B runs a polynomial time and it is a checker for language L'. So L' is in NP.

 This proves that L' is NP-complete, assuming L is NP-complete.