Part IV. Advanced Design and Analysis Techniques
Part IV. Advanced Design and Analysis Techniques

- Chapter 14.9 Exhaustive search
- Chapter 15. Dynamic programming
- Chapter 16. Greedy algorithms
Chapter 14.9. Exhaustive Search

Chapter 14.9. Exhaustive Search (not in the text!)
Chapter 14.9. Exhaustive Search

To enumerate all possible solutions to the problem instance.

(not in the text!)
Chapter 14.9. Exhaustive Search

To enumerate all possible solutions to the problem instance

How?
Chapter 14.9. Exhaustive Search

To enumerate all possible solutions to the problem instance

How?

• systematic examining all solutions
Chapter 14.9. Exhaustive Search (not in the text!)

To enumerate all possible solutions to the problem instance

How?

• systematic examining all solutions

• without repeating solutions that have been examined
Chapter 14.9. Exhaustive Search (not in the text!)

To enumerate all possible solutions to the problem instance

How?

• systematic examining all solutions
• without repeating solutions that have been examined
• stop when a satisfactory solution is found
Chapter 14.9. Exhaustive Search

Example: Boolean Formula Satisfiability problem (SAT)

Input: boolean formula $f(x_1, x_2, \ldots, x_n)$
Output: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.

$f(x_1, x_2, \ldots, x_n)$ is satisfiable if there is an assignment to boolean variables $x_i \in \{T, F\}, i = 1, 2, \ldots, n$, such that f is evaluated to T.

e.g., $f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3)$ is satisfiable

g(x_1, x_2) = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2)$ is not!
Chapter 14.9. Exhaustive Search

Example: Boolean Formula Satisfiability problem (SAT)

INPUT: boolean formula \(f(x_1, x_2, \ldots, x_n) \),

OUTPUT: "yes" if and only if \(f(x_1, x_2, \ldots, x_n) \) is satisfiable.

\[f(x_1, x_2, \ldots, x_n) = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3) \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \] is satisfiable

\[g(x_1, x_2) = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \] is not!
Chapter 14.9. Exhaustive Search

Example: Boolean Formula Satisfiability problem (SAT)

INPUT: boolean formula \(f(x_1, x_2, \ldots, x_n) \),

OUTPUT: "yes" if and only if \(f(x_1, x_2, \ldots, x_n) \) is satisfiable.

\(f(x_1, x_2, \ldots, x_n) \) is **satisfiable** if there is an **assignment** to boolean variables

\(x_i \in \{T, F\}, \ i = 1, 2, \ldots, n, \)
Chapter 14.9. Exhaustive Search

Example: Boolean Formula Satisfiability problem (SAT)

INPUT: boolean formula \(f(x_1, x_2, \ldots, x_n) \),
OUTPUT: "yes" if and only if \(f(x_1, x_2, \ldots, x_n) \) is satisfiable.

\(f(x_1, x_2, \ldots, x_n) \) is **satisfiable** if there is an **assignment** to boolean variables \(x_i \in \{T, F\}, i = 1, 2, \ldots, n \), such that \(f \) is evaluated to \(T \).
Chapter 14.9. Exhaustive Search

Example: Boolean Formula Satisfiability problem (SAT)

Input: boolean formula \(f(x_1, x_2, \ldots, x_n) \),
Output: "yes" if and only if \(f(x_1, x_2, \ldots, x_n) \) is satisfiable.

\(f(x_1, x_2, \ldots, x_n) \) is **satisfiable** if there is an **assignment** to boolean variables

\[x_i \in \{T, F\}, \; i = 1, 2, \ldots, n, \] such that \(f \) is evaluated to \(T \).

e.g,
Chapter 14.9. Exhaustive Search

Example: Boolean Formula Satisfiability problem (SAT)

INPUT: boolean formula $f(x_1, x_2, \ldots, x_n)$,

OUTPUT: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.

$f(x_1, x_2, \ldots, x_n)$ is **satisfiable** if there is an assignment to boolean variables $x_i \in \{T, F\}$, $i = 1, 2, \ldots, n$, such that f is evaluated to T.

e.g.,

$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3)$ is satisfiable
Example: Boolean Formula Satisfiability problem (SAT)

Input: boolean formula \(f(x_1, x_2, \ldots, x_n) \),
Output: "yes" if and only if \(f(x_1, x_2, \ldots, x_n) \) is satisfiable.

\(f(x_1, x_2, \ldots, x_n) \) is **satisfiable** if there is an **assignment** to boolean variables \(x_i \in \{T, F\}, \ i = 1, 2, \ldots, n \), such that \(f \) is evaluated to \(T \).

e.g,
\[
f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3) \text{ is satisfiable}
\]
\[
g(x_1, x_2) = (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \text{ is not!}
\]
Chapter 14.9. Exhaustive Search

Use exhaustive search to solve the SAT problem.
Use exhaustive search to solve the SAT problem.

INPUT: boolean formula $f(x_1, x_2, \ldots, x_n)$,

OUTPUT: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.
Use exhaustive search to solve the SAT problem.

Input: boolean formula \(f(x_1, x_2, \ldots, x_n) \),

Output: "yes" if and only if \(f(x_1, x_2, \ldots, x_n) \) is satisfiable.

How?
Use exhaustive search to solve the SAT problem.

Input: boolean formula $f(x_1, x_2, \ldots, x_n)$,

Output: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.

How? What will you exhaustively search on?
Chapter 14.9. Exhaustive Search

Use exhaustive search to solve the SAT problem.

INPUT: boolean formula $f(x_1, x_2, \ldots, x_n)$,

OUTPUT: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.

How? What will you exhaustively search on?

- **Enumerate all combinations of T and F for x_1, \ldots, x_n.**
Use exhaustive search to solve the SAT problem.

Input: boolean formula $f(x_1, x_2, \ldots, x_n)$,
Output: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.

How? What will you exhaustively search on?

- **Enumerate all combinations of T and F for x_1, \ldots, x_n.**
- Can you solve it with a recursive algorithm?
Use exhaustive search to solve the SAT problem.

Input: boolean formula $f(x_1, x_2, \ldots, x_n)$,

Output: "yes" if and only if $f(x_1, x_2, \ldots, x_n)$ is satisfiable.

How? What will you exhaustively search on?

- **Enumerate all combinations of T and F for x_1, \ldots, x_n.**
- Can you solve it with a recursive algorithm?
- Can you solve it with a iterative algorithm?
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

• what data will the recursion be applied to?

 boolean formula $f(x_1, \ldots, x_n)$

• what is the terminating (base) case?

 $n=0$, formula without variables

• what is the recursive case?

 $f(x_1, \ldots, x_{n-1}, x_n) = f(x_1, \ldots, x_{n-1}, T) \lor f(x_1, \ldots, x_{n-1}, F)$

 $f(x_1, \ldots, x_{n-1}, T) = \Rightarrow g(x_1, \ldots, x_{n-1})$

 $f(x_1, \ldots, x_{n-1}, F) = \Rightarrow h(x_1, \ldots, x_{n-1})$
Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula $f(x_1, \ldots, x_n)$
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula \(f(x_1, \ldots, x_n) \)

- what is the terminating (base) case?
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula \(f(x_1, \ldots, x_n) \)

- what is the terminating (base) case?

 \(n=0 \), formula without variables
Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula $f(x_1, \ldots, x_n)$

- what is the terminating (base) case?

 $n=0$, formula without variables

- what is the recursive case?

 $f(x_1, \ldots, x_{n-1}, x_n) =$
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula $f(x_1, \ldots, x_n)$

- what is the terminating (base) case?

 $n=0$, formula without variables

- what is the recursive case?

 $$f(x_1, \ldots, x_{n-1}, x_n) = f(x_1, \ldots, x_{n-1}, T) \lor f(x_1, \ldots, x_{n-1}, F)$$
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula \(f(x_1, \ldots, x_n) \)

- what is the terminating (base) case?

 \(n=0 \), formula without variables

- what is the recursive case?

 \[
 f(x_1, \ldots, x_{n-1}, x_n) = f(x_1, \ldots, x_{n-1}, T) \lor f(x_1, \ldots, x_{n-1}, F) \\
 f(x_1, \ldots, x_{n-1}, T)
 \]
Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?

 boolean formula $f(x_1, \ldots, x_n)$

- what is the terminating (base) case?

 $n=0$, formula without variables

- what is the recursive case?

 $f(x_1, \ldots, x_{n-1}, x_n) = f(x_1, \ldots, x_{n-1}, T) \lor f(x_1, \ldots, x_{n-1}, F)$

 $f(x_1, \ldots, x_{n-1}, T) \implies g(x_1, \ldots, x_{n-1})$
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?
 boolean formula $f(x_1, \ldots, x_n)$

- what is the terminating (base) case?
 $n=0$, formula without variables

- what is the recursive case?

 \[
 f(x_1, \ldots, x_{n-1}, x_n) = f(x_1, \ldots, x_{n-1}, T) \lor f(x_1, \ldots, x_{n-1}, F)
 \]

 \[
 f(x_1, \ldots, x_{n-1}, T) \implies g(x_1, \ldots, x_{n-1})
 \]

 \[
 f(x_1, \ldots, x_{n-1}, F)
 \]
Chapter 14.9. Exhaustive Search

Solve SAT problem with a recursive algorithm:

- what data will the recursion be applied to?
 boolean formula \(f(x_1, \ldots, x_n) \)

- what is the terminating (base) case?
 \(n=0 \), formula without variables

- what is the recursive case?

 \[
 f(x_1, \ldots, x_{n-1}, x_n) = f(x_1, \ldots, x_{n-1}, T) \lor f(x_1, \ldots, x_{n-1}, F)
 \]

 \[
 f(x_1, \ldots, x_{n-1}, T) \implies g(x_1, \ldots, x_{n-1})
 \]

 \[
 f(x_1, \ldots, x_{n-1}, F) \implies h(x_1, \ldots, x_{n-1})
 \]
Algorithm SAT Solver($f(x_1, \ldots, x_{n-1}, x_n)$)

1. if $n = 0$, return (f);
2. else $g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, \top)$
3. $h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, \bot)$
4. return (SAT Solver($g(x_1, \ldots, x_{n-1})$) \lor SAT Solver($h(x_1, \ldots, x_{n-1})$))

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
- what does each path mean?
- how many paths?
- time? $T(n) = 2T(n-1) + cn$, $T(0) = c$ \Rightarrow $T(n) = \Theta(2^n)$
Algorithm SAT_SOLVER\((f(x_1, \ldots, x_{n-1}, x_n))\)

1. \textbf{if} \(n = 0\), return \((f)\);
Chapter 14.9. Exhaustive Search

Algorithm SAT SOLVER\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. if \(n = 0 \), return \(f \);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T) \)
Chapter 14.9. Exhaustive Search

Algorithm \texttt{SAT Solver}(f(x_1, \ldots, x_{n-1}, x_n))

1. \textbf{if} \ n = 0, \ \textbf{return} \ (f);
2. \textbf{else} \ g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T)
3. \quad h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F)

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
- what does each path mean?
- how many paths?
- time? $T(n) = 2T(n-1) + cn$, $T(0) = c$ $\Rightarrow T(n) = \Theta(2^n)$
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. if \(n = 0 \), return \(f \);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T) \)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F) \)
4. return (SAT Solver\((g(x_1, \ldots, x_{n-1})) \lor \)) SAT Solver\((h(x_1, \ldots, x_{n-1})) \))
Chapter 14.9. Exhaustive Search

Algorithm \textsc{SAT Solver}(f(x_1, \ldots, x_{n-1}, x_n))

1. \textbf{if} \ n = 0, \ \textbf{return} \ (f);
2. \textbf{else} \ g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T)
3. \quad h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F)
4. \textbf{return} \ (\textsc{SAT Solver}(g(x_1, \ldots, x_{n-1})) \lor \textsc{SAT Solver}(h(x_1, \ldots, x_{n-1})))

Does this algorithm exhaustively search all assignments to the variables?
Algorithm SAT SOLVER\((f(x_1, \ldots, x_{n-1}, x_n))\)

1. if \(n = 0\), return \((f)\);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T)\)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F)\)
4. return \((\text{SAT SOLVER}(g(x_1, \ldots, x_{n-1})) \lor \text{SAT SOLVER}(h(x_1, \ldots, x_{n-1})))\)

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. if \(n = 0 \), return \((f) \);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T) \)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F) \)
4. return \((\text{SAT Solver}(g(x_1, \ldots, x_{n-1})) \lor \text{SAT Solver}(h(x_1, \ldots, x_{n-1})))\)

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver\(f(x_1, \ldots, x_{n-1}, x_n)\)

1. if \(n = 0\), return \((f)\);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T)\)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F)\)
4. return (SAT Solver\(g(x_1, \ldots, x_{n-1})\)) \(\lor\) SAT Solver\(h(x_1, \ldots, x_{n-1})\))

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
- what does each path mean?
Chapter 14.9. Exhaustive Search

Algorithm $\text{SAT Solver}(f(x_1, \ldots, x_{n-1}, x_n))$

1. if $n = 0$, return (f);
2. else $g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, \text{T})$
3. $h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, \text{F})$
4. return $(\text{SAT Solver}(g(x_1, \ldots, x_{n-1})) \lor$
 $\text{SAT Solver}(h(x_1, \ldots, x_{n-1})))$

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
- what does each path mean? how many paths?
Algorithm SAT Solver\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. if \(n = 0 \), return \(f \);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T) \)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F) \)
4. return \(\text{SAT Solver}(g(x_1, \ldots, x_{n-1})) \lor \text{SAT Solver}(h(x_1, \ldots, x_{n-1})) \)

Does this algorithm exhaustively search all assignments to the variables?

- draw a *search tree* based on the algorithm.
- what does the tree look like?
- what does each path mean? how many paths?
- time?

\[T(n) = 2T(n-1) + cn, \quad T(0) = c \]
\[\Rightarrow T(n) = \Theta(2^n) \]
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. if \(n = 0 \), return \(f \);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T) \)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F) \)
4. return \(\text{SAT Solver}(g(x_1, \ldots, x_{n-1})) \lor \text{SAT Solver}(h(x_1, \ldots, x_{n-1})) \)

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
- what does each path mean? how many paths?
- time? \(T(n) = 2T(n-1) + cn, T(0) = c, \)
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver\(f(x_1, \ldots, x_{n-1}, x_n))\)

1. if \(n = 0\), return \((f)\);
2. else \(g(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, T)\)
3. \(h(x_1, \ldots, x_{n-1}) = f(x_1, \ldots, x_{n-1}, F)\)
4. return \((\text{SAT Solver}(g(x_1, \ldots, x_{n-1})) \lor \text{SAT Solver}(h(x_1, \ldots, x_{n-1}))))\)

Does this algorithm exhaustively search all assignments to the variables?

- draw a search tree based on the algorithm.
- what does the tree look like?
- what does each path mean? how many paths?
- time? \(T(n) = 2T(n - 1) + cn, T(0) = c, \implies T(n) = \Theta(2^n)\)
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?

 assignments
Solve SAT problem with iterative algorithms

• How? what to iterate on?
 assignments
• what is the initial value?
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?
 assignments

- what is the initial value?

 \[x_1 = F, x_2 = F, \ldots, x_n = F, \]
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?
 assignments

- what is the initial value?

 $$x_1 = F, x_2 = F, \ldots, x_n = F,$$ or simply \((F, F, \ldots, F)\)
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?
 - assignments

- what is the initial value?
 - \(x_1 = F, x_2 = F, \ldots, x_n = F \), or simply \((F, F, \ldots, F)\)

- what to increment

always flip the last bit.
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

• How? what to iterate on?
 assignments

• what is the initial value?
 \[x_1 = F, x_2 = F, \ldots, x_n = F, \text{ or simply } (F, F, \ldots, F) \]

• what to increment
 \[(\ldots, F, T, \ldots, T)\]
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?
 assignments

- what is the initial value?

 \[x_1 = F, x_2 = F, \ldots, x_n = F, \text{ or simply } (F, F, \ldots, F) \]

- what to increment

 \((\ldots, F, T, \ldots, T) \rightarrow (\ldots, T, F, \ldots, F) \)
Chapter 14.9. Exhaustive Search

Solve SAT problem with iterative algorithms

- How? what to iterate on?

 assignments

- what is the initial value?

 \[x_1 = F, x_2 = F, \ldots, x_n = F, \text{ or simply } (F, F, \ldots, F) \]

- what to increment

 \[(\ldots, F, T, \ldots, T) \longrightarrow (\ldots, T, F, \ldots, F) \]

 always flip the last bit.
Chapter 14.9. Exhaustive Search

1. for \(\langle x_1, \ldots, x_{n-1}, x_n \rangle \) from \(\langle F, \ldots, F \rangle \) to \(\langle T, \ldots, T \rangle \)
2. \(V = \text{Evaluate}(f, x_1, \ldots, x_n) \)
3. if \(V = T \), return \(\langle T \rangle \)
4. return \(\langle F \rangle \)

- for loop can be implemented by encoding vectors \(\langle F, \ldots, F \rangle, \ldots, \langle T, \ldots, T \rangle \) with binary numbers. Further, with integers a decoding process is needed to convert integers back to vectors.
Chapter 14.9. Exhaustive Search

Algorithm SAT SOLVER-ENUM\((f(x_1, \ldots, x_{n-1}, x_n)) \)
Algorithm **SAT Solver-Enum**\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. for \(\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle \) to \(\langle T, \ldots, T \rangle \)
Chapter 14.9. Exhaustive Search

Algorithm SAT SOLVER-ENUM($f(x_1, \ldots, x_{n-1}, x_n)$)
1. for $\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle$ to $\langle T, \ldots, T \rangle$
2. $V = Evaluate(f, x_1, \ldots, x_n)$
Algorithm $\text{SAT Solver-Enum}(f(x_1, \ldots, x_{n-1}, x_n))$

1. for $\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle$ to $\langle T, \ldots, T \rangle$
2. $V = \text{Evaluate}(f, x_1, \ldots, x_n)$
3. if $V = T$, return (T)
Chapter 14.9. Exhaustive Search

Algorithm \textsc{SAT Solver-Enum}(f(x_1, \ldots, x_{n-1}, x_n))

1. \textbf{for} $\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle$ \textbf{to} $\langle T, \ldots, T \rangle$
2. \hspace{1em} $V = \text{Evaluate}(f, x_1, \ldots, x_n)$
3. \hspace{1em} \textbf{if} $V = T$, \textbf{return} $\langle T \rangle$
4. \hspace{1em} \textbf{return} $\langle F \rangle$
Chapter 14.9. Exhaustive Search

Algorithm $\text{SAT Solver-Enum}(f(x_1, \ldots, x_{n-1}, x_n))$

1. for $\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle$ to $\langle T, \ldots, T \rangle$
2. $V = \text{Evaluate}(f, x_1, \ldots, x_n)$
3. if $V = T$, return T
4. return F

- for loop can be implemented by encoding vectors $\langle F, \ldots, F \rangle$, \ldots, $\langle T, \ldots, T \rangle$ with
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver-Enum\((f(x_1, \ldots, x_{n-1}, x_n)) \)

1. \textbf{for } \langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle \textbf{ to } \langle T, \ldots, T \rangle \\
2. \hspace{1cm} V = \text{Evaluate}(f, x_1, \ldots, x_n) \\
3. \hspace{1cm} \textbf{if } V = T, \textbf{ return } (T) \\
4. \hspace{1cm} \textbf{return } (F)

- \textbf{for} loop can be implemented by encoding vectors \(\langle F, \ldots, F \rangle, \ldots, \langle T, \ldots, T \rangle \) with binary numbers then
Algorithm SAT Solver-Enum($f(x_1, \ldots, x_{n-1}, x_n)$)

1. for $\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle$ to $\langle T, \ldots, T \rangle$
2. $V = Evaluate(f, x_1, \ldots, x_n)$
3. if $V = T$, return (T)
4. return (F)

- for loop can be implemented by encoding vectors $\langle F, \ldots, F \rangle$, \ldots, $\langle T, \ldots, T \rangle$ with binary numbers then further with integers
Chapter 14.9. Exhaustive Search

Algorithm SAT Solver-Enum\(f(x_1, \ldots, x_{n-1}, x_n) \)

1. for \(\langle x_1, \ldots, x_n \rangle = \langle F, \ldots, F \rangle \) to \(\langle T, \ldots, T \rangle \)
2. \(V = \text{Evaluate}(f, x_1, \ldots, x_n) \)
3. if \(V = T \), return \((T) \)
4. return \((F) \)

• for loop can be implemented by encoding vectors \(\langle F, \ldots, F \rangle, \ldots, \langle T, \ldots, T \rangle \) with binary numbers then further with integers
• a decoding process is needed to converting integers back to vectors
Chapter 14.9. Exhaustive Search

Iterative exhaustive search seems to be more convenient.

Another example: Travel Salesman Problem (TSP)

Related problem: Hamiltonian Cycle

Input: a graph $G = (V, E)$

Output: yes if and only if G contains a Hamiltonian cycle (Hamiltonian path is a cycle going through every vertex exactly once.)

How to enumerate all cycles and validate?

• enumerate all permutations of ($1, 2, \ldots, n$)

• how to encode these permutations as integers?
Chapter 14.9. Exhaustive Search

Iterative exhaustive search seems to be more convenient
Iterative exhaustive search seems to be more convenient

Another example: Travel Salesman Problem (TSP)
Iterative exhaustive search seems to be more convenient.

Another example: Travel Salesman Problem (TSP)

Related problem: Hamiltonian Cycle
Iterative exhaustive search seems to be more convenient

Another example: Travel Salesman Problem (TSP)

Related problem: Hamiltonian Cycle

Input: a graph $G = (V, E)$

Output: yes if and only if G contains a Hamiltonian cycle

(Hamiltonian path is a cycle going through every vertex exactly once.)
Iterative exhaustive search seems to be more convenient

Another example: Travel Salesman Problem (TSP)

Related problem: Hamiltonian Cycle

Input: a graph $G = (V, E)$
Output: yes if and only if G contains a Hamiltonian cycle

(Hamiltonian path is a cycle going through every vertex exactly once.)

How to enumerate all cycles and validate?
Iterative exhaustive search seems to be more convenient

Another example: Travel Salesman Problem (TSP)

Related problem: Hamiltonian Cycle

Input: a graph $G = (V, E)$

Output: yes if and only if G contains a Hamiltonian cycle

(Hamiltonian path is a cycle going through every vertex exactly once.)

How to enumerate all cycles and validate?

- enumerate all permutations of $(1, 2, \ldots, n)$
Iterative exhaustive search seems to be more convenient.

Another example: Travel Salesman Problem (TSP)

Related problem: Hamiltonian Cycle

Input: a graph $G = (V, E)$

Output: yes if and only if G contains a Hamiltonian cycle

(Hamiltonian path is a cycle going through every vertex exactly once.)

How to enumerate all cycles and validate?

- enumerate all permutations of $(12\ldots n)$
- how to encode these permutations as integers?
Chapter 14.9. Exhaustive Search

Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph $G = (V,E)$

Output: a subset $I \subseteq V$ such that

1. $\forall u,v \in I, (u,v) \notin E$,
2. $|I|$ is the maximum.

• trivial exhaustive search: check every subset of V and verify
• non-trivial: use a search tree, achieving a better time upper bound.

taking advantage of the independent set
Chapter 14.9 Exhaustive Search

Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph \(G = (V, E) \)

Output: a subset \(I \subseteq V \) such that

\[
\begin{align*}
(1) & \quad \forall u, v \in I, (u, v) \not\in E, \\
(2) & \quad |I| \text{ is the maximum.}
\end{align*}
\]
Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph $G = (V, E)$

Output: a subset $I \subseteq V$ such that

1. $\forall u, v \in I, (u, v) \notin E,$
Chapter 14.9. Exhaustive Search

Exhaustive search could be non-trivial

Maximum Independent Set

INPUT: a graph $G = (V, E)$

OUTPUT: a subset $I \subseteq V$ such that

1. $\forall u, v \in I$, $(u, v) \notin E$, and

2. $|I|$ is the maximum.
Chapter 14.9. Exhaustive Search

Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph $G = (V, E)$

Output: a subset $I \subseteq V$ such that

1. $\forall u, v \in I, (u, v) \notin E$, and
2. $|I|$ is the maximum.

- trivial exhaustive search: check every subset of V and verify
Chapter 14.9. Exhaustive Search

Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph $G = (V, E)$

Output: a subset $I \subseteq V$ such that

1. $\forall u, v \in I, (u, v) \notin E$, and
2. $|I|$ is the maximum.

- trivial exhaustive search: check every subset of V and verify

 use n-binary bits to encode a subset; totally 2^n subsets
Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph $G = (V, E)$

Output: a subset $I \subseteq V$ such that

1. $\forall u, v \in I, (u, v) \notin E$, and
2. $|I|$ is the maximum.

- trivial exhaustive search: check every subset of V and verify
 - use n-binary bits to encode a subset; totally 2^n subsets
- non-trivial: use a search tree, achieving a better time upper bound.
Chapter 14.9. Exhaustive Search

Exhaustive search could be non-trivial

Maximum Independent Set

Input: a graph $G = (V,E)$

Output: a subset $I \subseteq V$ such that

1. $\forall u,v \in I, (u,v) \not\in E$, and
2. $|I|$ is the maximum.

- **Trivial exhaustive search**: check every subset of V and verify

 use n-binary bits to encode a subset; totally 2^n subsets

- **Non-trivial**: use a search tree, achieving a better time upper bound.

 taking advantage of the independent set
Chapter 14.9. Exhaustive Search

The algorithm follows a logical search tree
The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
Chapter 14.9. Exhaustive Search

The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 (1) to include v in the independent set;
 (2) to exclude v from the independent set;
- resulting in two subgraphs G_1 and G_2 to be recursively considered,
 (1) G_1 is the result of G after v and all its neighbors are removed;
 (2) G_2 is the result of G after v is removed.
- the algorithm terminates when the considered graph is empty.
Chapter 14.9. Exhaustive Search

The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 1. to include v in the independent set;
 2. to exclude v from the independent set;
Chapter 14.9. Exhaustive Search

The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 (1) to include v in the independent set;
 (2) to exclude v from the independent set;
- resulting in two subgraphs G_1 and G_2 to be recursively considered,
The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 (1) to \textit{include} v in the independent set;
 (2) to \textit{exclude} v from the independent set;
- resulting in two subgraphs G_1 and G_2 to be recursively considered,
 (1) G_1 is the result of G after v
Chapter 14.9. Exhaustive Search

The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 - (1) to include v in the independent set;
 - (2) to exclude v from the independent set;
- resulting in two subgraphs G_1 and G_2 to be recursively considered,
 - (1) G_1 is the result of G after v and all its neighbors are removed;
Chapter 14.9. Exhaustive Search

The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 (1) to include v in the independent set;
 (2) to exclude v from the independent set;
- resulting in two subgraphs G_1 and G_2 to be recursively considered,
 (1) G_1 is the result of G after v and all its neighbors are removed;
 (2) G_2 is the result of G after v is removed.
The algorithm follows a logical search tree

- given a graph G, it picks an arbitrary vertex v from G;
- exhaustively, there are two cases to consider:
 1. to include v in the independent set;
 2. to exclude v from the independent set;
- resulting in two subgraphs G_1 and G_2 to be recursively considered,
 1. G_1 is the result of G after v and all its neighbors are removed;
 2. G_2 is the result of G after v is removed.
- the algorithm terminates when the considered graph is empty.
Chapter 14.9. Exhaustive Search

Algorithm $\text{MaxIndSet} (G)$

1. if $G = \emptyset$ return (\emptyset)
2. else pick an arbitrary vertex v in G
3. let G_1 be G with v and all its neighbors removed
4. $I_1 = \{v\} \cup \text{MaxIndSet} (G_1)$
5. let G_2 be G with v removed
6. $I_2 = \text{MaxIndSet} (G_2)$
7. if $|I_1| \geq |I_2|$ return (I_1)
8. else return (I_2)

• the algorithm is a search tree
• the time complexity: $T(n) = cn^2 + T(|G_1|) + T(|G_2|)$

$T(n) = T(n-1-m) + T(n-1) + cn^2$ where m is the number of neighbors of v's, how to guarantee a large m?
Chapter 14.9. Exhaustive Search

Algorithm $\text{MaxIndSet}(G)$

1. if $G = \emptyset$ return (\emptyset)
Algorithm \texttt{MaxIndSet} \((G)\)

1. \textbf{if} \(G = \emptyset\) return \((\emptyset)\)
2. \textbf{else} pick an arbitrary vertex \(v\) in \(G\)
Chapter 14.9. Exhaustive Search

Algorithm \textsc{MaxIndSet} \((G)\)

1. \textbf{if} \(G = \emptyset\) \textbf{return} \((\emptyset)\)
2. \textbf{else} pick an arbitrary vertex \(v\) in \(G\)
3. \hspace{1em} let \(G_1\) be \(G\) with \(v\) and all its neighbors removed

\[T(n) = T(n-1-m) + T(n-1) + cn^2 \]

where \(m\) is the number of neighbors of \(v\)'s, how to guarantee a large \(m\)?
Chapter 14.9. Exhaustive Search

Algorithm MaxIndSet \((G)\)

1. if \(G = \emptyset\) return \((\emptyset)\)
2. else pick an arbitrary vertex \(v\) in \(G\)
3. let \(G_1\) be \(G\) with \(v\) and all its neighbors removed
4. \(I_1 = \{v\} \cup \text{MaxIndSet} (G_1)\)

\[T(n) = T(n-1-m) + T(n-1) + cn^2 \]

where \(m\) is the number of neighbors of \(v\)’s,
how to guarantee a large \(m\)?
Chapter 14.9. Exhaustive Search

Algorithm \textbf{MaxIndSet} \((G)\)

1. \textbf{if} \; G = \emptyset \; \textbf{return} \; (\emptyset)
2. \textbf{else} \; pick an arbitrary vertex \(v\) in \(G\)
3. \; let \(G_1\) be \(G\) with \(v\) and all its neighbors removed
4. \; \(I_1 = \{v\} \cup \text{MaxIndSet} \; (G_1)\)
5. \; let \(G_2\) be \(G\) with \(v\) removed
Chapter 14.9. Exhaustive Search

Algorithm \textsc{MaxIndSet}(G)

1. \textbf{if} \ G = \emptyset \ \textbf{return} \ (\emptyset)
2. \textbf{else} pick an arbitrary vertex \(v \) in \(G \)
3. \hspace{1em} let \(G_1 \) be \(G \) with \(v \) and all its neighbors removed
4. \hspace{1em} \(I_1 = \{v\} \cup \text{MaxIndSet}(G_1) \)
5. \hspace{1em} let \(G_2 \) be \(G \) with \(v \) removed
6. \hspace{1em} \(I_2 = \text{MaxIndSet}(G_2) \)

The algorithm is a search tree

The time complexity:
\[
T(n) = T(n-1-m) + T(n-1) + cn^2
\]

where \(m \) is the number of neighbors of \(v \)’s,
how to guarantee a large \(m \)?
Chapter 14.9. Exhaustive Search

Algorithm \textsf{MaxIndSet} \ (G)

1. \textbf{if} \ G = \emptyset \ \textbf{return} \ (\emptyset)
2. \textbf{else} \ \text{pick an arbitrary vertex} \ v \ \text{in} \ G
3. \ \text{let} \ G_1 \ \text{be} \ G \ \text{with} \ v \ \text{and all its neighbors removed}
4. \ \ I_1 = \{v\} \cup \textsf{MaxIndSet} \ (G_1)
5. \ \text{let} \ G_2 \ \text{be} \ G \ \text{with} \ v \ \text{removed}
6. \ I_2 = \textsf{MaxIndSet} \ (G_2)
7. \ \textbf{if} \ |I_1| \geq |I_2| \ \textbf{return} \ (I_1)

Note:

- The algorithm is a search tree
- The time complexity: $T(n) = cn^2 + T(|G_1|) + T(|G_2|)$

Where m is the number of neighbors of v's, how to guarantee a large m?
Chapter 14.9. Exhaustive Search

Algorithm MaxIndSet \((G)\)

1. \textbf{if} \(G = \emptyset\) \textbf{return} \((\emptyset)\)
2. \textbf{else} pick an arbitrary vertex \(v\) in \(G\)
3. let \(G_1\) be \(G\) with \(v\) and all its neighbors removed
4. \(I_1 = \{v\} \cup \text{MaxIndSet} (G_1)\)
5. let \(G_2\) be \(G\) with \(v\) removed
6. \(I_2 = \text{MaxIndSet} (G_2)\)
7. \textbf{if} \(|I_1| \geq |I_2|\) \textbf{return} \((I_1)\)
8. \textbf{else} \textbf{return} \((I_2)\)
Algorithm `MaxIndSet (G)`

1. **if** $G = \emptyset$ **return** (\emptyset)
2. **else** pick an arbitrary vertex v in G
3. let G_1 be G with v and all its neighbors removed
4. $I_1 = \{v\} \cup \text{MaxIndSet} (G_1)$
5. let G_2 be G with v removed
6. $I_2 = \text{MaxIndSet} (G_2)$
7. **if** $|I_1| \geq |I_2|$ **return** (I_1)
8. **else** **return** (I_2)

- the algorithm is a search tree
Algorithm \textsf{MaxIndSet} \((G)\)

1. \textbf{if} \(G = \emptyset \) \textbf{return} \((\emptyset)\)

2. \textbf{else} pick an arbitrary vertex \(v \) in \(G \)

3. let \(G_1 \) be \(G \) with \(v \) and all its neighbors removed

4. \(I_1 = \{v\} \cup \text{MaxIndSet} \((G_1)\) \)

5. let \(G_2 \) be \(G \) with \(v \) removed

6. \(I_2 = \text{MaxIndSet} \((G_2)\) \)

7. \textbf{if} \(|I_1| \geq |I_2| \) \textbf{return} \((I_1)\)

8. \textbf{else} \textbf{return} \((I_2)\)

- the algorithm is a search tree
- the time complexity:
Chapter 14.9. Exhaustive Search

Algorithm \texttt{MaxIndSet} \((G)\)

1. \textbf{if} \(G = \emptyset\) \textbf{return} \((\emptyset)\)
2. \textbf{else} pick an arbitrary vertex \(v\) in \(G\)
3. let \(G_1\) be \(G\) with \(v\) and all its neighbors removed
4. \(I_1 = \{v\} \cup \text{MaxIndSet} \((G_1)\)\)
5. let \(G_2\) be \(G\) with \(v\) removed
6. \(I_2 = \text{MaxIndSet} \((G_2)\)\)
7. \textbf{if} \(|I_1| \geq |I_2|\) \textbf{return} \((I_1)\)
8. \textbf{else return} \((I_2)\)

- the algorithm is a search tree
- the time complexity: \(T(|G|) = cn^2 + T(|G_1|) + T(|G_2|)\)
Algorithm $\text{MaxIndSet} (G)$

1. \textbf{if} $G = \emptyset$ \textbf{return} (\emptyset)
2. \textbf{else} pick an arbitrary vertex v in G
3. \quad let G_1 be G with v and all its neighbors removed
4. \quad $I_1 = \{v\} \cup \text{MaxIndSet} (G_1)$
5. \quad let G_2 be G with v removed
6. \quad $I_2 = \text{MaxIndSet} (G_2)$
7. \quad \textbf{if} $|I_1| \geq |I_2|$ \textbf{return} (I_1)
8. \quad \textbf{else return} (I_2)

- the algorithm is a search tree
- the time complexity: $T(|G|) = cn^2 + T(|G_1|) + T(|G_2|)$

$$T(n) = T(n - 1 - m) + T(n - 1) + cn^2$$

where m is the number of neighbors of v's,
Chapter 14.9. Exhaustive Search

Algorithm \textsc{MaxIndSet} \((G)\)

1. \textbf{if} \(G = \emptyset\) \textbf{return} \((\emptyset)\)
2. \textbf{else} pick an arbitrary vertex \(v\) in \(G\)
3. \hspace{1em} let \(G_1\) be \(G\) with \(v\) and all its neighbors removed
4. \hspace{1em} \(I_1 = \{v\} \cup \text{MaxIndSet} \((G_1)\)\)
5. \hspace{1em} let \(G_2\) be \(G\) with \(v\) removed
6. \hspace{1em} \(I_2 = \text{MaxIndSet} \((G_2)\)\)
7. \hspace{1em} \textbf{if} \(|I_1| \geq |I_2|\) \textbf{return} \((I_1)\)
8. \hspace{1em} \textbf{else} \textbf{return} \((I_2)\)

- the algorithm is a search tree
- the time complexity: \(T(|G|) = cn^2 + T(|G_1|) + T(|G_2|)\)

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

where \(m\) is the number of neighbors of \(v\)'s, how to guarantee a large \(m\)?
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0 \),

- how to guarantee \(m \geq 1 \)?
 - if we can,
 \[T(n) \leq T(n - 2) + T(n - 1) + cn^2, \]
 \[\Rightarrow T(n) = O(2^n) \]
 - how to guarantee \(m \geq 2 \)?
 - if we can,
 \[T(n) \leq T(n - 3) + T(n - 1) + cn^2, \]
 \[\Rightarrow T(n) = O(1.618^n) \]
 - use the substitution method to prove \(T(n) = O(1.5n) \).
 - can we guarantee \(m \geq 3 \)?
 - possible but a little more complicated.
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0 \), \(T(n) \leq T(n - 1) + T(n - 1) + cn^2 \),
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

• \(m \geq 0, \ T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0, T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)
- how to guarantee \(m \geq 1? \)
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0 \), \(T(n) \leq T(n - 1) + T(n - 1) + cn^2 \), \(\implies T(n) = O(2^n) \)
- how to guarantee \(m \geq 1 \)? if we can, \(T(n) \leq T(n - 2) + T(n - 1) + cn^2 \),
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0, \ T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)

- how to guarantee \(m \geq 1? \) if we can,
 \(T(n) \leq T(n - 2) + T(n - 1) + cn^2, \implies T(n) = O(1.6181^n) \)
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0 \), \(T(n) \leq T(n - 1) + T(n - 1) + cn^2 \), \(\implies T(n) = O(2^n) \)
- how to guarantee \(m \geq 1 \)? if we can,
 \(T(n) \leq T(n - 2) + T(n - 1) + cn^2 \), \(\implies T(n) = O(1.6181^n) \)
- how to guarantee \(m \geq 2 \)?
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0, T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)
- how to guarantee \(m \geq 1 \)? if we can,
 \[T(n) \leq T(n - 2) + T(n - 1) + cn^2, \implies T(n) = O(1.6181^n) \]
- how to guarantee \(m \geq 2 \)? if we can,
 \[T(n) \leq T(n - 3) + T(n - 1) + cn^2, \]
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0, \ T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)

- how to guarantee \(m \geq 1 \)? if we can,
 \[T(n) \leq T(n - 2) + T(n - 1) + cn^2, \implies T(n) = O(1.6181^n) \]

- how to guarantee \(m \geq 2 \)? if we can,
 \[T(n) \leq T(n - 3) + T(n - 1) + cn^2, \implies T(n) = O(1.5^n) \]
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0, T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)

- how to guarantee \(m \geq 1? \) if we can,
 \[T(n) \leq T(n - 2) + T(n - 1) + cn^2, \implies T(n) = O(1.6181^n) \]

- how to guarantee \(m \geq 2? \) if we can,
 \[T(n) \leq T(n - 3) + T(n - 1) + cn^2, \implies T(n) = O(1.5^n) \]

use the substitution method to prove \(T(n) = O(1.5^n) \).
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0, \ T(n) \leq T(n - 1) + T(n - 1) + cn^2, \implies T(n) = O(2^n) \)
- how to guarantee \(m \geq 1? \) if we can,
 \[T(n) \leq T(n - 2) + T(n - 1) + cn^2, \implies T(n) = O(1.6181^n) \)
- how to guarantee \(m \geq 2? \) if we can,
 \[T(n) \leq T(n - 3) + T(n - 1) + cn^2, \implies T(n) = O(1.5^n) \]
 use the substitution method to prove \(T(n) = O(1.5^n). \)
- can we guarantee \(m \geq 3? \)
Chapter 14.9. Exhaustive Search

\[T(n) = T(n - 1 - m) + T(n - 1) + cn^2 \]

- \(m \geq 0 \), \(T(n) \leq T(n - 1) + T(n - 1) + cn^2 \), \(\implies T(n) = O(2^n) \)

- how to guarantee \(m \geq 1 \)? if we can,
 \(T(n) \leq T(n - 2) + T(n - 1) + cn^2 \), \(\implies T(n) = O(1.6181^n) \)

- how to guarantee \(m \geq 2 \)? if we can,
 \(T(n) \leq T(n - 3) + T(n - 1) + cn^2 \), \(\implies T(n) = O(1.5^n) \)

use the substitution method to prove \(T(n) = O(1.5^n) \).

- can we guarantee \(m \geq 3 \)? possible but a little more complicated.
Chapter 14.9. Exhaustive Search

- Algorithms for SAT and MAXINDSET run in exponential time $O(2^n)$ or $O(\gamma^n)$ for $1 < \gamma < 2$
Chapter 14.9. Exhaustive Search

- Algorithms for SAT and \texttt{MaxIndSet} run in exponential time $O(2^n)$ or $O(\gamma^n)$ for $1 < \gamma < 2$
- Search tree (solution search space) is large, \textit{inherently} large
Chapter 14.9. Exhaustive Search

- Algorithms for SAT and MAXINDSET run in exponential time $O(2^n)$ or $O(\gamma^n)$ for $1 < \gamma < 2$
- Search tree (solution search space) is large, inherently large
- Search tree does not have obvious overlapping subproblems,
Chapter 14.9. Exhaustive Search

- Algorithms for SAT and \texttt{MaxIndSet} run in exponential time $O(2^n)$ or $O\left(\gamma^n\right)$ for $1 < \gamma < 2$

- search tree (solution search space) is large, \textit{inherently} large

- search tree does not have obvious overlapping subproblems, which otherwise would incur dynamic programming approaches.
Chapter 15. Dynamic Programming

Chapter 15. Dynamic Programming
Chapter 15. Dynamic Programming

• we will deal with optimization problems
• we will deal with optimization problems

the output solution satisfies certain desired optimality
Chapter 15. Dynamic Programming

- we will deal with optimization problems
 the output solution satisfies certain desired optimality
- such problems can be solved with divide-and-conquer
Chapter 15. Dynamic Programming

• we will deal with optimization problems
 the output solution satisfies certain desired optimality
• such problems can be solved with divide-and-conquer
 direct, top-down recursive approaches would incur high time complexity
• we will deal with optimization problems
 the output solution satisfies certain desired optimality
• such problems can be solved with divide-and-conquer
direct, top-down recursive approaches would incur high time complexity
• there are overlapping subproblems
Chapter 15. Dynamic Programming

• we will deal with optimization problems
 the output solution satisfies certain desired optimality

• such problems can be solved with divide-and-conquer
 direct, top-down recursive approaches would incur high time complexity

• there are overlapping subproblems
 bottom-up approaches avoid re-computation for subproblems
Chapter 15. Dynamic Programming

Will discuss the following examples:
Chapter 15. Dynamic Programming

Will discuss the following examples:

- assembly-line scheduling
Chapter 15. Dynamic Programming

Will discuss the following examples:

- assembly-line scheduling
- casino dice problem and decoding algorithm
Chapter 15. Dynamic Programming

Will discuss the following examples:

- assembly-line scheduling
- casino dice problem and decoding algorithm
- probabilistic finite automata, Viterbi’s decoding algorithm
- matrix-chain multiplication
- longest common subsequence
- molecular sequence comparison/alignment
- molecular structure prediction
Chapter 15. Dynamic Programming

Will discuss the following examples:

- assembly-line scheduling
- casino dice problem and decoding algorithm
- probabilistic finite automata, Viterbi’s decoding algorithm
- matrix-chain multiplication
Chapter 15. Dynamic Programming

Will discuss the following examples:

• assembly-line scheduling
• casino dice problem and decoding algorithm
• probabilistic finite automata, Viterbi’s decoding algorithm
• matrix-chain multiplication
• longest common subsequence
Chapter 15. Dynamic Programming

Will discuss the following examples:

- assembly-line scheduling
- casino dice problem and decoding algorithm
- probabilistic finite automata, Viterbi’s decoding algorithm
- matrix-chain multiplication
- longest common subsequence
- molecular sequence comparison/alignment
Chapter 15. Dynamic Programming

Will discuss the following examples:

- assembly-line scheduling
- casino dice problem and decoding algorithm
- probabilistic finite automata, Viterbi’s decoding algorithm
- matrix-chain multiplication
- longest common subsequence
- molecular sequence comparison/alignment
- molecular structure prediction
Chapter 15. Dynamic Programming

Revisit the problem of computing the nth element of Fibonacci sequence

$F(n) = F(n-1) + F(n-2)$, $F(1) = F(2) = 1$.

• it divides problems into two subproblems
• there are overlapping subproblems
• direct top-down search would incur an exponential time
• bottom-up computation is much faster
 compute table $T[1..n]$ from left to right, by looking up values that have already been computed
Revisit the problem of computing the nth element of Fibonacci sequence

$$F(n) = F(n - 1) + F(n - 2), \quad F(1) = F(2) = 1.$$
Chapter 15. Dynamic Programming

Revisit the problem of computing the nth element of Fibonacci sequence

$$F(n) = F(n-1) + F(n-2), \ F(1) = F(2) = 1.$$

- it divides problems into two subproblems
Chapter 15. Dynamic Programming

Revisit the problem of computing the nth element of Fibonacci sequence

$$F(n) = F(n-1) + F(n-2), \ F(1) = F(2) = 1.$$

- it divides problems into two subproblems
- there are overlapping subproblems
Revisit the problem of computing the nth element of Fibonacci sequence

$$F(n) = F(n - 1) + F(n - 2), \quad F(1) = F(2) = 1.$$

- it divides problems into two subproblems
- there are overlapping subproblems
- direct top-down search would incur an exponential time
Chapter 15. Dynamic Programming

Revisit the problem of computing the nth element of Fibonacci sequence

$$F(n) = F(n - 1) + F(n - 2), \quad F(1) = F(2) = 1.$$

- it divides problems into two subproblems
- there are overlapping subproblems
- direct top-down search would incur an exponential time
- bottom-up computation is much faster
Chapter 15. Dynamic Programming

Revisit the problem of computing the nth element of Fibonacci sequence

$$F(n) = F(n - 1) + F(n - 2), F(1) = F(2) = 1.$$

• it divides problems into two subproblems
• there are overlapping subproblems
• direct top-down search would incur an exponential time
• bottom-up computation is much faster

compute table $T[1..n]$ from left to right,
by looking up values that have already been computed
Chapter 15. Dynamic Programming

Assembly-line scheduling
Chapter 15. Dynamic Programming

Assembly-line scheduling

- $S_{i,j}$: the jth station on line i, $i = 1, 2$, $j = 1, 2, \ldots, n$.
Chapter 15. Dynamic Programming

Assembly-line scheduling

- $S_{i,j}$: the jth station on line i, $i = 1, 2$, $j = 1, 2, \ldots, n$.
- $a_{i,j}$ is the assembly time at station $S_{i,j}$
Chapter 15. Dynamic Programming

Assembly-line scheduling

- $S_{i,j}$: the jth station on line i, $i = 1, 2$, $j = 1, 2, \cdots, n$.
- $a_{i,j}$ is the assembly time at station $S_{i,j}$
- $t_{i,j}$ is time for transferring lines from station $S_{i,j}$
Chapter 15. Dynamic Programming

Assembly-line scheduling

- $S_{i,j}$: the jth station on line i, $i = 1, 2$, $j = 1, 2, \cdots, n$.
- $a_{i,j}$ is the assembly time at station $S_{i,j}$
- $t_{i,j}$ is time for transferring lines from station $S_{i,j}$
- e_1 and e_2 are entering time costs
Chapter 15. Dynamic Programming

Assembly-line scheduling

- \(S_{i,j} \): the \(j \)th station on line \(i \), \(i = 1, 2 \), \(j = 1, 2, \ldots, n \).
- \(a_{i,j} \) is the assembly time at station \(S_{i,j} \)
- \(t_{i,j} \) is time for transferring lines from station \(S_{i,j} \)
- \(e_1 \) and \(e_2 \) are entering time costs
- \(x_1 \) and \(x_2 \) are exiting time costs
Chapter 15. Dynamic Programming

Assembly-line scheduling

- $S_{i,j}$: the jth station on line i, $i = 1, 2$, $j = 1, 2, \cdots, n$.
- $a_{i,j}$ is the assembly time at station $S_{i,j}$
- $t_{i,j}$ is time for transferring lines from station $S_{i,j}$
- e_1 and e_2 are entering time costs
- x_1 and x_2 are exiting time costs

To determine the fastest way through a factory
Assembly-line scheduling

- $S_{i,j}$: the jth station on line i, $i = 1, 2$, $j = 1, 2, \cdots, n$.
- $a_{i,j}$ is the assembly time at station $S_{i,j}$
- $t_{i,j}$ is time for transferring lines from station $S_{i,j}$
- e_1 and e_2 are entering time costs
- x_1 and x_2 are exiting time costs

To determine the fastest way through a factory

There are 2^n possible ways.
Chapter 15. Dynamic Programming

Analyzing the problem:
Chapter 15. Dynamic Programming

Analyzing the problem:

The problem is to determine the fastest way through $S_{1,n}$ or $S_{2,n}$
Chapter 15. Dynamic Programming

Analyzing the problem:

The problem is to determine the fastest way through $S_{1,n}$ or $S_{2,n}$

For general $j, 1 \leq j \leq n$, the fastest way through $S_{1,j}$ is faster between
Chapter 15. Dynamic Programming

Analyzing the problem:

The problem is to determine the fastest way through $S_{1,n}$ or $S_{2,n}$

For general $j, 1 \leq j \leq n$, the fastest way through $S_{1,j}$ is faster between

- the fastest way through $S_{1,j-1}$ then $S_{1,j-1} \rightarrow S_{1,j}$,
Chapter 15. Dynamic Programming

Analyzing the problem:

The problem is to determine the fastest way through $S_{1,n}$ or $S_{2,n}$

For general j, $1 \leq j \leq n$, the fastest way through $S_{1,j}$ is faster between

- the fastest way through $S_{1,j-1}$ then $S_{1,j-1} \rightarrow S_{1,j}$,
- the fastest way through $S_{2,j-1}$ then $S_{2,j-1} \rightarrow S_{1,j}$.
Chapter 15. Dynamic Programming

Analyzing the problem:

The problem is to determine the fastest way through $S_{1,n}$ or $S_{2,n}$

For general j, $1 \leq j \leq n$, the fastest way through $S_{1,j}$ is faster between

- the fastest way through $S_{1,j-1}$ then $S_{1,j-1} \rightarrow S_{1,j}$,
- the fastest way through $S_{2,j-1}$ then $S_{2,j-1} \rightarrow S_{1,j}$.

Likewise, the fastest way through $S_{2,j}$ is faster between
Chapter 15. Dynamic Programming

Analyzing the problem:

The problem is to determine the fastest way through $S_{1,n}$ or $S_{2,n}$

For general $j, 1 \leq j \leq n$, the fastest way through $S_{1,j}$ is faster between

- the fastest way through $S_{1,j-1}$ then $S_{1,j-1} \rightarrow S_{1,j}$,
- the fastest way through $S_{2,j-1}$ then $S_{2,j-1} \rightarrow S_{1,j}$.

Likewise, the fastest way through $S_{2,j}$ is faster between

- the fastest way through $S_{1,j-1}$ then $S_{1,j-1} \rightarrow S_{2,j}$,
- the fastest way through $S_{2,j-1}$ then $S_{2,j-1} \rightarrow S_{2,j}$.
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

1. Perform an analysis
2. Formulate a recursive solution to the problem

Define $f_i(j)$ to be the minimum time through station $S_{i,j}$, for $i = 1, 2$, and $j = 1, \cdots, n$.

- Problem is to compute $\min \{ f_1(n) + x_1, f_2(n) + x_2 \}$
- Where $f_1()$ and $f_2()$ are defined recursively:
 \begin{align*}
 f_1(j) &= \min \{ f_1(j - 1) + a_1, j, f_2(j - 1) + t_2, j - 1 + a_1, j \} \\
 f_2(j) &= \min \{ f_2(j - 1) + a_2, j, f_1(j - 1) + t_1, j - 1 + a_2, j \}
 \end{align*}
- Base cases $f_1(1) = e_1 + a_1, 1$ and $f_2(1) = e_2 + a_2, 1$
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem

define $f_i(j)$ to be the minimum time through station $S_{i,j}$, for $i = 1, 2$ and $j = 1, \ldots, n$.

• the problem is to compute $\min\{f_1(n) + e_1, f_2(n) + e_1\}$

• where $f_1()$ and $f_2()$ are defined recursively:

$$f_1(j) = \min\{f_1(j-1) + a_{1,j}, f_2(j-1) + t_{2,j-1} + a_{1,j}\}$$

$$f_2(j) = \min\{f_2(j-1) + a_{2,j}, f_1(j-1) + t_{1,j-1} + a_{2,j}\}$$

• base cases $f_1(1) = e_{1,1}$ and $f_2(1) = e_{2,1}$.
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem

define $f_i(j)$ to be the minimum time through station $S_{i,j}$, for $i = 1, 2$ and $j = 1, \cdots, n$.

- the problem is to compute $\min\{f_1(n) + x_1, f_2(n) + x_2\}$
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem

define $f_i(j)$ to be the minimum time through station $S_{i,j}$, for $i = 1, 2$ and $j = 1, \ldots, n$.

- the problem is to compute $\min\{f_1(n) + x_1, f_2(n) + x_2\}$
- where $f_1()$ and $f_2()$ are defined recursively:
Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem

- define $f_i(j)$ to be the minimum time through station $S_{i,j}$, for $i = 1, 2$ and $j = 1, \ldots, n$.

- the problem is to compute $\min\{f_1(n) + x_1, f_2(n) + x_2\}$

- where $f_1()$ and $f_2()$ are defined recursively:

 $$(1) f_1(j) = \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\}$$
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem

Define \(f_i(j) \) to be the minimum time through station \(S_{i,j} \), for \(i = 1, 2 \) and \(j = 1, \cdots, n \).

- the problem is to compute \(\min\{f_1(n) + x_1, f_2(n) + x_2\} \)
- where \(f_1() \) and \(f_2() \) are defined recursively:

\[
(1) \quad f_1(j) = \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\} \\
(2) \quad f_2(j) = \min\{f_2(j - 1) + a_{2,j}, f_1(j - 1) + t_{1,j-1} + a_{2,j}\}
\]
Chapter 15. Dynamic Programming

Take a dynamic programming approach:

step 1: the above analysis

step 2: formulate a recursive solution to the problem

define $f_i(j)$ to be the minimum time through station $S_{i,j}$, for $i = 1, 2$ and $j = 1, \ldots, n$.

- the problem is to compute $\min\{f_1(n) + x_1, f_2(n) + x_2\}$
- where $f_1()$ and $f_2()$ are defined recursively:
 \begin{align*}
 (1) \quad f_1(j) &= \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\} \\
 (2) \quad f_2(j) &= \min\{f_2(j - 1) + a_{2,j}, f_1(j - 1) + t_{1,j-1} + a_{2,j}\}
 \end{align*}

- base cases $f_1(1) = e_1 + a_{1,1}$ and $f_2(1) = e_2 + a_{2,1}$
step 3: compute $f_1(j)$ and $f_2(j)$, for all $j = 1, 2, \ldots, n$.
Chapter 15. Dynamic Programming

step 3: compute $f_1(j)$ and $f_2(j)$, for all $j = 1, 2, \ldots, n$.

to fill out a $2 \times n$ table, from left to right

<table>
<thead>
<tr>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>...</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>...</td>
<td>$f_2(n)$</td>
</tr>
</tbody>
</table>

• using the recurrences to compute; and
Chapter 15. Dynamic Programming

step 3: compute $f_1(j)$ and $f_2(j)$, for all $j = 1, 2, \ldots, n$.

to fill out a $2 \times n$ table, from left to right

<table>
<thead>
<tr>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>\ldots</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>\ldots</td>
<td>$f_2(n)$</td>
</tr>
</tbody>
</table>

- using the recurrences to compute; and
- looking up already-computed values, where
Chapter 15. Dynamic Programming

step 3: compute $f_1(j)$ and $f_2(j)$, for all $j = 1, 2, \ldots, n$.

to fill out a $2 \times n$ table, from left to right

<table>
<thead>
<tr>
<th></th>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>...</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>...</td>
<td>$f_2(n)$</td>
</tr>
</tbody>
</table>

- using the recurrences to compute; and
- looking up already-computed values, where

(0) base cases $f_1(1) = e_1 + a_{1,1}$ and $f_2(1) = e_2 + a_{2,1}$
Chapter 15. Dynamic Programming

step 3: compute $f_1(j)$ and $f_2(j)$, for all $j = 1, 2, \ldots, n$. to fill out a $2 \times n$ table, from left to right

<table>
<thead>
<tr>
<th></th>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>\ldots</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>\ldots</td>
<td>$f_2(n)$</td>
<td></td>
</tr>
</tbody>
</table>

• using the recurrences to compute; and

• looking up already-computed values, where

(0) base cases $f_1(1) = e_1 + a_{1,1}$ and $f_2(1) = e_2 + a_{2,1}$

(1) $f_1(j) = \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\}$
Chapter 15. Dynamic Programming

step 3: compute \(f_1(j) \) and \(f_2(j) \), for all \(j = 1, 2, \ldots, n \).

to fill out a \(2 \times n \) table, from left to right

\[
\begin{array}{cccccc}
 f_1(1) & f_1(2) & f_1(3) & \ldots & f_1(n) \\
 f_2(1) & f_2(2) & f_2(3) & \ldots & f_2(n)
\end{array}
\]

• using the recurrences to compute; and
• looking up already-computed values, where

(0) base cases \(f_1(1) = e_1 + a_{1,1} \) and \(f_2(1) = e_2 + a_{2,1} \)
(1) \(f_1(j) = \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\} \)
(2) \(f_2(j) = \min\{f_2(j - 1) + a_{2,j}, f_1(j - 1) + t_{1,j-1} + a_{2,j}\} \)
Chapter 15. Dynamic Programming

step 3: compute $f_1(j)$ and $f_2(j)$, for all $j = 1, 2, \ldots, n$.

to fill out a $2 \times n$ table, from left to right

<table>
<thead>
<tr>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>...</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>...</td>
<td>$f_2(n)$</td>
</tr>
</tbody>
</table>

• using the recurrences to compute; and
• looking up already-computed values, where

1. base cases $f_1(1) = e_1 + a_{1,1}$ and $f_2(1) = e_2 + a_{2,1}$
2. $f_1(j) = \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\}$
3. $f_2(j) = \min\{f_2(j - 1) + a_{2,j}, f_1(j - 1) + t_{1,j-1} + a_{2,j}\}$

• the fastest time is $f^* = \min\{f_1(n) + x_1, f_2(n) + x_2\}$
Chapter 15. Dynamic Programming

step 4: get the fastest path, not just the faster time.
Chapter 15. Dynamic Programming

step 4: get the fastest path, not just the faster time.

Do we know the fastest path from the fastest time f^*?
step 4: get the fastest path, not just the faster time.

Do we know the fastest path from the fastest time f^*?

<table>
<thead>
<tr>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>...</th>
<th>$f_1(n-1)$</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>...</td>
<td>$f_2(n-1)$</td>
<td>$f_2(n)$</td>
</tr>
</tbody>
</table>
Chapter 15. Dynamic Programming

step 4: get the fastest path, not just the faster time.

Do we know the fastest path from the fastest time f^*?

<table>
<thead>
<tr>
<th></th>
<th>$f_1(1)$</th>
<th>$f_1(2)$</th>
<th>$f_1(3)$</th>
<th>...</th>
<th>$f_1(n-1)$</th>
<th>$f_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_2(1)$</td>
<td>$f_2(2)$</td>
<td>$f_2(3)$</td>
<td>...</td>
<td>$f_2(n-1)$</td>
<td>$f_2(n)$</td>
<td></td>
</tr>
</tbody>
</table>

$f^* = \min\{f_1(n) + x_1, f_2(n) + x_2\}$

$f_1(j) = \min\{f_1(j - 1) + a_{1,j}, f_2(j - 1) + t_{2,j-1} + a_{1,j}\}$

$f_2(j) = \min\{f_2(j - 1) + a_{2,j}, f_1(j - 1) + t_{1,j-1} + a_{2,j}\}$
Algorithm $\text{ASSEMBLYLINE}(a, t, e, x, n)$
Algorithm \textsc{AssemblyLine}(a, t, e, x, n)

1. \hspace{1em} M[1, 1] = e_1 + a_{1,1}
Algorithm $\text{ASSEMBLYLINE}(a, t, e, x, n)$

1. $M[1, 1] = e_1 + a_{1,1}$
2. $M[2, 1] = e_2 + a_{2,1}$
Algorithm ASSEMBLYLINE(a, t, e, x, n)

1. $M[1, 1] = e_1 + a_{1,1}$
2. $M[2, 1] = e_2 + a_{2,1}$
3. for $j=2$ to n

 4. if $M[1, j-1] + a_{1,j} \leq M[2, j-1] + t_{2,j-1} + a_{1,j}$

 5. $M[1, j] = M[1, j-1] + a_{1,j}$
 6. $P[1, j] = 1$

 7. else

 8. $M[1, j] = M[2, j-1] + t_{2,j-1} + a_{1,j}$
 9. $P[1, j] = 2$

 10. if $M[2, j-1] + a_{2,j} \leq M[1, j-1] + t_{1,j-1} + a_{2,j}$

 12. $P[2, j] = 2$

 13. else

 14. $M[2, j] = M[1, j-1] + t_{1,j-1} + a_{2,j}$
 15. $P[2, j] = 1$

14. return $(\min\{f_1(n) + x_1, f_2(n) + x_2\})$
Algorithm \textsc{AssemblyLine}(a, t, e, x, n)

1. \(M[1, 1] = e_1 + a_{1,1} \)
2. \(M[2, 1] = e_2 + a_{2,1} \)
3. \textbf{for } j=2 \textbf{ to } n
4. \hspace{1em} \textbf{if } M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}
5. \hspace{1em} P[1,j] = 1
6. \hspace{1em} M[1,j] = M[1,j-1] + a_{1,j}
7. \hspace{1em} \textbf{else } P[1,j] = 2
8. \hspace{1em} M[2,j] = M[2,j-1] + t_{2,j-1} + a_{1,j}
9. \hspace{1em} P[2,j] = 1
10. \hspace{1em} \textbf{else } P[2,j] = 2
11. \hspace{1em} M[2,j] = M[2,j-1] + a_{2,j}
12. \hspace{1em} \textbf{else } P[2,j] = 2
13. \hspace{1em} \textbf{else } P[2,j] = 1
14. \hspace{1em} \textbf{return } \min\{f_1(n) + x_1, f_2(n) + x_2\}
Chapter 15. Dynamic Programming

Algorithm \textsc{AssemblyLine}(a, t, e, x, n)

1. \quad M[1, 1] = e_1 + a_{1,1}
2. \quad M[2, 1] = e_2 + a_{2,1}
3. \quad \text{for } j = 2 \text{ to } n
4. \quad \quad \text{if } M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j - 1} + a_{1,j}
5. \quad \quad \quad M[1, j] = M[1, j - 1] + a_{1,j}
6. \quad \quad \text{else}
7. \quad \quad \quad M[1, j] = M[2, j - 1] + t_{2,j - 1} + a_{1,j}
8. \quad \quad \text{return } (\min \{ f_1(n) + x_1, f_2(n) + x_2 \})
Algorithm \textsc{AssemblyLine}(a, t, e, x, n)
1. \[M[1, 1] = e_1 + a_{1,1} \]
2. \[M[2, 1] = e_2 + a_{2,1} \]
3. \textbf{for} j = 2 \textbf{ to } n
4. \hspace{1em} \textbf{if} \ M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j} \\
5. \hspace{2em} M[1, j] = M[1, j - 1] + a_{1,j} \\
6. \hspace{2em} P[1, j] = 1
Chapter 15. Dynamic Programming

Algorithm \textsc{AssemblyLine}(a, t, e, x, n)
1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. \textbf{for} \(j = 2 \text{ to } n\)
4. \textbf{if} \(M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
5. \(M[1, j] = M[1, j - 1] + a_{1,j}\)
6. \(P[1, j] = 1\)
7. \textbf{else} \(M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
Chapter 15. Dynamic Programming

Algorithm `ASSEMBLYLINE(a, t, e, x, n)`
1. \[M[1, 1] = e_1 + a_{1,1} \]
2. \[M[2, 1] = e_2 + a_{2,1} \]
3. for \(j = 2 \) to \(n \)
4. \[\text{if } M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j} \]
5. \[M[1, j] = M[1, j - 1] + a_{1,j} \]
6. \[P[1, j] = 1 \]
7. \[\text{else } M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j} \]
8. \[P[1, j] = 2 \]
Chapter 15. Dynamic Programming

Algorithm ASSEMBLYLINE\((a, t, e, x, n)\)

1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. for \(j=2\) to \(n\)
4. \hspace{1em} if \(M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
5. \hspace{2em} \(M[1, j] = M[1, j - 1] + a_{1,j}\)
6. \hspace{2em} \(P[1, j] = 1\)
7. \hspace{1em} else \(M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
8. \hspace{2em} \(P[1, j] = 2\)
9. \hspace{1em} if \(M[2, j - 1] + a_{2,j} \leq M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
Algorithm ASSEMBLYLINE\((a, t, e, x, n)\)
1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. for \(j = 2\) to \(n\)
4. \(\text{if } M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
5. \(M[1, j] = M[1, j - 1] + a_{1,j}\)
6. \(P[1, j] = 1\)
7. \(\text{else } M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
8. \(P[1, j] = 2\)
9. \(\text{if } M[2, j - 1] + a_{2,j} \leq M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
10. \(M[2, j] = M[2, j - 1] + a_{2,j}\)
11. \(P[2, j] = 2\)
12. \(\text{else } M[2, j] = M[2, j - 1] + t_{1,j-1} + a_{2,j}\)
13. \(P[2, j] = 1\)
14. return \(\min\{f_1(n) + x_1, f_2(n) + x_2\}\)
Algorithm ASSEMBLYLINE\((a, t, e, x, n)\)
1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. for \(j = 2\) to \(n\)
 4. if \(M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
 5. \(M[1, j] = M[1, j - 1] + a_{1,j}\)
 6. \(P[1, j] = 1\)
 7. else \(M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
 8. \(P[1, j] = 2\)
 9. if \(M[2, j - 1] + a_{2,j} \leq M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
 10. \(M[2, j] = M[2, j - 1] + a_{2,j}\)
 11. \(P[2, j] = 2\)
12. return \((\min\{f_1(n) + x_1, f_2(n) + x_2\})\)
Algorithm \textsc{AssemblyLine}(a, t, e, x, n)
1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. \textbf{for} \(j=2\) \textbf{to} \(n\)
4. \textbf{if} \(M[1, j-1] + a_{1,j} \leq M[2, j-1] + t_{2,j-1} + a_{1,j}\)
5. \(M[1, j] = M[1, j-1] + a_{1,j}\)
6. \(P[1, j] = 1\)
7. \textbf{else} \(M[1, j] = M[2, j-1] + t_{2,j-1} + a_{1,j}\)
8. \(P[1, j] = 2\)
9. \textbf{if} \(M[2, j-1] + a_{2,j} \leq M[1, j-1] + t_{1,j-1} + a_{2,j}\)
10. \(M[2, j] = M[2, j-1] + a_{2,j}\)
11. \(P[2, j] = 2\)
12. \textbf{else} \(M[2, j] = M[1, j-1] + t_{1,j-1} + a_{2,j}\)
13. \(\text{return} \left(\min\{f_1(n) + x_1, f_2(n) + x_2\}\right)\)
Algorithm ASSEMBLYLINE\((a, t, e, x, n)\)

1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. for \(j=2\) to \(n\)
4. if \(M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
5. \(M[1, j] = M[1, j - 1] + a_{1,j}\)
6. \(P[1, j] = 1\)
7. else \(M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
8. \(P[1, j] = 2\)
9. if \(M[2, j - 1] + a_{2,j} \leq M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
10. \(M[2, j] = M[2, j - 1] + a_{2,j}\)
11. \(P[2, j] = 2\)
12. else \(M[2, j] = M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
13. \(P[2, j] = 1\)

\[\text{return } (\min\{f_1(n) + x_1, f_2(n) + x_2\})\]
Algorithm ASSEMBLYLINE\((a, t, e, x, n)\)
1. \(M[1, 1] = e_1 + a_{1,1}\)
2. \(M[2, 1] = e_2 + a_{2,1}\)
3. for \(j=2\) to \(n\)
 4. if \(M[1, j - 1] + a_{1,j} \leq M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
 5. \(M[1, j] = M[1, j - 1] + a_{1,j}\)
 6. \(P[1, j] = 1\)
 7. else \(M[1, j] = M[2, j - 1] + t_{2,j-1} + a_{1,j}\)
 8. \(P[1, j] = 2\)
 9. if \(M[2, j - 1] + a_{2,j} \leq M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
 10. \(M[2, j] = M[2, j - 1] + a_{2,j}\)
 11. \(P[2, j] = 2\)
 12. else \(M[2, j] = M[1, j - 1] + t_{1,j-1} + a_{2,j}\)
 13. \(P[2, j] = 1\)
14. return \((\min\{f_1(n) + x_1, f_2(n) + x_2\})\)
Algorithm PRINTPATHMAIN\((M, P, f^*, x)\)
1. \textbf{if} \((f^* - x_1) = M[1, n] \)

```
Chapter 15. Dynamic Programming

Algorithm PRINTPATHMAIN\((M, P, f^*, x)\)
1. if \((f^* - x_1) = M[1, n]\)
2. \(i = 1\)
Chapter 15. Dynamic Programming

Algorithm PRINTPATHMAIN\( (M, P, f^*, x) \)
1. \textbf{if} \( (f^* - x_1) = M[1, n] \)
2. \( i = 1 \)
3. \textbf{else} \( i = 2 \)
Chapter 15. Dynamic Programming

Algorithm PRINTPATHMAIN($M, P, f^*, x$)
1. if ($f^* - x_1$) = $M[1, n]$
2. i = 1
3. else i = 2
4. PRINTPATH ($P, i, n$)
Algorithm \textsc{PrintPathMain}(M, P, f^*, x)
1. \textbf{if} \ (f^* - x_1) = M[1, n]
2. \ \ i = 1
3. \textbf{else} \ i = 2
4. \ \ \textsc{PrintPath} (P, i, n)

Algorithm \textsc{PrintPath} (P, i, j)
1. \textbf{if} \ j \geq 1
Algorithm \texttt{PrintPathMain}(M, P, f^*, x)
1. \textbf{if} \ (f^* - x_1) = M[1, n]
2. \hspace{1em} \textbf{i} = 1
3. \textbf{else} \ i = 2
4. \textbf{PrintPath} \ (P, i, n)

Algorithm \texttt{PrintPath} \ (P, i, j)
1. \textbf{if} \ j \geq 1
2. \textbf{PrintPath} \ (P, P[i, j], j - 1)
Algorithm `PrintPathMain(M, P, f^*, x)`
1. if $(f^* - x_1) = M[1, n]$
2. $i = 1$
3. else $i = 2$
4. `PrintPath(P, i, n)`

Algorithm `PrintPath(P, i, j)`
1. if $j \geq 1$
2. `PrintPath(P, P[i, j], j - 1)`
3. `print (i, j)`
Chapter 15. Dynamic Programming

Summary on steps for dynamic programming solving the assembly line problem

(1) the structure of optimal solution
(2) defining optimal cost recursively
(3) computing optimal cost (bottom-up approach)
(4) constructing optimal solution (traceback)
Chapter 15. Dynamic Programming

Summary on steps for dynamic programming solving the assembly line problem

(1) the structure of optimal solution
Chapter 15. Dynamic Programming

Summary on steps for dynamic programming solving the assembly line problem

1. the structure of optimal solution
2. defining optimal cost recursively
Chapter 15. Dynamic Programming

Summary on steps for dynamic programming solving the assembly line problem

(1) the structure of optimal solution
(2) defining optimal cost recursively
(3) computing optimal cost (bottom-up approach)
Summary on steps for dynamic programming solving the assembly line problem

(1) the structure of optimal solution
(2) defining optimal cost recursively
(3) computing optimal cost (bottom-up approach)
(4) constructing optimal solution (traceback)
Chapter 15. Dynamic Programming

We consider a little more about the assembly line problem.
We consider a little more about the assembly line problem.

Assume that each station $S_{i,j}$ produces a part $p_k$ with time cost $\tau_{i,j,k}$, where $k = 1, 2, 3$. 

• can we still compute the fastest time? yes.

• so can the fastest path and the sequence of parts be computed!

• Given a sequence of parts produced, can we know the path? No, but we may predict such a path with a confidence.
We consider a little more about the assembly line problem. Assume that each station $S_{i,j}$ produces a part $p_k$ with time cost $\tau_{i,j,k}$, where $k = 1, 2, 3$.

- can we still compute the fastest time?
Chapter 15. Dynamic Programming

We consider a little more about the assembly line problem.

Assume that each station \( S_{i,j} \) produces a part \( p_k \) with time cost \( \tau_{i,j,k} \), where \( k = 1, 2, 3 \).

- can we still compute the fastest time? \textbf{yes}.
Chapter 15. Dynamic Programming

We consider a little more about the assembly line problem. Assume that each station $S_{i,j}$ produces a part $p_k$ with time cost $\tau_{i,j,k}$, where $k = 1, 2, 3$.

- can we still compute the fastest time? yes.

so can the fastest path and the sequence of parts be computed!
We consider a little more about the assembly line problem.

Assume that each station $S_{i,j}$ produces a part $p_k$ with time cost $\tau_{i,j,k}$, where $k = 1, 2, 3$.

- can we still compute the fastest time? yes.
  so can the fastest path and the sequence of parts be computed!
- Given a sequence of parts produced, can we know the path?
We consider a little more about the assembly line problem.

Assume that each station $S_{i,j}$ produces a part $p_k$ with time cost $\tau_{i,j,k}$, where $k = 1, 2, 3$.

- can we still compute the fastest time? yes.
  
  so can the fastest path and the sequence of parts be computed!

- Given a sequence of parts produced, can we know the path?
  
  No, but we may predict such a path with a confidence.
Chapter 15. Dynamic Programming

Example-2. Casino dice and decoding algorithm

The house rolls die \( n \) times: e.g., 5, 3, 2, 5, 6, 6, 1, ... , 1

- not honest, switch between dice: fair (F) and loaded (L)
- a small chance to switch is small, a large chance to stay on the same die

Given the sequence of numbers, e.g., 5, 3, 2, 5, 6, 6, 1, ... , 1, what is the sequence of dices used most likely?
Chapter 15. Dynamic Programming

Example-2. Casino dice and decoding algorithm

The house rolls die $n$ times: e.g., 5, 3, 2, 5, 6, 6, 1, . . . , 1
Chapter 15. Dynamic Programming

Example-2. Casino dice and decoding algorithm

The house rolls die $n$ times: e.g., 5, 3, 2, 5, 6, 6, 1, . . . , 1

• not honest, switch between dice: fair (F) and loaded (L)
Chapter 15. Dynamic Programming

Example-2. Casino dice and decoding algorithm

The house rolls die $n$ times: e.g., 5, 3, 2, 5, 6, 6, 1, ... , 1

- not honest, switch between dice: **fair (F)** and **loaded (L)**
- a small chance to switch is small, a large chance to stay on the same die
Chapter 15. Dynamic Programming

Example-2. Casino dice and decoding algorithm

The house rolls die \( n \) times: e.g., \( 5, 3, 2, 5, 6, 6, 1, \ldots, 1 \)

- not honest, switch between dice: **fair** (F) and **loaded** (L)
- a small chance to switch is small, a large chance to stay on the same die

Given the sequence of numbers, e.g., \( 5, 3, 2, 5, 6, 6, 1, \ldots, 1 \), what is the sequence of dices used
Chapter 15. Dynamic Programming

Example-2. Casino dice and decoding algorithm

The house rolls die $n$ times: e.g., 5, 3, 2, 5, 6, 6, 1, ... , 1

- not honest, switch between dice: fair (F) and loaded (L)
- a small chance to switch is small, a large chance to stay on the same die

Given the sequence of numbers, e.g., 5, 3, 2, 5, 6, 6, 1, ... , 1, what is the sequence of dices used most likely?
Chapter 15. Dynamic Programming

We compute the most probable path of dices to roll a given sequence of numbers $S = d_1 \ldots d_n$, where $d_i \in \{1, 2, \ldots, 6\}$.
We compute the most probable path of dices to roll a given sequence of numbers $S = d_1 \ldots d_n$, where $d_i \in \{1, 2, \ldots, 6\}$.
Chapter 15. Dynamic Programming

We compute the most probable path of dices to roll a given sequence of numbers $S = d_1 \ldots d_n$, where $d_i \in \{1, 2, \ldots, 6\}$

i.e., we compute the highest probability of a path of dice to roll $d_1 \ldots d_n$
We compute the most probable path of dices to roll a given sequence of numbers \( S = d_1 \ldots d_n \), where \( d_i \in \{1, 2, \ldots, 6\} \)

i.e., we compute the highest probability of a path of dice to roll \( d_1 \ldots d_n \)

As in AssemblyLine problem, we compute the most probable path to roll \( d_1 \ldots d_i \):
Chapter 15. Dynamic Programming

We compute the most probable path of dices to roll a given sequence of numbers $S = d_1 \ldots d_n$, where $d_i \in \{1, 2, \ldots, 6\}$ i.e., we compute the highest probability of a path of dice to roll $d_1 \ldots d_n$

As in AssemblyLine problem, we compute the most probable path to roll $d_1 \ldots d_i$:

- $p(S, i, F)$ for which the fair die $F$ is used in the last step
- $p(S, i, L)$ for which the loaded die $L$ is used in the last step
Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.
Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.

\[
p(S, i, F) = \max\{p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, p(S, i - 1, L) \times 0.1 \times \frac{1}{6}\}
\]
Chapter 15. Dynamic Programming

Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.

\[
p(S, i, F) = \max\{p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6}\}
\]

\[
p(S, i, L) = \max\{p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q\}
\]
Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.

$$
p(S, i, F) = \max\{p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6}\}
$$

$$
p(S, i, L) = \max\{p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q\}
$$

where $q = \frac{1}{10}$ if $1 \leq d_i \leq 5$; $q = \frac{1}{2}$ if $d_i = 6$
Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.

\[
p(S, i, F) = \max\{p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6}\}
\]

\[
p(S, i, L) = \max\{p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q\}
\]

where $q = \frac{1}{10}$ if $1 \leq d_i \leq 5$; $q = \frac{1}{2}$ if $d_i = 6$

Base cases: when $i =$
Chapter 15. Dynamic Programming

Both \( p(S, i, F) \) and \( p(S, i, L) \) have recursive solutions.

\[
p(S, i, F) = \max\{p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6}\}
\]

\[
p(S, i, L) = \max\{p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q\}
\]

where \( q = \frac{1}{10} \) if \( 1 \leq d_i \leq 5 \); \( q = \frac{1}{2} \) if \( d_i = 6 \)

Base cases: when \( i = 1 \)
Chapter 15. Dynamic Programming

Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.

\[
p(S, i, F) = \max \{ p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6} \} \]

\[
p(S, i, L) = \max \{ p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q \} \]

where $q = \frac{1}{10}$ if $1 \leq d_i \leq 5$; $q = \frac{1}{2}$ if $d_i = 6$

Base cases: when $i = 1$

\[
p(S, 1, F) = 0.5 \times \frac{1}{6} \]

\[
p(S, 1, L) = 0.5 \times q \]
Both $p(S, i, F)$ and $p(S, i, L)$ have recursive solutions.

\[
p(S, i, F) = \max\{p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6}\}\]

\[
p(S, i, L) = \max\{p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q\}\]

where $q = \frac{1}{10}$ if $1 \leq d_i \leq 5$; $q = \frac{1}{2}$ if $d_i = 6$

Base cases: when $i = 1$

\[
p(S, 1, F) = 0.5 \times \frac{1}{6}\]
\[
p(S, 1, L) = 0.5 \times q\]

where $q = \frac{1}{10}$ if $1 \leq d_1 \leq 5$; $q = \frac{1}{2}$ if $d_1 = 6$
Both \( p(S, i, F) \) and \( p(S, i, L) \) have recursive solutions.

\[
p(S, i, F) = \max \{ p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6} \}
\]

\[
p(S, i, L) = \max \{ p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q \}
\]

where \( q = \frac{1}{10} \) if \( 1 \leq d_i \leq 5 \); \( q = \frac{1}{2} \) if \( d_i = 6 \)

Base cases: when \( i = 1 \)

\[
p(S, 1, F) = 0.5 \times \frac{1}{6}
\]

\[
p(S, 1, L) = 0.5 \times q
\]

where \( q = \frac{1}{10} \) if \( 1 \leq d_1 \leq 5 \); \( q = \frac{1}{2} \) if \( d_1 = 6 \)

- design dynamic programming algorithm to compute \( \max \{ P(S, n, F), P(S, n, L) \} \) given from \( d_1 d_2 \ldots d_n \)
Chapter 15. Dynamic Programming

Both \( p(S, i, F) \) and \( p(S, i, L) \) have recursive solutions.

\[
p(S, i, F) = \max \{ p(S, i - 1, F) \times 0.95 \times \frac{1}{6}, \ p(S, i - 1, L) \times 0.1 \times \frac{1}{6} \} \]

\[
p(S, i, L) = \max \{ p(S, i - 1, L) \times 0.9 \times q, \ p(S, i - 1, F) \times 0.05 \times q \} \]

where \( q = \frac{1}{10} \) if \( 1 \leq d_i \leq 5; \ q = \frac{1}{2} \) if \( d_i = 6 \)

Base cases: when \( i = 1 \)

\[
p(S, 1, F) = 0.5 \times \frac{1}{6} \]

\[
p(S, 1, L) = 0.5 \times q \]

where \( q = \frac{1}{10} \) if \( 1 \leq d_1 \leq 5; \ q = \frac{1}{2} \) if \( d_1 = 6 \)

• design dynamic programming algorithm to compute \( \max \{ P(S, n, F), P(S, n, L) \} \)
  given from \( d_1 d_2 \ldots d_n \)

• design a traceback process to print out the sequence of dices used.
Consider a sequence

\[ \ldots \ 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]
Chapter 15. Dynamic Programming

Consider a sequence

\[ \ldots 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]
Consider a sequence

\[ \ldots \ 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]

By computing the maximum probability to produce the sequence, we decode the dices used

\[ \ldots \ 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]
Chapter 15. Dynamic Programming

Consider a sequence

\[ \ldots \; 1 \; 3 \; 2 \; 4 \; 6 \; 6 \; 6 \; 4 \; 1 \; 6 \; 5 \; 6 \; 6 \; 2 \; 4 \; 2 \; 1 \; 2 \; 3 \; 5 \ldots \]

By computing the maximum probability to produce the sequence, we decode the dices used

\[ \ldots \; 1 \; 3 \; 2 \; 4 \; 6 \; 6 \; 6 \; 4 \; 1 \; 6 \; 5 \; 6 \; 6 \; 2 \; 4 \; 2 \; 1 \; 2 \; 3 \; 5 \ldots \]

\[ \ldots \; F \; F \; F \; F \; L \; F \ldots \]
Chapter 15. Dynamic Programming

Consider a sequence

\[ \ldots 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]

By computing the maximum probability to produce the sequence, we decode the dices used

\[ \ldots F \ \ F \ \ F \ \ F \ \ L \ \ L \ \ L \ \ L \ \ L \ \ L \ \ L \ \ F \ \ F \ \ F \ \ F \ \ F \ \ F \ \ F \ldots \]

But besides the casino interest, is such algorithm meaningful in other applications?
Chapter 15. Dynamic Programming

Consider a sequence

\[ \ldots \ 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]

By computing the maximum probability to produce the sequence, we decode the dices used

\[ \ldots \ 1 \ 3 \ 2 \ 4 \ 6 \ 6 \ 6 \ 4 \ 1 \ 6 \ 5 \ 6 \ 6 \ 2 \ 4 \ 2 \ 1 \ 2 \ 3 \ 5 \ldots \]
\[ \ldots \ \text{F} \ \text{F} \ \text{F} \ \text{F} \ \text{L} \ \text{F} \ldots \]

But besides the casino interest, is such algorithm meaningful in other applications?

The answer is definitely YES!
a segment of DNA sequence, is it meaningful?
if the highlighted segment is not random, it may be a gene.
Chapter 15. Dynamic Programming

Technically, the “linear model” is unfolded of a “more condensed model”.

A hidden Markov model (HMM)
Chapter 15. Dynamic Programming

Viterbi Algorithm
Chapter 15. Dynamic Programming

Viterbi Algorithm

- assume an HMM $\mathcal{M}$;
Chapter 15. Dynamic Programming

Viterbi Algorithm

- assume an HMM $\mathcal{M}$;
- decode the hidden states $H^*$ that have produced the given (observed) data $D$
Chapter 15. Dynamic Programming

**Viterbi Algorithm**

- assume an HMM $\mathcal{M}$;
- decode the hidden states $H^*$ that have produced the given (observed) data $D$ by computing the maximum probability

$$H^* = \arg \max_{H} \{ \text{Prob}(H, D \mid \mathcal{M}) \}$$

to produce the given data, with **dynamic programming**.
Chapter 15. Dynamic Programming

A hidden Markov model (HMM) consists of $(S, T, e, t)$, where

- $S$ is a set of states: $s_0, s_1, ..., s_m$; where $s_0$ is the begin state;
- transitions $T \subseteq S \times S$;
- each state $s_i$ is associated with a (emission) probability distribution $e(i,a)$ for $a \in \Sigma$, such that $\sum_{a \in \Sigma} e(i,a) = 1$ for every $i, 1 \leq i < m$;
- every $(s_i, s_j) \in T$ is associated with a probability distribution $t(i,j)$, such that $\sum_{1 \leq j \leq m} t(i,j) = 1$ for every $i, 0 \leq i < m$. 


Chapter 15. Dynamic Programming

A hidden Markov model (HMM) consists of \((S, T, e, t)\), where

- \(S\) is a set of states: \(s_0, s_1, \ldots, s_m\); where \(s_0\) is the begin state;
A hidden Markov model (HMM) consists of \((S, T, e, t)\), where

- \(S\) is a set of states: \(s_0, s_1, \ldots, s_m\); where \(s_0\) is the begin state;
- transitions \(T \subseteq S \times S\);
Chapter 15. Dynamic Programming

A hidden Markov model (HMM) consists of \((S, T, e, t)\), where

- \(S\) is a set of states: \(s_0, s_1, \ldots, s_m\); where \(s_0\) is the begin state;
- transitions \(T \subseteq S \times S\);
- each state \(s_i\) is associated with a (emission) probability distribution \(e(i, a)\) for \(a \in \Sigma\), such that
  \[
  \sum_{a \in \Sigma} e(i, a) = 1
  \]
  for every \(i, 0 \leq i < m\).
Chapter 15. Dynamic Programming

A hidden Markov model (HMM) consists of \((S, T, e, t)\), where

- \(S\) is a set of states: \(s_0, s_1, \ldots, s_m\); where \(s_0\) is the begin state;
- transitions \(T \subseteq S \times S\);
- each state \(s_i\) is associated with a (emission) probability distribution \(e(i, a)\) for \(a \in \Sigma\), such that

\[
\sum_{a \in \Sigma} e(i, a) = 1 \quad \text{for every } i, 1 \leq i < m
\]
Chapter 15. Dynamic Programming

A hidden Markov model (HMM) consists of \((S, T, e, t)\), where

- \(S\) is a set of states: \(s_0, s_1, \ldots, s_m\); where \(s_0\) is the begin state;
- transitions \(T \subseteq S \times S\);
- each state \(s_i\) is associated with a (emission) probability distribution \(e(i, a)\) for \(a \in \Sigma\), such that

\[
\sum_{a \in \Sigma} e(i, a) = 1 \quad \text{for every } i, \ 1 \leq i < m
\]

- every \((s_i, s_j) \in T\) is associated with a probability distribution \(t(i, j)\), such that

\[
\sum_{1 \leq j \leq m} t(i, j) = 1 \quad \text{for every } i, \ 0 \leq i < m
\]
A hidden Markov model (HMM) consists of \((S, T, e, t)\), where

- \(S\) is a set of states: \(s_0, s_1, \ldots, s_m\); where \(s_0\) is the begin state;
- transitions \(T \subseteq S \times S\);
- each state \(s_i\) is associated with a (emission) probability distribution \(e(i, a)\) for \(a \in \Sigma\), such that
  \[
  \sum_{a \in \Sigma} e(i, a) = 1 \quad \text{for every } i, 1 \leq i < m
  \]
- every \((s_i, s_j) \in T\) is associated with a probability distribution \(t(i, j)\), such that
  \[
  \sum_{1 \leq j \leq m} t(i, j) = 1 \quad \text{for every } i, 0 \leq i < m
  \]
Chapter 15. Dynamic Programming

HMM decoding problem:

Input: HMM $M$, sequence of symbols $x \in \Sigma^*$

Output: $y^*$, a sequence of states such that

$$y^* = \arg \max_y \{ \text{Prob}(y, x | M) \}$$

where $y$ begins from $s_0$.

Diagram:

- States: $s_0, s_1, s_4, ..., s_m$
- Transitions: $t(i, k) = 0.6$, $t(i, j) = 0.4$
- Emissions: $e(i, a) = 0.2$, $e(i, b) = 0.8$
- Alphabet: $\Sigma = \{a, b\}$
Chapter 15. Dynamic Programming

HMM decoding problem:
HMM decoding problem:

**Input:** HMM \( M \), sequence of symbols \( x \in \Sigma^* \)

**Output:** \( y^* \), a sequence of states such that

\[
y^* = \arg \max_y \{ \text{Prob}(y, x|M) \}
\]
Chapter 15. Dynamic Programming

HMM decoding problem:

**Input:** HMM $M$, sequence of symbols $x \in \Sigma^*$

**Output:** $y^*$, a sequence of states such that

$$y^* = \arg \max_y \{ \text{Prob}(y, x|M) \}$$

where $y$ begins from $s_0$. 
Chapter 15. Dynamic Programming

The idea of Viterbi algorithm:

\[ \text{max} \{ \text{Prob}(y,x_1 \ldots x_k | M) \} \]
Chapter 15. Dynamic Programming

The idea of Viterbi algorithm:

For any prefix $x_1 \ldots x_k$, $k \geq 0$,
Chapter 15. Dynamic Programming

The idea of Viterbi algorithm:
For any prefix $x_1 \ldots x_k$, $k \geq 0$, and state $s_j \in S$;
Chapter 15. Dynamic Programming

The idea of Viterbi algorithm:

For any prefix $x_1 \ldots x_k$, $k \geq 0$, and state $s_j \in S$;

$$\max_{y=s_0 \ldots s_j} \{ Prob(y, x_1 \ldots x_k | M) \}$$

the maximum probability of a path $s_0 \ldots s_j$ to generate $x_1 \ldots x_k$;
The idea of Viterbi algorithm:

For any prefix \( x_1 \ldots x_k, \ k \geq 0 \), and state \( s_j \in S \);

\[
\max_{y=s_0 \ldots s_j} \{ \text{Prob}(y, x_1 \ldots x_k | \mathcal{M}) \}
\]

the maximum probability of a path \( s_0 \ldots s_j \) to generate \( x_1 \ldots x_k \);
Define \( f(j,k) = \max_{y = s_0 \ldots s_j} \{ \text{Prob}(y, x_1 \ldots x_k) \} \)

Recursively,
\[
f(j,k) = \max_i \{ f(i,k-1) \times t(i,j) \times e(j,x_k) \}
\]

Base case:
\[
f(0,0) = 1, \quad f(i,0) = 0 \text{ for all } i \geq 1.
\]
Define $f(j, k) = \max_{y = s_0 \ldots s_j} \{ \text{Prob}(y, x_1 \ldots x_k) \}$
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y=s_0 \ldots s_j} \{Prob(y, x_1 \ldots x_k)\}$

Recursively,

$$f(j, k) = \max_i \{f(i, k-1) \times t(i, j) \times e(j, x_k)\}$$

Base case: $f(0, 0) = 1$, $f(i, 0) = 0$ for all $i \geq 1$. 
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y=s_0 \ldots s_j} \{Prob(y, x_1 \ldots x_k)\}$

Recursively, $f(j, k) =$
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y=s_0\ldots s_j} \{Prob(y, x_1 \ldots x_k)\}$

Recursively, $f(j, k) = \max_i \left\{ f(i, k-1) \times t(i, j) \times e(j, x_k) \right\}$

Base case: $f(0, 0) = 1$, $f(i, 0) = 0$ for all $i \geq 1$. 

Diagram:

- $s_0 \rightarrow y$ generates $x_1x_2\ldots x_{k-1}$
- $s_j$ generates $x_k$
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y=s_0...s_j} \{ \text{Prob}(y, x_1 \ldots x_k) \}$

Recursively, $f(j, k) = \max_i \{ f(i, k - 1) \}$
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y = s_0 \ldots s_j} \{\text{Prob}(y, x_1 \ldots x_k)\}$

Recursively, $f(j, k) = \max_{i} \{ f(i, k - 1) \times t(i, j) \}$
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y=s_0 \ldots s_j} \{ Prob(y, x_1 \ldots x_k) \}$

Recursively, $f(j, k) = \max_i \{ f(i, k - 1) \times t(i, j) \times e(j, x_k) \}$
Define \( f(j, k) = \max_{y=s_0 \ldots s_j} \{ \text{Prob}(y, x_1 \ldots x_k) \} \)

Recursively, \( f(j, k) = \max_i \{ f(i, k - 1) \times t(i, j) \times e(j, x_k) \} \)
Define \( f(j, k) = \max_{y=s_0...s_j} \{Prob(y, x_1...x_k)\} \)

Recursively, \( f(j, k) = \max_{i} \{f(i, k - 1) \times t(i, j) \times e(j, x_k)\} \)

Base case: \( f(0, 0) = \)
Chapter 15. Dynamic Programming

Define \( f(j, k) = \max_{y=s_0...s_j} \{ \text{Prob}(y, x_1...x_k) \} \)

Recursively, \( f(j, k) = \max_i \{ f(i, k-1) \times t(i, j) \times e(j, x_k) \} \)

Base case: \( f(0, 0) = 1 \),
Chapter 15. Dynamic Programming

Define $f(j, k) = \max_{y=s_0...s_j} \{\text{Prob}(y, x_1...x_k)\}$

Recursively, $f(j, k) = \max_i \{f(i, k - 1) \times t(i, j) \times e(j, x_k)\}$

Base case: $f(0, 0) = 1$, $f(i, 0)$
Chapter 15. Dynamic Programming

Define \( f(j, k) = \max_{y=s_0...s_j} \{ \text{Prob}(y, x_1...x_k) \} \)

Recursively, \( f(j, k) = \max_i \{ f(i, k-1) \times t(i, j) \times e(j, x_k) \} \)

Base case: \( f(0, 0) = 1, \ f(i, 0) = 0 \) for all \( i \geq 1 \).
Chapter 15. Dynamic Programming

Algorithm VITERBI(x, n, t, e, m)
0. \( T(0, 0) = 1; \ P(0, 0) = 0; \)
Chapter 15. Dynamic Programming

Algorithm VITERBI(x, n, t, e, m)

0. \( T(0, 0) = 1 \); \( P(0, 0) = 0 \);
1. for \( j = 1 \) to \( m \)
2. \( T(j, 0) = 0 \);
Algorithm $\text{VITERBI}(x, n, t, e, m)$

0. $T(0, 0) = 1; \quad P(0, 0) = 0;$
1. for $j = 1$ to $m$
2. $T(j, 0) = 0;$
3. for $k = 1$ to $n$

Time complexity: $O(nm^2)$
Algorithm VITERBI$(x, n, t, e, m)$

0. $T(0,0) = 1; P(0,0) = 0$;
1. for $j = 1$ to $m$
2.   $T(j,0) = 0$;
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4.   for $j = 1$ to $m$ for every 'last state' $s_j$
5.      $\text{premax} = 0$ initialize the prefix probability
6.      for $i = 0$ to $m$ try every 'predecessor state' $s_i$
7.         if $\text{premax} < T(i,k-1) \times t(i,j) \times e(j,x_k)$
8.             $\text{premax} = T(i,k-1) \times t(i,j) \times e(j,x_k)$ update probability
9.     $P(j,k) = i$ memorize the predecessor
10. $T(j,k) = \text{premax}$
11. $\text{laststate} = 1; \text{max} = T(1,n)$
12. for $j = 2$ to $m$ identify maximum probability
13. if $\text{max} < T(j,n)$
14.    $\text{laststate} = j$
15. $\text{max} = T(j,n)$
16. return $(T,P,max,\text{laststate})$
Algorithm \textsc{Viterbi}(x, n, t, e, m)

0. \( T(0, 0) = 1; \ P(0, 0) = 0 \);
1. \textbf{for} \( j = 1 \) to \( m \)
2. \( T(j, 0) = 0 \);
3. \textbf{for} \( k = 1 \) to \( n \) \hspace{1cm} \text{for every prefix upto k\text{th} symbol}
4. \textbf{for} \( j = 1 \) to \( m \)
Algorithm \textsc{Viterbi}(x, n, t, e, m)

0. \hspace{1em} T(0, 0) = 1; \ P(0, 0) = 0;
1. \hspace{1em} \textbf{for} \ j = 1 \ \textbf{to} \ m
2. \hspace{1em} T(j, 0) = 0;
3. \hspace{1em} \textbf{for} \ k = 1 \ \textbf{to} \ n \quad \text{for every prefix up to kth symbol}
4. \hspace{1em} \textbf{for} \ j = 1 \ \textbf{to} \ m \quad \text{for every ‘last state’ } s_j
Algorithm \textsc{Viterbi}(x, n, t, e, m)

0. \( T(0, 0) = 1; \ P(0, 0) = 0; \)
1. \ for \ \( j = 1 \) \ to \ \( m \)
2. \hspace{1em} \( T(j, 0) = 0; \)
3. \hspace{1em} \ for \ \( k = 1 \) \ to \ \( n \) \hspace{1em} \ for every prefix upto \( k \)th symbol
4. \hspace{2em} \ for \ \( j = 1 \) \ to \ \( m \) \hspace{1em} \ for every ‘last state’ \( s_j \)
5. \hspace{3em} \text{premax} = 0

\text{Time complexity:} \ O(nm^2)
Chapter 15. Dynamic Programming

Algorithm VITERBI\((x, n, t, e, m)\)

0. \(T(0, 0) = 1; \ P(0, 0) = 0;\)
1. for \(j = 1\) to \(m\)
2. \(T(j, 0) = 0;\)
3. for \(k = 1\) to \(n\) \quad \text{for every prefix up to } k\text{'th symbol}
4. \(\text{for } j = 1\) to \(m\) \quad \text{for every ‘last state’ } s_j
5. \(\text{premax} = 0\) \quad \text{initialize the prefix probability

Time complexity: \(O(nm^2)\)
Algorithm \textsc{Viterbi}(x, n, t, e, m)

0.  \( T(0, 0) = 1; \ P(0, 0) = 0; \)
1.  \textbf{for} \( j = 1 \) to \( m \)
2.  \( T(j, 0) = 0; \)
3.  \textbf{for} \( k = 1 \) to \( n \) \hspace{1cm} \text{for every prefix upto } k\text{th symbol}
4.  \textbf{for} \( j = 1 \) to \( m \) \hspace{1cm} \text{for every } ‘\text{last state}’ \ s_j
5.  \( \text{premax} = 0 \) \hspace{1cm} \text{initialize the prefix probability}
6.  \textbf{for} \( i = 0 \) to \( m \) \hspace{1cm} \text{try every } ‘\text{predecessor state}’ \ s_i

7.  \( \text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k) \)
8.  \( \text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k) \) \hspace{1cm} \text{update probability}
9.  \( P(j, k) = i \) \hspace{1cm} \text{memorize the predecessor}
10.  \( T(j, k) = \text{premax} \)
11.  \( \text{laststate} = 1; \ \max = T(1, n) \)
12.  \textbf{for} \( j = 2 \) to \( m \) \hspace{1cm} \text{identify maximum probability}
13.  \textbf{if} \( \max < T(j, n) \)
14.  \( \text{laststate} = j \)
15.  \( \max = T(j, n) \)
16.  \( \text{return } (T, P, \max, \text{laststate}) \)

\[ \text{Time complexity: } O(nm^2) \]
Chapter 15. Dynamic Programming

Algorithm VITERBI($x, n, t, e, m$)

0. $T(0, 0) = 1; P(0, 0) = 0$
1. for $j = 1$ to $m$
2. $T(j, 0) = 0$
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4. for $j = 1$ to $m$ for every ‘last state’ $s_j$
5. $\text{premax} = 0$ initialize the prefix probability
6. for $i = 0$ to $m$ try every ‘predecessor state’ $s_i$
7. if $\text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k)$
Chapter 15. Dynamic Programming

Algorithm VITERBI\((x, n, t, e, m)\)

0. \(T(0, 0) = 1; P(0, 0) = 0;\)
1. \(\textbf{for } j = 1 \textbf{ to } m\) \(\textbf{for every 'last state' } s_j\)
2. \(T(j, 0) = 0;\)
3. \(\textbf{for } k = 1 \textbf{ to } n\) \(\textbf{for every prefix upto } k\text{th symbol}\)
4. \(\textbf{for } j = 1 \textbf{ to } m\)
5. \(\text{premax} = 0\) \(\text{initialize the prefix probability}\)
6. \(\textbf{for } i = 0 \textbf{ to } m\) \(\textbf{try every 'predecessor state' } s_i\)
7. \(\textbf{if } \text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k)\)
8. \(\text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k)\)
9. \(P(j, k) = i\) \(\text{memorize the predecessor}\)
10. \(T(j, k) = \text{premax}\)
11. \(\text{laststate} = 1\); \(\text{max} = T(1, n)\)
12. \(\textbf{for } j = 2 \textbf{ to } m\) \(\textbf{identify maximum probability}\)
13. \(\textbf{if } \text{max} < T(j, n)\)
14. \(\text{laststate} = j\);
15. \(\text{max} = T(j, n)\)
16. \(\textbf{return } (T, P, \text{max, laststate})\)

Time complexity: \(O(nm^2)\)
Chapter 15. Dynamic Programming

Algorithm VITERBI(x, n, t, e, m)

0. \( T(0, 0) = 1; P(0, 0) = 0; \)
1. for \( j = 1 \) to \( m \)
2. \( T(j, 0) = 0; \)
3. for \( k = 1 \) to \( n \) for every prefix upto \( k \)th symbol
4. for \( j = 1 \) to \( m \) for every ‘last state’ \( s_j \)
5. \( \text{premax} = 0 \) initialize the prefix probability
6. for \( i = 0 \) to \( m \) try every ‘predecessor state’ \( s_i \)
7. if \( \text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k) \)
8. \( \text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k) \) update probability
9. \( P(j, k) = i \) memorize the predecessor
10. \( T(j, k) = \text{premax} \)
11. \( \text{laststate} = 1 \)
12. max = \( T(1, n) \)
13. for \( j = 2 \) to \( m \) identify maximum probability
14. if \( \text{max} < T(j, n) \)
15. \( \text{laststate} = j \)
16. \( \text{max} = T(j, n) \)
17. return \((T, P, \text{max}, \text{laststate})\)
Algorithm VITERBI($x$, $n$, $t$, $e$, $m$)

0. $T(0, 0) = 1$; $P(0, 0) = 0$;
1. for $j = 1$ to $m$
2.   $T(j, 0) = 0$;
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4.   for $j = 1$ to $m$ for every ‘last state’ $s_j$
5.     premax = 0 initialize the prefix probability
6.     for $i = 0$ to $m$ try every ‘predecessor state’ $s_i$
7.     if premax < $T(i, k - 1) \times t(i, j) \times e(j, x_k)$
8.     premax = $T(i, k - 1) \times t(i, j) \times e(j, x_k)$ update probability
9.     $P(j, k) = i$
Chapter 15. Dynamic Programming

Algorithm VITERBI\((x, n, t, e, m)\)

0. \(T(0, 0) = 1; P(0, 0) = 0;\)
1. for \(j = 1\) to \(m\)
2. \(T(j, 0) = 0;\)
3. for \(k = 1\) to \(n\) for every prefix upto \(k\)th symbol
4. for \(j = 1\) to \(m\) for every ‘last state’ \(s_j\)
5. \(premax = 0\) initialize the prefix probability
6. for \(i = 0\) to \(m\) try every ‘predecessor state’ \(s_i\)
7. if \(premax < T(i, k - 1) \times t(i, j) \times e(j, x_k)\)
8. \(premax = T(i, k - 1) \times t(i, j) \times e(j, x_k)\) update probability
9. \(P(j, k) = i\) memorize the predecessor
10. \(T(j, k) = premax\)
11. \(laststate = 1; max = T(1, n)\)
12. for \(j = 2\) to \(m\) identify maximum probability
13. if \(max < T(j, n)\)
14. \(laststate = j; max = T(j, n)\)
15. return \((T, P, max, laststate)\)

Time complexity: \(O(nm^2)\)
Algorithm VITERBI($x, n, t, e, m$)

0. $T(0, 0) = 1; P(0, 0) = 0;$
1. for $j = 1$ to $m$
2. $T(j, 0) = 0;$
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4. for $j = 1$ to $m$ for every ‘last state’ $s_j$
5. $\text{premax} = 0$ initialize the prefix probability
6. for $i = 0$ to $m$ try every ‘predecessor state’ $s_i$
7. if $\text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k)$
8. $\text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k)$ update probability
9. $P(j, k) = i$ memorize the predecessor
10. $T(j, k) = \text{premax}$

Time complexity: $O(nm^2)$
Chapter 15. Dynamic Programming

Algorithm \textsc{Viterbi}(x, n, t, e, m)

0. \quad T(0, 0) = 1; \quad P(0, 0) = 0;
1. \quad \textbf{for } j = 1 \textbf{ to } m
2. \quad \textbf{end for}
3. \quad T(j, 0) = 0; \quad \textbf{for every prefix upto } k\text{th symbol}
4. \quad \textbf{for } j = 1 \textbf{ to } m \quad \textbf{for every ‘last state’ } s_j
5. \quad \textit{premax} = 0 \quad \textit{initialize the prefix probability}
6. \quad \textbf{for } i = 0 \textbf{ to } m \quad \textbf{try every ‘predecessor state’ } s_i
7. \quad \textbf{if } \textit{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k) \quad \textbf{update probability}
8. \quad \textit{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k)
9. \quad P(j, k) = i \quad \textbf{memorize the predecessor}
10. \quad T(j, k) = \textit{premax}
11. \quad \textit{laststate} = 1; \quad \textit{max} = T(1, n)
Algorithm VITERBI($x, n, t, e, m$)

0. $T(0, 0) = 1; P(0, 0) = 0$;
1. for $j = 1$ to $m$
2.   $T(j, 0) = 0$; for every prefix upto $k$th symbol
3. for $k = 1$ to $n$
4.   for $j = 1$ to $m$ for every ‘last state’ $s_j$
5.     $premax = 0$ initialize the prefix probability
6.   for $i = 0$ to $m$ try every ‘predecessor state’ $s_i$
7.     if $premax < T(i, k - 1) \times t(i, j) \times e(j, x_k)$
8.     $premax = T(i, k - 1) \times t(i, j) \times e(j, x_k)$ update probability
9.     $P(j, k) = i$ memorize the predecessor
10. $T(j, k) = premax$
11. $laststate = 1; max = T(1, n)$
12. for $j = 2$ to $m$ identify maximum probability

Time complexity: $O(nm^2)$
Algorithm VITERBI($x, n, t, e, m$)

0. $T(0, 0) = 1; P(0, 0) = 0$
1. for $j = 1$ to $m$
2. $T(j, 0) = 0$
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4. for $j = 1$ to $m$ for every ‘last state’ $s_j$
5. $\text{premax} = 0$ initialize the prefix probability
6. for $i = 0$ to $m$ try every ‘predecessor state’ $s_i$
7. if $\text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k)$
8. $\text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k)$ update probability
9. $P(j, k) = i$ memorize the predecessor
10. $T(j, k) = \text{premax}$
11. $\text{laststate} = 1; \text{max} = T(1, n)$
12. for $j = 2$ to $m$ identify maximum probability
13. if $\text{max} < T(j, n)$
Chapter 15. Dynamic Programming

Algorithm VITERBI\((x, n, t, e, m)\)

0. \(T(0, 0) = 1; P(0, 0) = 0;\)
1. \(\text{for } j = 1 \text{ to } m\)
2. \(T(j, 0) = 0;\)
3. \(\text{for } k = 1 \text{ to } n \text{ for every prefix upto } k\text{th symbol}\)
4. \(\text{for } j = 1 \text{ to } m \text{ for every ‘last state’ } s_j\)
5. \(\text{premax} = 0 \text{ initialize the prefix probability}\)
6. \(\text{for } i = 0 \text{ to } m \text{ try every ’predecessor state’ } s_i\)
7. \(\text{if premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k)\)
8. \(\text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k) \text{ update probability}\)
9. \(P(j, k) = i \text{ memorize the predecessor}\)
10. \(T(j, k) = \text{premax}\)
11. \(\text{laststate} = 1; \text{max} = T(1, n)\)
12. \(\text{for } j = 2 \text{ to } m \text{ identify maximum probability}\)
13. \(\text{if max} < T(j, n)\)
14. \(\text{laststate} = j;\)
Algorithm Viterbi\((x, n, t, e, m)\)

0. \(T(0, 0) = 1; P(0, 0) = 0;\)
1. \(\text{for } j = 1 \text{ to } m\)
2. \(T(j, 0) = 0;\)
3. \(\text{for } k = 1 \text{ to } n \text{ for every prefix upto } k\text{th symbol}\)
4. \(\text{for } j = 1 \text{ to } m \text{ for every 'last state' } s_j\)
5. \(\text{premax} = 0 \text{ initialize the prefix probability}\)
6. \(\text{for } i = 0 \text{ to } m \text{ try every 'predecessor state' } s_i\)
7. \(\text{if } \text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k)\)
8. \(\text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k) \text{ update probability}\)
9. \(P(j, k) = i \text{ memorize the predecessor}\)
10. \(T(j, k) = \text{premax}\)
11. \(\text{laststate} = 1; \text{max} = T(1, n)\)
12. \(\text{for } j = 2 \text{ to } m \text{ identify maximum probability}\)
13. \(\text{if } \text{max} < T(j, n)\)
14. \(\text{laststate} = j;\)
15. \(\text{max} = T(j, n)\)

Time complexity: \(O(nm^2)\)
Chapter 15. Dynamic Programming

Algorithm VITERBI($x, n, t, e, m$)

0. $T(0, 0) = 1; P(0, 0) = 0$
1. for $j = 1$ to $m$
2. $T(j, 0) = 0$
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4. for $j = 1$ to $m$ for every 'last state' $s_j$
5. premax = 0 initialize the prefix probability
6. for $i = 0$ to $m$ try every 'predecessor state' $s_i$
7. if premax $< T(i, k - 1) \times t(i, j) \times e(j, x_k)$
8. premax = $T(i, k - 1) \times t(i, j) \times e(j, x_k)$ update probability
9. $P(j, k) = i$ memorize the predecessor
10. $T(j, k) = $ premax
11. laststate = 1; max = $T(1, n)$
12. for $j = 2$ to $m$ identify maximum probability
13. if max $< T(j, n)$
14. laststate = $j$
15. max = $T(j, n)$
16. return ($T, P, max, laststate$)

Time complexity: $O(nm^2)$
Chapter 15. Dynamic Programming

Algorithm VITERBI($x, n, t, e, m$)

0. $T(0, 0) = 1; P(0, 0) = 0$
1. for $j = 1$ to $m$
2. $T(j, 0) = 0$
3. for $k = 1$ to $n$ for every prefix upto $k$th symbol
4. for $j = 1$ to $m$ for every ‘last state’ $s_j$
5. premax = 0 initialize the prefix probability
6. for $i = 0$ to $m$ try every ‘predecessor state’ $s_i$
7. if premax < $T(i, k - 1) \times t(i, j) \times e(j, x_k)$
8. premax = $T(i, k - 1) \times t(i, j) \times e(j, x_k)$ update probability
9. $P(j, k) = i$ memorize the predecessor
10. $T(j, k) = premax$
11. laststate = 1; max = $T(1, n)$
12. for $j = 2$ to $m$ identify maximum probability
13. if max < $T(j, n)$
14. laststate = $j$
15. max = $T(j, n)$
16. return ($T, P, max, laststate$)

Time complexity:
Chapter 15. Dynamic Programming

Algorithm \textsc{Viterbi}(x, n, t, e, m)

0. \quad T(0, 0) = 1; \quad P(0, 0) = 0;
1. \quad \textbf{for} \ j = 1 \ \textbf{to} \ m \\
2. \quad \quad T(j, 0) = 0; \\
3. \quad \textbf{for} \ k = 1 \ \textbf{to} \ n \quad \text{for every prefix upto kth symbol} \\
4. \quad \quad \textbf{for} \ j = 1 \ \textbf{to} \ m \quad \text{for every ‘last state’ } s_j \\
5. \quad \quad \quad \text{premax} = 0 \quad \text{initialize the prefix probability} \\
6. \quad \quad \quad \textbf{for} \ i = 0 \ \textbf{to} \ m \quad \text{try every ‘predecessor state’ } s_i \\
7. \quad \quad \quad \quad \textbf{if} \ \text{premax} < T(i, k - 1) \times t(i, j) \times e(j, x_k) \\
8. \quad \quad \quad \quad \quad \text{premax} = T(i, k - 1) \times t(i, j) \times e(j, x_k) \quad \text{update probability} \\
9. \quad \quad \quad \quad P(j, k) = i \quad \text{memorize the predecessor} \\
10. \quad T(j, k) = \text{premax} \\
11. \quad \text{laststate} = 1; \quad \text{max} = T(1, n) \\
12. \quad \textbf{for} \ j = 2 \ \textbf{to} \ m \quad \text{identify maximum probability} \\
13. \quad \quad \textbf{if} \ \text{max} < T(j, n) \\
14. \quad \quad \quad \text{laststate} = j; \\
15. \quad \quad \quad \text{max} = T(j, n) \\
16. \quad \textbf{return} \ (T, P, \text{max}, \text{laststate}) \\

Time complexity: \( O(nm^2) \)
Use the computed table $P$ and $laststate$ to traceback the hidden states.
Chapter 15. Dynamic Programming

Use the computed table $P$ and $laststate$ to traceback the hidden states

Algorithm $TraceHiddenStates(P, j, k, x)$

1. if $j > 0$
Use the computed table $P$ and $\text{laststate}$ to traceback the hidden states

Algorithm $\text{TraceHiddenStates}(P, j, k, x)$

1. if $j > 0$
2. $\text{TraceHiddenStates}(P, P[j, k], k - 1, x)$
Use the computed table $P$ and laststate to traceback the hidden states

Algorithm $\text{TraceHiddenStates}(P, j, k, x)$

1. if $j > 0$
2. $\text{TraceHiddenStates}(P, P[j, k], k - 1, x)$
3. print ('State' $j$ 'emits symbol' $x_k$)
Use the computed table $P$ and $laststate$ to traceback the hidden states

Algorithm $\text{TraceHiddenStates}(P, j, k, x)$

1. if $j > 0$
2. $\text{TraceHiddenStates}(P, P[j, k], k - 1, x)$
3. print ("State' $j$ 'emits symbol' $x_k$")

First, call $\text{TraceHiddenStates}(P, laststate, n, x)$
Chapter 15. Dynamic Programming

There are other DP algorithms associated with HMMs.

- **Viterbi algorithm** belongs to the type of forward algorithms because it computes for prefixes of the given symbol sequence.
- A DP algorithm can be designed so it computes for suffixes of the given symbols sequence, a backward algorithm.

Algorithm I

**How to find objective function?**

Recalled for forward, we defined

\[ f(j,k) = \max_{y=s_0 \ldots s_j} \{ \text{Prob}(y,x_1 \ldots x_k) \} \]

- \( f(j,k) \) is the maximum probability to generate prefix \( x_1 \ldots x_k \) beginning from state \( s_0 \) and ending with state \( s_j \);

For backward, we may define

\[ b(l,k) = \max_{y=s_l \ldots s_\omega} \{ \text{Prob}(y,x_k \ldots x_n) \} \]

- \( b(l,k) \) is the maximum probability to generate suffix \( x_k \ldots x_n \) beginning from state \( s_l \) and ending with state \( s_\omega \);
Chapter 15. Dynamic Programming

There are other DP algorithms associated with HMMs.

- **Viterbi** algorithm belongs to the type of forward algorithms because it computes for prefixes of the given symbol sequence.
Chapter 15. Dynamic Programming

There are other DP algorithms associated with HMMs.

- **Viterbi** algorithm belongs to the type of forward algorithms because it computes for prefixes of the given symbol sequence.
  
  A DP algorithm can be designed so it computes for suffixes of the given symbols sequence, a backward algorithm.
Chapter 15. Dynamic Programming

There are other DP algorithms associated with HMMs.

- **Viterbi** algorithm belongs to the type of **forward** algorithms because it computes for **prefixes** of the given symbol sequence.

  A DP algorithm can be designed so it computes for **suffixes** of the given symbols sequence, a **backward** algorithm.

**Algorithm IBRETIV**
Chapter 15. Dynamic Programming

There are other DP algorithms associated with HMMs.

- **Viterbi** algorithm belongs to the type of forward algorithms because it computes for prefixes of the given symbol sequence.

A DP algorithm can be designed so it computes for suffixes of the given symbol sequence, a backward algorithm.

**Algorithm Iبريتيه**

How to find objective function?
Recalled for forward, we defined

\[ f(j, k) = \max_{y=s_0...s_j} \{Prob(y, x_1...x_k)\} \]

\( f(j, k) \) is the maximum probability to generate prefix \( x_1...x_1 \) beginning from state \( s_0 \) and ending with state \( s_j \);
Chapter 15. Dynamic Programming

There are other DP algorithms associated with HMMs.

- **Viterbi** algorithm belongs to the type of **forward** algorithms because it computes for **prefixes** of the given symbol sequence.

A DP algorithm can be designed so it computes for **suffixes** of the given symbols sequence, a **backward** algorithm.

**Algorithm I**bre**ti**v

**How to find objective function?**
Recalled for forward, we defined

\[
    f(j, k) = \max_{y=s_0 \ldots s_j} \{\text{Prob}(y, x_1 \ldots x_k)\}
\]

\(f(j, k)\) is the maximum probability to generate prefix \(x_1 \ldots x_1\) beginning from state \(s_0\) and ending with state \(s_j\);

For backward, we may define

\[
    b(l, k) = \max_{y=s_l \ldots s_\omega} \{\text{Prob}(y, x_k \ldots x_n)\}
\]

\(b(l, k)\) is the maximum probability to generate suffix \(x_k \ldots x_n\) beginning from state \(s_l\) and ending with state \(s_\omega\);
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_1...s_\omega} \{ \text{Prob}(y, x_k ... x_n) \}$$
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_l \ldots s_\omega} \{\text{Prob}(y, x_k \ldots x_n)\}$$

- Recurrence (draw a diagram)

$$b(l, k) =$$
Chapter 15. Dynamic Programming

• We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_l...s_\omega} \{Prob(y, x_k \ldots x_n)\}$$

• Recurrence (draw a diagram)

$$b(l, k) = \max_i \{\text{Prob}(y, x_k \ldots x_n)\}$$
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_l \ldots s_\omega} \{Prob(y, x_k \ldots x_n)\}$$

- Recurrence (draw a diagram)

$$b(l, k) = \max_i \{b(i, k + 1)\}$$
We need to amend the HMM model with a silent state $s_\omega$:

\[
b(l, k) = \max_{y = s_l \ldots s_\omega} \{\text{Prob}(y, x_k \ldots x_n)\}
\]

Recurrence (draw a diagram)

\[
b(l, k) = \max_i \{b(i, k + 1) \times t(l, i)\}
\]

What is the relationship between $\max_j \{f(j, n)\}$ and $\max_l \{b(l, 1)\}$? (draw diagram to show)
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

\[
 b(l, k) = \max_{y=s_l \ldots s_\omega} \{ \text{Prob}(y, x_k \ldots x_n) \}
\]

- Recurrence (draw a diagram)

\[
 b(l, k) = \max_{i} \{ b(i, k + 1) \times t(l, i) \times e(l, x_k) \}
\]

the larger the $k$ value, the shortest the suffix is
Chapter 15. Dynamic Programming

• We need to amend the HMM model with a silent state $s_{\omega}$;

$$b(l, k) = \max_{y=s_l \ldots s_\omega} \{\text{Prob}(y, x_k \ldots x_n)\}$$

• Recurrence (draw a diagram)

$$b(l, k) = \max_i \{b(i, k + 1) \times t(l, i) \times e(l, x_k)\}$$

the larger the $k$ value, the shortest the suffix is

• Base cases:
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a *silent state* \( s_\omega \):

\[
b(l, k) = \max_{y = s_l \ldots s_\omega} \{ \text{Prob}(y, x_k \ldots x_n) \}\]

- Recurrence (draw a diagram)

\[
b(l, k) = \max_i \{ b(i, k + 1) \times t(l, i) \times e(l, x_k) \}
\]

the larger the \( k \) value, the shortest the suffix is

- Base cases: \( b(s_\omega, k) = 1 \)

\( k = n + 1 \) is the case when the suffix is empty.
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_l \ldots s_\omega} \{Prob(y, x_k \ldots x_n)\}$$

- Recurrence (draw a diagram)

$$b(l, k) = \max_{i} \{b(i, k + 1) \times t(l, i) \times e(l, x_k)\}$$

the larger the $k$ value, the shortest the suffix is

- Base cases: $b(s_\omega, n + 1) =$
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_1 \ldots s_\omega} \{ \text{Prob}(y, x_k \ldots x_n) \}$$

- Recurrence (draw a diagram)

$$b(l, k) = \max_i \{ b(i, k + 1) \times t(l, i) \times e(l, x_k) \}$$

the larger the $k$ value, the shortest the suffix is

- Base cases: $b(s_\omega, n + 1) = 1,$
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state \( s_\omega \);

\[
b(l, k) = \max_{y=s_l \ldots s_\omega} \{ \text{Prob}(y, x_k \ldots x_n) \}\]

- Recurrence (draw a diagram)

\[
b(l, k) = \max_i \{ b(i, k + 1) \times t(l, i) \times e(l, x_k) \}\]

the larger the \( k \) value, the shortest the suffix is

- Base cases: \( b(s_\omega, n + 1) = 1, b(j, n + 1) = 0 \) for all \( j \neq \omega \).

\( k = n + 1 \) is the case when the suffix is empty.
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state \( s_\omega \);

\[
b(l, k) = \max_{y=s_1 \ldots s_\omega} \{ \text{Prob}(y, x_k \ldots x_n) \}
\]

- Recurrence (draw a diagram)

\[
b(l, k) = \max_i \{ b(i, k + 1) \times t(l, i) \times e(l, x_k) \}
\]

the larger the \( k \) value, the shortest the suffix is

- Base cases: \( b(s_\omega, n + 1) = 1 \), \( b(j, n + 1) = 0 \) for all \( j \neq \omega \).

\( k = n + 1 \) is the case when the suffix is empty.

What is the relationship between \( \max_j \{ f(j, n) \} \) and \( \max_l \{ b(l, 1) \} \)?
Chapter 15. Dynamic Programming

- We need to amend the HMM model with a silent state $s_\omega$;

$$b(l, k) = \max_{y=s_1 \ldots s_\omega} \{Prob(y, x_k \ldots x_n)\}$$

- Recurrence (draw a diagram)

$$b(l, k) = \max_i \{b(i, k + 1) \times t(l, i) \times e(l, x_k)\}$$

the larger the $k$ value, the shortest the suffix is

- Base cases: $b(s_\omega, n + 1) = 1$, $b(j, n + 1) = 0$ for all $j \neq \omega$.

  $k = n + 1$ is the case when the suffix is empty.

**What is the relationship between** $\max_j \{f(j, n)\}$ **and** $\max_l \{b(l, 1)\}$? **(draw diagram to show)**
Computing the total probability (instead of the maximum prob)
Chapter 15. Dynamic Programming

Computing the total probability (instead of the maximum prob)

- often we are interested in knowing the chance for a given sequence of symbols to be produced by a model.
Computing the total probability (instead of the maximum prob)

- often we are interested in knowing the chance for a given sequence of symbols to be produced by a model.
  
  e.g., used in discrimination against background
Chapter 15. Dynamic Programming

Computing the total probability (instead of the maximum prob)

- often we are interested in knowing the chance for a given sequence of symbols to be produced by a model.
  
e.g., used in discrimination against background

- given a HMM $\mathcal{M}$, and sequence $x \in \Sigma^*$, what is the probability
  
  $$Prob(x|\mathcal{M})$$
Chapter 15. Dynamic Programming

Computing the total probability (instead of the maximum prob)

• often we are interested in knowing the chance for a given sequence of symbols to be produced by a model.
  e.g., used in discrimination against background

• given a HMM $M$, and sequence $x \in \Sigma^*$, what is the probability

$$Prob(x|M) = \sum_y Prob(y, x|M)$$
Chapter 15. Dynamic Programming

Computing the total probability (instead of the maximum prob)

- often we are interested in knowing the chance for a given sequence of symbols to be produced by a model.
  
  e.g., used in discrimination against background

- given a HMM \( M \), and sequence \( x \in \Sigma^* \), what is the probability
  
  \[
  Prob(x|M) = \sum_{y} Prob(y, x|M)
  \]

- consider prefix, \( x_1 \ldots x_k \) and state \( s_j \), define:
Computing the total probability (instead of the maximum prob)

- often we are interested in knowing the chance for a given sequence of symbols to be produced by a model.
  e.g., used in discrimination against background
- given a HMM $M$, and sequence $x \in \Sigma^*$, what is the probability

$$\text{Prob}(x|M) = \sum_y \text{Prob}(y, x|M)$$

- consider prefix, $x_1 \ldots x_k$ and state $s_j$, define:

  $$p(j, k) \text{ to be the total probability for } M \text{ to generate prefix } x_1 \ldots x_k \text{ ending at state } s_j.$$
Chapter 15. Dynamic Programming

Define $p(j, k)$ to be the total probability for $M$ to generate prefix $x_1 \ldots x_k$ ending at state $s_j$.

![Diagram showing the transition between states $s_0$ to $s_j$ with labels on the edges indicating the generation of prefixes $x_1x_2\ldots x_{k-2}$, $x_{k-1}$, and $x_k$.]
Chapter 15. Dynamic Programming

Define $p(j, k)$ to be the total probability for $\mathcal{M}$ to generate prefix $x_1 \ldots x_k$ ending at state $s_j$.

then

$$p(j, k) = \sum_{i} p(i, k - 1) \times t(i, j) \times e(j, x_k)$$

with base cases: $p(0, 0) = 1$, and $p(j, 0) = 0$ for all $j \geq 1$. 
Implementation of the total probability algorithm
Chapter 15. Dynamic Programming

Implementation of the total probability algorithm

• almost the same as for Viterbi algorithm.
Chapter 15. Dynamic Programming

Implementation of the total probability algorithm

• almost the same as for Viterbi algorithm.

• applications, for example
Implementation of the total probability algorithm

- almost the same as for Viterbi algorithm.
- applications, for example
  - screen a stream of signals (symbols) for occasional but desired pattern
Chapter 15. Dynamic Programming

Implementation of the total probability algorithm

• almost the same as for Viterbi algorithm.

• applications, for example
  - screen a stream of signals (symbols) for occasional but desired pattern
  - use HMM to model the desired pattern

but what does it mean by 'significant probability values'? 
Implementation of the total probability algorithm

- almost the same as for Viterbi algorithm.
- applications, for example
  - screen a stream of signals (symbols) for occasional but desired pattern
  - use HMM to model the desired pattern
  - scanning window on the long stream; computes the total probability

but what does it mean by 'significant probability values'?
Chapter 15. Dynamic Programming

Implementation of the total probability algorithm

• almost the same as for Viterbi algorithm.

• applications, for example
  - screen a stream of signals (symbols) for occasional but desired pattern
  - use HMM to model the desired pattern
  - scanning window on the long stream; computes the total probability
  - report segments with ‘significant’ probability values
Chapter 15. Dynamic Programming

Implementation of the total probability algorithm

• almost the same as for Viterbi algorithm.

• applications, for example
  - screen a stream of signals (symbols) for occasional but desired pattern
  - use HMM to model the desired pattern
  - scanning window on the long stream; computes the total probability
  - report segments with ‘significant’ probability values

  but what does it mean by ‘significant probability values’?
Chapter 15. Dynamic Programming

Necessary elements for problems solvable with DP

- It is an optimization problem with an objective function to optimize by solutions. For example, a path of stations, and the objective function is time.
- Solution has optimal substructure. Solutions are recursively definable. For example, a fastest path consists of other fastest subpaths.
- Overlapping subproblems. For example, two or more paths share a subpath.
Chapter 15. Dynamic Programming

Necessary elements for problems solvable with DP

(1) it is an optimization problem
Chapter 15. Dynamic Programming

Necessary elements for problems solvable with DP

(1) it is an optimization problem

with an objective function to optimize by solutions

e.g., solution: a path of stations,
  objective function: time
Chapter 15. Dynamic Programming

Necessary elements for problems solvable with DP

(1) it is an optimization problem
   with an objective function to optimize by solutions
   e.g., solution: a path of stations,
   objective function: time

(2) solution has optimal substructure
Necessary elements for problems solvable with DP

(1) it is an optimization problem

   with an objective function to optimize by solutions

   e.g., solution: a path of stations,
   objective function: time

(2) solution has optimal substructure

   solutions are recursively definable

   e.g., a fastest path consists of other fastest subpaths
Chapter 15. Dynamic Programming

Necessary elements for problems solvable with DP

1. it is an optimization problem
   with an objective function to optimize by solutions
   e.g., solution: a path of stations,
   objective function: time

2. solution has optimal substructure
   solutions are recursively definable
   e.g., a fastest path consists of other fastest subpaths

3. overlapping subproblems
   e.g., two or more paths share a subpath.
Chapter 15. Dynamic Programming

Longest Common Subsequence (LCS)
Chapter 15. Dynamic Programming

Longest Common Subsequence (LCS)

\[ x = \text{ACCGGTTCGAGTGCG} \]
\[ y = \text{GTCGTTTCGATGCCC} \]
Chapter 15. Dynamic Programming

Longest Common Subsequence (LCS)

\[ x = \text{ACCGGTCGAGTGCG} \]
\[ y = \text{GTCGTTCGGATGCCC} \]

To see how much the two sequences are related, we may examine how much the two are in common.
Chapter 15. Dynamic Programming

Longest Common Subsequence (LCS)

\[ x = \text{ACCGGTCGAGTGCG} \]
\[ y = \text{GTCGTTCCGATGCCC} \]

To see how much the two sequences are related, we may examine how much the two are in common.

e.g., a common subsequence for the two sequences
Chapter 15. Dynamic Programming

Longest Common Subsequence (LCS)

\[ x = \text{ACCGGTCGAGTGCG} \]
\[ y = \text{GTCGTTCCGATGCCC} \]

To see how much the two sequences are related, we may examine how much the two are in common.

E.g., a common subsequence for the two sequences

\[ \text{ACCGGTCGAGTGCG} \]
\[ \text{CGTCGATGC} \leftarrow \text{common sequence} \]
\[ \text{GTCGTTCCGATGCCC} \]
Longest Common Subsequence (LCS)

\[
x = \text{ACCGGTCGAGTGCG}\\
y = \text{GTCGTTCCGATGCCC}
\]

To see how much the two sequences are related, we may examine how much the two are in common.

e.g., a common subsequence for the two sequences

\[
\begin{align*}
\text{ACCGGTCGAGTGCG} \\
\text{CGTCGATGC} & \quad \text{common sequence} \\
\text{GTCGTTCCGATGCCC}
\end{align*}
\]

significance of common sequence
Chapter 15. Dynamic Programming

Longest Common Subsequence (LCS)

\[ x = \text{ACCGGTCGAGTGCG} \]
\[ y = \text{GTCGTTCGGATGCCC} \]

To see how much the two sequences are related, we may examine how much the two are in common.

e.g., a common subsequence for the two sequences

ACCGGT CGAGTGCG

CGTCGATGC ← common sequence

GTCGTT CGGATGCCC

significance of common sequence

ACCGGT CGA GTGC

CG TC GA TGC ← common sequence

GTCGTT CGGATGCCC
Chapter 15. Dynamic Programming

Let $X = x_1 x_2 \cdots x_m$ be a sequence, $x_i \in \Sigma$. 
Let $X = x_1 x_2 \cdots x_m$ be a sequence, $x_i \in \Sigma$.

$Z = z_1 z_2 \cdots z_k$ is a subsequence of $X$. 
Chapter 15. Dynamic Programming

Let $X = x_1x_2 \cdots x_m$ be a sequence, $x_i \in \Sigma$.

$Z = z_1z_2 \cdots z_k$ is a subsequence of $X$
if there are indexes $i_1 < i_2 < \cdots , < i_k$ of $X$ such that
Chapter 15. Dynamic Programming

Let $X = x_1 x_2 \cdots x_m$ be a sequence, $x_i \in \Sigma$.

$Z = z_1 z_2 \cdots z_k$ is a subsequence of $X$

if there are indexes $i_1 < i_2 < \cdots < i_k$ of $X$ such that

$z_j = x_{i_j}$ for $j = 1, \cdots, k$. 

$X = \text{ACCGGTCGAGTGCG}$

$Z = \text{CG TCGA TGC}$
Chapter 15. Dynamic Programming

Let $X = x_1 x_2 \cdots x_m$ be a sequence, $x_i \in \Sigma$.

$Z = z_1 z_2 \cdots z_k$ is a subsequence of $X$
if there are indexes $i_1 < i_2 < \cdots , < i_k$ of $X$ such that

$z_j = x_{i_j}$ for $j = 1, \cdots , k$.

34 6789 11^{12}_{13}

$X = \text{ACCGGTCGAGTGCG}$

$Z = \text{CG TCGA TGC}$

12 3456 789
Chapter 15. Dynamic Programming

Let \( X = x_1 x_2 \cdots x_m \) be a sequence, \( x_i \in \Sigma \).

\( Z = z_1 z_2 \cdots z_k \) is a subsequence of \( X \)
if there are indexes \( i_1 < i_2 < \cdots , < i_k \) of \( X \) such that
\[
z_j = x_{i_j} \text{ for } j = 1, \cdots , k.
\]

\[
\begin{align*}
34 & \quad 6789 & \quad 11^{12}13 \\
X &= ACCGGTCGAGTGCG \\
&| | | | | | | | \\
Z &= CG TCGA TGC \\
12 & \quad 3456 & \quad 789
\end{align*}
\]

the corresponding indexes in \( X \) are:

\[
3 < 4 < 6 < 7 < 8 < 9 < 11 < 12 < 13
\]
Chapter 15. Dynamic Programming

$Z$ is a *common subsequence* of $X$ and $Y$
if $Z$ is a *subsequence* of $X$ and $Z$ is a subsequence of $Y$. 
Chapter 15. Dynamic Programming

$Z$ is a common subsequence of $X$ and $Y$ if $Z$ is a subsequence of $X$ and $Z$ is a subsequence of $Y$.

\[
\begin{array}{cc}
{\text{ACCGGTC    GAGTGC}}
\end{array}
\]

\[
\begin{array}{cccccccccccc}
\text{CG} & \text{TC} & \text{GA} & \text{TGC}
\end{array}
\hspace{1cm} \leftarrow \text{common sequence}
\]

\[
\begin{array}{ccccccccccc}
{\text{GTCGTTCGGA    TGCCC}}
\end{array}
\]
Chapter 15. Dynamic Programming

Z is a common subsequence of X and Y if Z is a subsequence of X and Z is a subsequence of Y.

ACCGGTC  GAGTGCG
     || || || ||
   CG  TC  GA  TGC   ← common sequence
     || || || ||
GTCGTTCGGA  TGCCC

Longest Common Subsequence (LCS) problem:

INPUT: \( X = x_1x_2 \cdots x_m \), \( Y = y_1y_2 \cdots y_n \).
OUTPUT: \( Z \), a common subsequence of \( X \) and \( Y \) such that \( \text{length}(Z) \) is the maximum.
Step 1: Analyze the LCS problem to see if it has the desired features:
Chapter 15. Dynamic Programming

Step 1: Analyze the LCS problem to see if it has the desired features:

- optimal substructure
- overlapping subproblems
Chapter 15. Dynamic Programming

**Step 1:** Analyze the LCS problem to see if it has the desired features:

- optimal substructure
- overlapping subproblems
Chapter 15. Dynamic Programming

**Step 1:** Analyze the LCS problem to see if it has the desired features:

- optimal substructure
- overlapping subproblems

We examine prefixes $x_1x_2 \ldots x_i$, $i \leq m$
and $y_1y_2 \ldots y_j$, $j \leq n$
Step 1: Analyze the LCS problem to see if it has the desired features:

- optimal substructure
- overlapping subproblems

We examine prefixes $x_1x_2 \ldots x_i$, $i \leq m$ and $y_1y_2 \ldots y_j$, $j \leq n$

- how is the LCS of $x_1x_2 \ldots x_i$ and $y_1y_2 \ldots y_j$ related to the LCS of shorter prefixes of $X$ and $Y$?
Chapter 15. Dynamic Programming

\[ x_1 \ldots x_{i-1} x_i \]
\[ y_1 \ldots y_{j-1} y_j \]
Chapter 15. Dynamic Programming

if \( x_i = y_j \), include \( x_i \) in the LCS, reducing to LCS for \( x_1 \ldots x_{i-1} \) and \( y_1 \ldots y_{j-1} \)
Chapter 15. Dynamic Programming

\[ x_1 \ldots x_{i-1}x_i \]
\[ y_1 \ldots y_{j-1}y_j \]

if \( x_i = y_j \), include \( x_i \) in the LCS, reducing to LCS for \( x_1 \ldots x_{i-1} \) and \( y_1 \ldots y_{j-1} \)

if \( x_i \neq y_j \), should we abandon either?
Chapter 15. Dynamic Programming

\[ x_1 \ldots x_{i-1}x_i \]
\[ y_1 \ldots y_{j-1}y_j \]

If \( x_i = y_j \), include \( x_i \) in the LCS, reducing to LCS for \( x_1 \ldots x_{i-1} \) and \( y_1 \ldots y_{j-1} \)

If \( x_i \neq y_j \), should we abandon either? Two options

1. keep \( x_i \) but abandon \( y_j \)
   resulting in prefixes: \( x_1x_2 \ldots x_i \) and \( y_1y_2 \ldots y_{j-1} \), or
Chapter 15. Dynamic Programming

if \( x_i = y_j \), include \( x_i \) in the LCS, reducing to LCS for \( x_1 \ldots x_{i-1} \) and \( y_1 \ldots y_{j-1} \)

if \( x_i \neq y_j \), should we abandon either? two options

(1) keep \( x_i \) but abandon \( y_j \)
    resulting in prefixes: \( x_1x_2\ldots x_i \) and \( y_1y_2\ldots y_{j-1} \), or

(2) keep \( y_j \) but abandon \( x_i \)
    resulting in prefixes: \( x_1x_2\ldots x_{i-1} \) and \( y_1y_2\ldots y_j \)
Chapter 15. Dynamic Programming

Let $LCS(i, j)$ be the longest common sequence for $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$, then

- if $x_i = y_j$, then $LCS(i, j) = \text{concat}(LCS(i-1, j-1), x_i)$
- if $x_i \neq y_j$, then $LCS(i, j) = \text{max}(LCS(i,j-1), LCS(i-1,j))$ (depending on which is of a larger length.)

We conclude: $LCS$ problem has the optimal substructure property; $LCS$ problem has overlapping subproblems.
Chapter 15. Dynamic Programming

Let $LCS(i, j)$ be the longest common sequence for $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$, then

- if $x_i = y_j$, then $LCS(i, j) = concat(LCS(i - 1, j - 1), x_i)$

We conclude: LCS problem has the optimal substructure property; LCS problem has overlapping subproblems.
Chapter 15. Dynamic Programming

Let \( LCS(i, j) \) be the longest common sequence for \( x_1 x_2 \ldots x_i \) and \( y_1 y_2 \ldots y_j \), then

- if \( x_i = y_j \), then \( LCS(i, j) = concat(LCS(i - 1, j - 1), x_i) \)
- if \( x_i \neq y_j \), then

\[
LCS(i, j) = LCS(i, j - 1) \text{ OR } LCS(i, j) = LCS(i - 1, j)
\]

(depending on which is of a larger length.)
Chapter 15. Dynamic Programming

Let $LCS(i, j)$ be the longest common sequence for $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_j$, then

- if $x_i = y_j$, then $LCS(i, j) = concat(LCS(i - 1, j - 1), x_i)$
- if $x_i \neq y_j$, then $LCS(i, j) = LCS(i, j - 1) \text{ OR } LCS(i, j) = LCS(i - 1, j)$ (depending on which is of a larger length.)

We conclude:

LCS problem has the optimal substructure property;
LCS problem has overlapping subproblems.
Step 2: define objective function and formulate recurrence
Step 2: define objective function and formulate recurrence

Define $l(i, j)$ to be the length of the LCS for prefixes $x_1 \ldots x_i$ and $y_1 \ldots y_j$. 

The value of $l(i, j)$ depends on values of $l(i-1, j-1)$, $l(i, j-1)$, and $l(i-1, j)$.
Step 2: define objective function and formulate recurrence

Define $l(i, j)$ to be the length of the LCS for prefixes $x_1 \ldots x_i$ and $y_1 \ldots y_j$. Then

$$l(i, j) = \begin{cases} 
  l(i-1, j-1) + 1 & \text{if } x_i = y_j; \\
  \max\{l(i-1, j), l(i, j-1), l(i-1, j-1)\} & \text{if } x_i \neq y_j.
\end{cases}$$

Base cases:

- $l(i, 0) = 0$, for $0 \leq i \leq m$, either prefix is empty → LCS is empty
- $l(0, j) = 0$, for $0 \leq j \leq n$
**Step 2:** define objective function and formulate recurrence

Define $l(i, j)$ to be the length of the LCS for prefixes $x_1 \ldots x_i$ and $y_1 \ldots y_j$. Then

$$l(i, j) = \begin{cases} 
    l(i - 1, j - 1) + 1 & \text{if } x_i = y_j; \\
    \max \left\{ l(i, j - 1); l(i - 1, j); \right\} & \text{if } x_i \neq y_j 
\end{cases}$$

base cases:

$l(i, 0) = 0$, for $0 \leq i \leq m$, either prefix is empty → LCS is empty

$l(0, j) = 0$, for $0 \leq j \leq n$
Step 2: define objective function and formulate recurrence

Define \( l(i, j) \) to be the length of the LCS for prefixes \( x_1 \ldots x_i \) and \( y_1 \ldots y_j \). Then

\[
l(i, j) = \begin{cases} 
  l(i-1, j-1) + 1 & \text{if } x_i = y_j; \\
  \max \left\{ l(i, j-1), l(i-1, j) \right\} & \text{if } x_i \neq y_j
\end{cases}
\]

The value of \( l(i, j) \) depends on values of \( l(i-1, j-1), l(i, j-1), \) and \( l(i-1, j) \).
Step 2: define objective function and formulate recurrence

Define $l(i, j)$ to be the length of the LCS for prefixes $x_1 \ldots x_i$ and $y_1 \ldots y_j$. Then

$$l(i, j) = \begin{cases} 
  l(i - 1, j - 1) + 1 & \text{if } x_i = y_j; \\
  \max \left\{ l(i, j - 1), \ l(i - 1, j) \right\} & \text{if } x_i \neq y_j 
\end{cases}$$

the value of $l(i, j)$ depends on values of $l(i - 1, j - 1)$, $l(i, j - 1)$, and $l(i - 1, j)$.

base cases: $l(i, 0) = 0$, for $0 \leq i \leq m$, either prefix is empty $\rightarrow$ LCS is empty
Step 2: define objective function and formulate recurrence

Define \( l(i, j) \) to be the length of the LCS for prefixes \( x_1 \ldots x_i \) and \( y_1 \ldots y_j \). Then

\[
l(i, j) = \begin{cases} 
  l(i - 1, j - 1) + 1 & \text{if } x_i = y_j; \\
  \max \{ l(i, j - 1); l(i - 1, j) \} & \text{if } x_i \neq y_j 
\end{cases}
\]

the value of \( l(i, j) \) depends on values of \( l(i - 1, j - 1), l(i, j - 1), \) and \( l(i - 1, j) \).

Base cases:
- \( l(i, 0) = 0 \), for \( 0 \leq i \leq m \), either prefix is empty \( \rightarrow \) LCS is empty
- \( l(0, j) = 0 \), for \( 0 \leq j \leq n \)
Chapter 15. Dynamic Programming

**Step 3**: bottom-up table building for function $l(i, j)$.

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 15. Dynamic Programming

**Step 3**: bottom-up table building for function $l(i, j)$.

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>C</th>
<th>C</th>
<th>C</th>
<th>T</th>
<th>A</th>
<th>G</th>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 15. Dynamic Programming

**Step 3:** bottom-up table building for function \( l(i, j) \).
Chapter 15. Dynamic Programming

**Step 3**: bottom-up table building for function $l(i, j)$.

LCS result between prefixes GCCCTAGC and GCG:

```
GCCCTAGC
G C G
```
Chapter 15. Dynamic Programming

Algorithm LCS($x, y$)
1. $m = \text{length}(x), n = \text{length}(y)$;
Chapter 15. Dynamic Programming

Algorithm LCS($x, y$)
1. $m = \text{length}(x), n = \text{length}(y)$;
2. for $i = 0$ to $m$

Time complexity: $O(mn)$
Algorithm LCS($x, y$)
1. $m = \text{length}(x)$, $n = \text{length}(y)$;
2. \textbf{for} $i = 0$ \textbf{to} $m$
3. \hspace{1em} $T[i, 0] = 0$
Algorithm LCS \((x, y)\)
1. \(m = \text{length}(x), \ n = \text{length}(y);\)
2. \(\textbf{for} \ i = 0 \ \textbf{to} \ m\)
3. \(T[i, 0] = 0\)
4. \(\textbf{for} \ j = 0 \ \textbf{to} \ n\)
Chapter 15. Dynamic Programming

Algorithm LCS$(x, y)$
1. $m = \text{length}(x)$, $n = \text{length}(y)$;
2. for $i = 0$ to $m$
3. \hspace{1em} $T[i, 0] = 0$
4. for $j = 0$ to $n$
5. \hspace{1em} $T[0, j] = 0$
Algorithm LCS($x, y$)
1. $m = \text{length}(x)$, $n = \text{length}(y)$;
2. for $i = 0$ to $m$
3. \hspace{1em} $T[i, 0] = 0$
4. for $j = 0$ to $n$
5. \hspace{1em} $T[0, j] = 0$
6. for $i = 1$ to $m$
7. \hspace{1em} for $j = 1$ to $n$
8. \hspace{2em} if $x[i] = y[j]$
9. \hspace{3em} $T[i, j] = T[i - 1, j - 1] + 1$; $P[i, j] = \uparrow$
10. \hspace{2em} else if $T[i, j - 1] > T[i - 1, j]$
11. \hspace{3em} $T[i, j] = T[i, j - 1]$; $P[i, j] = \leftarrow$
12. \hspace{2em} else
13. \hspace{3em} $T[i, j] = T[i - 1, j]$; $P[i, j] = \uparrow$
14. \hspace{1em} return ($T, P$)

Time complexity: $O(mn)$
Algorithm LCS \((x, y)\)
1. \(m = \text{length}(x), n = \text{length}(y)\);
2. \textbf{for} \(i = 0\) \textbf{to} \(m\)
3. \hspace{1em} \(T[i, 0] = 0\)
4. \textbf{for} \(j = 0\) \textbf{to} \(n\)
5. \hspace{1em} \(T[0, j] = 0\)
6. \textbf{for} \(i = 1\) \textbf{to} \(m\)
7. \hspace{1em} \textbf{for} \(j = 1\) \textbf{to} \(n\)
Algorithm LCS\((x, y)\)

1. \(m = \text{length}(x), n = \text{length}(y)\);
2. \(\text{for } i = 0 \text{ to } m\)
3. \(T[i, 0] = 0\)
4. \(\text{for } j = 0 \text{ to } n\)
5. \(T[0, j] = 0\)
6. \(\text{for } i = 1 \text{ to } m\)
7. \(\text{for } j = 1 \text{ to } n\)
8. \(\text{if } x_i = y_j\)
Chapter 15. Dynamic Programming

Algorithm LCS($x, y$)
1. $m = \text{length}(x)$, $n = \text{length}(y)$;
2. for $i = 0$ to $m$
3. \hspace{1em} $T[i, 0] = 0$
4. for $j = 0$ to $n$
5. \hspace{1em} $T[0, j] = 0$
6. for $i = 1$ to $m$
7. \hspace{1em} for $j = 1$ to $n$
8. \hspace{2em} if $x_i = y_j$
9. \hspace{3em} $T[i, j] = T[i - 1, j - 1] + 1$; $P[i, j] = \uparrow \leftarrow \downarrow \searrow$
10. \hspace{1em} else if $T[i, j - 1] > T[i - 1, j]$
11. \hspace{2em} $T[i, j] = T[i, j - 1]$
12. \hspace{2em} $P[i, j] = \uparrow$
13. \hspace{1em} else
14. \hspace{2em} $T[i, j] = T[i - 1, j]$
15. \hspace{2em} $P[i, j] = \downarrow$
16. return ($T$, $P$)

Time complexity: $O(mn)$
Chapter 15. Dynamic Programming

Algorithm LCS(x, y)
1. \( m = \text{length}(x), \ n = \text{length}(y); \)
2. \( \text{for } i = 0 \text{ to } m \)
3. \( T[i, 0] = 0 \)
4. \( \text{for } j = 0 \text{ to } n \)
5. \( T[0, j] = 0 \)
6. \( \text{for } i = 1 \text{ to } m \)
7. \( \text{for } j = 1 \text{ to } n \)
8. \( \text{if } x_i = y_j \)
9. \( T[i, j] = T[i - 1, j - 1] + 1; \ P[i, j] = \downarrow \)
10. \( \text{else if } T[i, j - 1] > T[i - 1, j] \)
11. \( \text{return } (T, P) \)

Time complexity: \( O(mn) \)
Algorithm LCS($x, y$)
1. $m = \text{length}(x), \ n = \text{length}(y)$;
2. for $i = 0$ to $m$
3. \hspace{1em} $T[i, 0] = 0$
4. for $j = 0$ to $n$
5. \hspace{1em} $T[0, j] = 0$
6. for $i = 1$ to $m$
7. \hspace{1em} for $j = 1$ to $n$
8. \hspace{2em} if $x_i = y_j$
9. \hspace{3em} $T[i, j] = T[i - 1, j - 1] + 1$; $P[i, j] = \text{'\downarrow'}$
10. \hspace{2em} else if $T[i, j - 1] > T[i - 1, j]$
11. \hspace{3em} $T[i, j] = T[i, j - 1]$; $P[i, j] = \text{'\leftarrow'}$
12. return $(T, P)$

Time complexity: $O(mn)$
Chapter 15. Dynamic Programming

Algorithm LCS($x, y$)
1. $m = \text{length}(x)$, $n = \text{length}(y)$;
2. for $i = 0$ to $m$
3. \quad $T[i, 0] = 0$
4. for $j = 0$ to $n$
5. \quad $T[0, j] = 0$
6. for $i = 1$ to $m$
7. \quad for $j = 1$ to $n$
8. \quad \quad if $x_i = y_j$
9. \quad \quad \quad $T[i, j] = T[i - 1, j - 1] + 1$; $P[i, j] = \downarrow$
10. \quad \quad else if $T[i, j - 1] > T[i - 1, j]$
11. \quad \quad \quad $T[i, j] = T[i, j - 1]$; $P[i, j] = \leftarrow$
12. \quad \quad else $T[i, j] = T[i - 1, j]$; $P[i, j] = \uparrow$
13. return ($T, P$)

Time complexity: $O(mn)$
Algorithm LCS($x, y$)
1. \( m = \text{length}(x), \ n = \text{length}(y); \)
2. \( \text{for } i = 0 \text{ to } m \)
3. \( T[i, 0] = 0 \)
4. \( \text{for } j = 0 \text{ to } n \)
5. \( T[0, j] = 0 \)
6. \( \text{for } i = 1 \text{ to } m \)
7. \( \text{for } j = 1 \text{ to } n \)
8. \( \quad \text{if } x_i = y_j \)
9. \( \quad \quad T[i, j] = T[i - 1, j - 1] + 1; \ P[i, j] = ' \leftarrow ' \)
10. \( \quad \text{else if } T[i, j - 1] > T[i - 1, j] \)
11. \( \quad \quad T[i, j] = T[i, j - 1]; \ P[i, j] = ' \leftarrow ' \)
12. \( \quad \text{else } T[i, j] = T[i - 1, j]; \ P[i, j] = ' \uparrow ' \)
13. \( \text{return } (T, P) \)
Chapter 15. Dynamic Programming

Algorithm LCS($x, y$)
1. $m = \text{length}(x)$, $n = \text{length}(y)$;
2. for $i = 0$ to $m$
3. \hspace{1em} $T[i, 0] = 0$
4. for $j = 0$ to $n$
5. \hspace{1em} $T[0, j] = 0$
6. for $i = 1$ to $m$
7. \hspace{1em} for $j = 1$ to $n$
8. \hspace{2em} if $x_i = y_j$
9. \hspace{2em} \hspace{1em} $T[i, j] = T[i - 1, j - 1] + 1$; $P[i, j] = ' \swarrow '\$
10. \hspace{2em} else if $T[i, j - 1] > T[i - 1, j]$
11. \hspace{2em} \hspace{1em} $T[i, j] = T[i, j - 1]$; $P[i, j] = ' \leftarrow '\$
12. \hspace{2em} else $T[i, j] = T[i - 1, j]$; $P[i, j] = ' \uparrow '\$
13. return $(T, P)$

Time complexity: $O(mn)$
Chapter 15. Dynamic Programming

Traceback the longest common subsequence
either recursive or iterative algorithm
Traceback the longest common subsequence
either recursive or iterative algorithm

Algorithm PRINTLCS($P, x, i, j$)
Chapter 15. Dynamic Programming

Traceback the longest common subsequence
either recursive or iterative algorithm

Algorithm \texttt{PRINTLCS}(P, x, i, j)
1. \textbf{if} \ (i > 0) \land (j > 0)
Chapter 15. Dynamic Programming

Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm PRINTLCS(P, x, i, j)
1. if \( i > 0 \) \&\& \( j > 0 \)
2. if \( P[i, j] = '^\backslash' \)

Chapter 15. Dynamic Programming

Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm $\text{PRINTLCS}(P, x, i, j)$
1. if $(i > 0) \land (j > 0)$
2. if $P[i, j] = ^{\text{↖}}$
3. $\text{PRINTLCS}(P, x, i - 1, j - 1)$
Chapter 15. Dynamic Programming

Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm \textsc{PrintLCS}(P, x, i, j)
1.  \textbf{if} \ (i > 0) \land (j > 0)
2.  \textbf{if} \ P[i, j] = \textquotesingle\textbackslash\textbackslash\textquotesingle
3.  \textsc{PrintLCS}(P, x, i - 1, j - 1)
4.  \textbf{Print} \ (x_i)
Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm \texttt{PRINTLCS}(P, x, i, j)
1. \textbf{if} \ (i > 0) \land (j > 0)
2. \textbf{if} \ P[i, j] = '\textbackslash'
3. \texttt{PRINTLCS}(P, x, i - 1, j - 1)
4. \textbf{Print} \ (x_i)
5. \textbf{else if} \ P[i, j] = '\leftarrow'

Chapter 15. Dynamic Programming

Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm PRINTLCS\(P, x, i, j\)
1. \(\textbf{if} \ (i > 0) \land (j > 0)\)
2. \(\textbf{if} \ P[i, j] ='\\'\)
3. PRINTLCS\(P, x, i - 1, j - 1\)
4. Print \(x_i\)
5. \(\textbf{else if} \ P[i, j] ='←'\)
6. PRINTLCS\(P, x, i, j - 1\)
Chapter 15. Dynamic Programming

Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm PRINTLCS($P, x, i, j$)
1. if $(i > 0) \land (j > 0)$
2. 
3. PRINTLCS($P, x, i - 1, j - 1$)
4. Print $(x_i)$
5. else if $P[i, j] = '↖'$
6. PRINTLCS($P, x, i, j - 1$)
7. else PRINTLCS($P, x, i - 1, j$)
Chapter 15. Dynamic Programming

Traceback the longest common subsequence

either recursive or iterative algorithm

Algorithm $\text{PRINTLCS}(P, x, i, j)$
1. if $(i > 0) \land (j > 0)$
2. if $P[i, j] = \leftarrow$
3. $\text{PRINTLCS}(P, x, i - 1, j - 1)$
4. Print $(x_i)$
5. else if $P[i, j] = \downarrow$
6. $\text{PRINTLCS}(P, x, i, j - 1)$
7. else $\text{PRINTLCS}(P, x, i - 1, j)$
8. else return ()
Chapter 15. Dynamic Programming

Pairwise Alignment
Chapter 15. Dynamic Programming

Pairwise Alignment

ACCGGTCGAGTGCG
CGTCGATGC ← common sequence
GTCGTTCGGATGCC

Blue letters are conserved; red letters are mutated; purple letters are inserted or deleted;
Chapter 15. Dynamic Programming

Pairwise Alignment

ACCGGTCGAGTGCG

CGTCGATGC ← common sequence

GTCGTTCGGATGCC

biologically more meaningful view:

ACCGGTC GAGTGCG

|| || || |||

CG TC GA TGC ← common sequence

|| || || |||

GTCGTTCGGA TGCCC
Pairwise Alignment

ACCGGTCGAGTGCG
   CGTCGATGC ← common sequence
GTCGTTCGGATGCCC

biologically more meaningful view:

ACCGGTC  GAGTGC
   || || || || |
CG  TC  GA  TGC ← common sequence
   || || || || |
GTCGTTCGGA  TGCCC

blue letters are conserved;
red letters are mutated;
purple letters are inserted or deleted;
Chapter 15. Dynamic Programming

Alignment between two sequences:

ACCGGTC
GAGTGCG

CG TC GA TGC ← common sequence

GTCGTTCGGA
TGCCC

• two sequences padded with 's called gaps
• two sequences are of the same length, aligned
• sum of column scores is used to identify the best alignment

For example, a score scheme
+5 for conservation columns, (reward)
-2 for substitution columns, (penalty)
-6 for delete/insert columns, (penalty)

the above alignment has score
(−2) + (−2) + 5 + 5 + (−2) + 5 + 5 + (−6) + 5 + 5 + (−6) + 5 + 5 + 5 + (−2) + (−6)

LCS is a special case

0 + 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 1 + 0 + 0
Alignment between two sequences:

```
ACCGGTC_GAGTGCG_
 || || || ||||
 CG TC GA TGC ← common sequence
 || || || ||||
GTCGTTCGGA_TGCC
```
Alignment between two sequences:

```
ACCGGTC_GAGTGC
 || || || |||
 CG TC GA TGC ← common sequence
 || || || |||
GTCGTTCGGA_TGCC
```

- two sequences padded with ‘_’s called gaps;
Alignment between two sequences:

```
ACCGGTC_GAGTGC
 || || || ||
CG TC GA TGC ← common sequence
 || || || ||
GTCGTTCGGA_TGCC
```

- two sequences padded with ‘_’s called **gaps**;
- two sequences are of the same length, aligned;
Alignment between two sequences:

```
ACCGGTC_GAGTGCG_
 || || || |||
 CG TC GA TGC ← common sequence
 || || || |||
GTCGTTCGGA_TGCC
```

- two sequences padded with ‘_’s called **gaps**;
- two sequences are of the same length, aligned;
- sum of column scores is used to identify the best alignment
Chapter 15. Dynamic Programming

Alignment between two sequences:

```
ACCGGTC_GAGTGCG_
|| || || |||
CG TC GA TGC ← common sequence
|| || || |||
GTCGTTCGGA_TGCC
```

- two sequences padded with ’_’s called **gaps**;
- two sequences are of the same length, aligned;
- sum of column scores is used to identify the best alignment
Chapter 15. Dynamic Programming

Alignment between two sequences:

```
ACCGGTC_GAGTGCG_
 || || || |||
 CG TC GA TGC ← common sequence
 || || || |||
GTCGTTCGGA_TGCC
```

- two sequences padded with ‘_’s called gaps;
- two sequences are of the same length, aligned;
- sum of column scores is used to identify the best alignment

For example, a score scheme
  - +5 for conservation columns, (reward)
  - -2 for substitution columns, (penalty)
  - -6 for delete/insert columns, (penalty)
Alignment between two sequences:

```
ACCGGTC_GAGTGC
 || || || |||
CG TC GA TGC ← common sequence
 || || || |||
GTCGTTCGGA_TGCC
```

- two sequences padded with '‐'s called **gaps**;
- two sequences are of the same length, aligned;
- sum of column scores is used to identify the best alignment

For example, a score scheme
- **+5** for conservation columns, (reward)
- **-2** for substitution columns, (penalty)
- **-6** for delete/insert columns, (penalty)

the above alignment has score
\((-2) + (-2) + 5 + 5 + (-2) + 5 + 5 + (-6) + 5 + 5 + (-6) + 5 + 5 + 5 + (-2) + (-6)\)
Alignment between two sequences:

```
ACCGGTC_GAGTGCG_
 || || || |||
CG TC GA TGC ← common sequence
 || || || |||
GTCGTTCGGA_TGCC
```

- Two sequences padded with '_'s called **gaps**;
- Two sequences are of the same length, aligned;
- Sum of column scores is used to identify the best alignment

For example, a score scheme

- **+5** for conservation columns, (reward)
- **-2** for substitution columns, (penalty)
- **-6** for delete/insert columns, (penalty)

The above alignment has score

\[
(-2) + (-2) + 5 + 5 + (-2) + 5 + 5 + (-6) + 5 + 5 + (-6) + 5 + 5 + 5 + (-2) + (-6)
\]

LCS is a special case
Alignment between two sequences:

```
ACCGGTC_GAGTGC
CG TC GA TGC ← common sequence
GTCGTTCGGA_TGCC
```

- two sequences padded with ‘-’s called gaps;
- two sequences are of the same length, aligned;
- sum of column scores is used to identify the best alignment

For example, a score scheme
- +5 for conservation columns, (reward)
- -2 for substitution columns, (penalty)
- -6 for delete/insert columns, (penalty)

the above alignment has score

\[ (-2) + (-2) + 5 + 5 + (-2) + 5 + 5 + (-6) + 5 + 5 + 5 + (-2) + (-6) \]

LCS is a special case

\[ 0 + 0 + 1+1+ 0 + 1+1+ 0 + 1+1+ 0 + 1+1+1+ 0 + 0 \]
Chapter 15. Dynamic Programming

Significance of sequence alignments:

Sequence Homology Reveals Functions

- Homology reveals evolution of structure/function
- Homology reveals regulatory structure (E. Coli promoters)
Pairwise alignment problem:

**INPUT:** sequences \( x = x_1 x_2 \ldots x_m, y = y_1 y_2 \ldots y_n \)

**OUTPUT:** \( x' \) and \( y' \), which are \( x \) and \( y \) padded with '-'s, respectively

such that \( \sum_{i=1}^{l} S(x'_i, y'_i) \) is the maximum, where \( l = |x'| = |y'| \)

for some given scoring function \( S \).

How to solve it?
Chapter 15. Dynamic Programming

Pairwise alignment problem:

**Input:** sequences \( x = x_1 x_2 \ldots x_m \), \( y = y_1 y_2 \ldots y_n \)

**Output:** \( x' \) and \( y' \), which are \( x \) and \( y \) padded with '-'s, respectively such that \( \sum_{i=1}^{l} S(x'_i, y'_i) \) is the maximum, where \( l = |x'| = |y'| \) for some given scoring function \( S \).

How to solve it?

Similar to LCS problem, we consider prefixes \( x_1 \ldots x_i \) of \( x \), \( y_1 \ldots y_j \) of \( y \).
Chapter 15. Dynamic Programming

Pairwise alignment problem:

**INPUT**: sequences $x = x_1x_2 \ldots x_m, y = y_1y_2 \ldots y_n$

**OUTPUT**: $x'$ and $y'$, which are $x$ and $y$ padded with '-'s, respectively

such that $\sum_{i=1}^{l} S(x'_i, y'_i)$ is the maximum, where $l = |x'| = |y'|$

for some given scoring function $S$.

How to solve it?

Similar to LCS problem, we consider prefixes $x_1 \ldots x_i$ of $x$, $y_1 \ldots y_j$ of $y$.

$(1) \quad x_1 \ldots x_{i-1} x_i$

$(2) \quad x_1 \ldots x_{i-1} x_i$

$(3) \quad x_1 \ldots x_{i-1} x_i$
Pairwise alignment problem:

**Input**: sequences $x = x_1x_2 \ldots x_m$, $y = y_1y_2 \ldots y_n$

**Output**: $x'$ and $y'$, which are $x$ and $y$ padded with '·'s, respectively such that $\sum_{i=1}^{l} S(x'_i, y'_i)$ is the maximum, where $l = |x'| = |y'|$

for some given scoring function $S$.

How to solve it?

Similar to LCS problem, we consider prefixes $x_1 \ldots x_i$ of $x$, $y_1 \ldots y_j$ of $y$.

1. $x_1 \ldots x_{i-1} x_i$
2. $y_1 \ldots y_{j-1} y_j$
3. $x_1 \ldots x_{i-1} x_i$

case (1) contributes to a match/mismatch score
Pairwise alignment problem:

**INPUT:** sequences $x = x_1 x_2 \ldots x_m$, $y = y_1 y_2 \ldots y_n$

**OUTPUT:** $x'$ and $y'$, which are $x$ and $y$ padded with '-'s, respectively such that $\sum_{i=1}^{l} S(x'_i, y'_i)$ is the maximum, where $l = |x'| = |y'|$

for some given scoring function $S$.

How to solve it?

Similar to LCS problem, we consider prefixes $x_1 \ldots x_i$ of $x$, $y_1 \ldots y_j$ of $y$.

1. $x_1 \cdots x_{i-1} x_i$
2. $y_1 \cdots y_{j-1} y_j$
3. $x_1 \cdots x_{i-1} x_i$

Case (1) contributes to a match/mismatch score
Cases (2) and (3) contribute to an insertion/deletion score.
Chapter 15. Dynamic Programming

Scoring function for pairwise alignment
Scoring function for pairwise alignment

Example (1)
- +5 for conservation columns, (reward)
- -2 for substitution columns, (penalty)
- -6 for delete/insert columns, (penalty)
Scoring function for pairwise alignment

Example (1)

+5 for conservation columns, (reward)
-2 for substitution columns, (penalty)
-6 for delete/insert columns, (penalty)

Example (2)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>5</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>-3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td>-</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>*</td>
</tr>
</tbody>
</table>
Chapter 15. Dynamic Programming

Scoring function for pairwise alignment

Example (1)
- +5 for conservation columns, (reward)
- -2 for substitution columns, (penalty)
- -6 for delete/insert columns, (penalty)

Example (2)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>5</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>-3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td>-</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>*</td>
</tr>
</tbody>
</table>

Why sum of column scores?
Chapter 15. Dynamic Programming

Scoring function for pairwise alignment

Example (1)
+5 for conservation columns, (reward)
-2 for substitution columns, (penalty)
-6 for delete/insert columns, (penalty)

Example (2)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>5</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>-3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td>-</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>*</td>
</tr>
</tbody>
</table>

Why sum of column scores?

product of independent column probabilities
Chapter 15. Dynamic Programming

As for the LCS problem, we can define

\[ A(i, j) \text{ is the maximum score alignment between } x_1 \ldots x_i \]
\[ \text{and } y_1 \ldots y_j, \text{ then} \]

\[ A(i, j) = \begin{cases} 
\text{concat}(A(i - 1, j - 1), x_i) & \text{if this has the longest length; } \\
\text{concat}(A(i, j - 1), y_i) & \text{if this has the longest length; } \\
\text{concat}(A(i - 1, j), x_i) & \text{if this has the longest length; }
\end{cases} \]
Chapter 15. Dynamic Programming

As for the LCS problem, we can define

\[ A(i, j) \] is the maximum score alignment between \( x_1 \ldots x_i \)
and \( y_1 \ldots y_j \), then

\[
A(i, j) = \begin{cases} 
\text{concat}(A(i - 1, j - 1), x_i) & \text{if this has the longest length;} \\
\text{concat}(A(i - 1, j), y_j) & \text{if this has the longest length;}
\end{cases}
\]
Chapter 15. Dynamic Programming

As for the LCS problem, we can define

\[ A(i, j) \] is the maximum score alignment between \( x_1 \ldots x_i \) and \( y_1 \ldots y_j \), then

\[
A(i, j) = \begin{cases} 
\text{concat}(A(i - 1, j - 1), x_i) & \text{if this has the longest length;} \\
\text{concat}(A(i, j - 1), y_j) & \text{if this has the longest length;} \\
\text{concat}(A(i - 1, j), x_i) & \text{if this has the longest length;}
\end{cases}
\]
As for the LCS problem, we can define

\[ A(i, j) \] is the maximum score alignment between \( x_1 \ldots x_i \)
and \( y_1 \ldots y_j \), then

\[
A(i, j) = \begin{cases} 
\text{concat}(A(i - 1, j - 1), x_i, y_i) & \text{if this has the longest length;} \\
\text{concat}(A(i, j - 1), \_y_j, \_) & \text{if this has the longest length;} \\
\text{concat}(A(i - 1, j), \_x_i, \_) & \text{if this has the longest length;}
\end{cases}
\]

Instead, we define objective function \( S(i, j) \) to be the maximum alignment score between \( x_1 \ldots x_i \)
and \( y_1 \ldots y_j \)

\[
S(i, j) = \max \left\{ S(i - 1, j - 1) + \text{score}(x_i, y_j) \middle| i \geq 1, j \geq 1 \right\}
\]
Chapter 15. Dynamic Programming

As for the LCS problem, we can define

\[ A(i, j) \] is the maximum score alignment between \( x_1 \ldots x_i \)
and \( y_1 \ldots y_j \), then

\[
A(i, j) = \begin{cases} 
\text{concat}(A(i - 1, j - 1), x_i, y_j) & \text{if this has the longest length;} \\
\text{concat}(A(i, j - 1), x_i, y_j) & \text{if this has the longest length;} \\
\text{concat}(A(i - 1, j), y_j, x_i) & \text{if this has the longest length;}
\end{cases}
\]

Instead, we define objective function \( S(i, j) \) to be the maximum alignment score
between \( x_1 \ldots x_i \)
and \( y_1 \ldots y_j \)

\[
S(i, j) = \max \begin{cases} 
S(i - 1, j - 1) + \text{score}(x_i, y_j) & i \geq 1, j \geq 1; \\
S(i, j - 1) + \text{score}(-, y_j) & j \geq 1;
\end{cases}
\]
Chapter 15. Dynamic Programming

As for the LCS problem, we can define

\[ A(i, j) \] is the maximum score alignment between \( x_1 \ldots x_i \)

and \( y_1 \ldots y_j \), then

\[
A(i, j) = \begin{cases} 
    concat(A(i - 1, j - 1), x_i) & \text{if this has the longest length;} \\
    contact(A(i, j - 1), y_j) & \text{if this has the longest length;} \\
    contact(A(i - 1, j), x_i) & \text{if this has the longest length;}
\end{cases}
\]

Instead, we define objective function \( S(i, j) \) to be the maximum alignment score

between \( x_1 \ldots x_i \)

and \( y_1 \ldots y_j \)

\[
S(i, j) = \max \left\{ 
    S(i - 1, j - 1) + \text{score}(x_i, y_j) 
    \begin{array}{ll}
        & i \geq 1, j \geq 1; \\
        & j \geq 1; \\
        & i \geq 1;
    \end{array}
\right\}
\]

scoring function \( \text{score} \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>5</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>-3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td>-</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>*</td>
</tr>
</tbody>
</table>
Chapter 15. Dynamic Programming

As for the LCS problem, we can define

\[ A(i, j) \] is the maximum score alignment between \( x_1 \ldots x_i \) and \( y_1 \ldots y_j \), then

\[
A(i, j) = \begin{cases} 
\text{concat}(A(i-1, j-1), x_i) & \text{if this has the longest length;} \\
\text{concat}(A(i, j-1), y_j) & \text{if this has the longest length;} \\
\text{concat}(A(i-1, j), x_i) & \text{if this has the longest length;}
\end{cases}
\]

Instead, we define objective function \( S(i, j) \) to be the maximum alignment score between \( x_1 \ldots x_i \) and \( y_1 \ldots y_j \)

\[
S(i, j) = \max \begin{cases} 
S(i-1, j-1) + \text{score}(x_i, y_j) & i \geq 1, j \geq 1; \\
S(i, j-1) + \text{score}(-, y_j) & j \geq 1; \\
S(i-1, j) + \text{score}(x_i, -) & i \geq 1;
\end{cases}
\]

scoring function \( \text{score} \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-4</td>
</tr>
<tr>
<td>C</td>
<td>-1</td>
<td>5</td>
<td>-3</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>G</td>
<td>-2</td>
<td>-3</td>
<td>5</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>T</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>-4</td>
</tr>
<tr>
<td>-</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>-4</td>
<td>*</td>
</tr>
</tbody>
</table>

exercise: Table filling and traceback
Chapter 15. Dynamic Programming

Affine gap penalty: a challenge for DP

Consider: new gap penalty score:

\[ \text{op} \]: penalty to open a gap;
\[ \text{ext} \]: penalty to extend an already opened gap

\[ \text{penalty} = \text{op} - \text{ext} \left( l - 1 \right) \]

for a gap covering \( l \) positions, where \( \text{op} > \text{ext} \).

how to modify recurrences:

\[ S(i,j) = \max \left\{ S(i-1,j-1) + \text{score}(x_i, y_j), S(i,j-1) + \text{score}(-, y_j), S(i-1,j) + \text{score}(x_i, -) \right\} \]
Chapter 15. Dynamic Programming

Affine gap penalty: a challenge for DP
Affine gap penalty: a challenge for DP

Consider: new gap penalty score:
- \( op \): penalty to open a gap;
- \( ext \): penalty to extend an already opened gap
Chapter 15. Dynamic Programming

Affine gap penalty: a challenge for DP

Consider: new gap penalty score:

- \( op \): penalty to open a gap;
- \( ext \): penalty to extend an already opened gap

\[
\text{penalty} = -op - ext(l - 1) \text{ for a gap covering } l \text{ positions, where } op > ext.
\]
Affine gap penalty: a challenge for DP

Consider: new gap penalty score:

- \( op \): penalty to open a gap;
- \( ext \): penalty to extend an already opened gap

\[
\text{penalty} = -op - ext(l - 1) \quad \text{for a gap covering } l \text{ positions, where } op > ext.
\]

how to modify recurrences:

\[
S(i, j) = \max \left\{ S(i - 1, j - 1) + \text{score}(x_i, y_j) \right\}
\]
Chapter 15. Dynamic Programming

Affine gap penalty: a challenge for DP

Consider: new gap penalty score:
- $op$: penalty to open a gap;
- $ext$: penalty to extend an already opened gap

penalty = $-op - ext(l - 1)$ for a gap covering $l$ positions, where $op > ext$.

how to modify recurrences:

\[
S(i, j) = \max \left\{ \begin{array}{ll}
S(i - 1, j - 1) + score(x_i, y_j) \\
S(i, j - 1) + score(-, y_j)
\end{array} \right. 
\]
Chapter 15. Dynamic Programming

Affine gap penalty: a challenge for DP

Consider: new gap penalty score:

- $op$: penalty to open a gap;
- $ext$: penalty to extend an already opened gap

$$\text{penalty} = -op - ext(l - 1)$$
for a gap covering $l$ positions, where $op > ext$.

how to modify recurrences:

$$S(i, j) = \max \left\{ S(i - 1, j - 1) + \text{score}(x_i, y_j),
S(i, j - 1) + \text{score}(-, y_j),
S(i - 1, j) + \text{score}(x_i, -) \right\}$$
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[ S(i, j) = \max \begin{cases} 
  S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
  S(i, j - 1) + \text{score}(-, y_j) \\
  S(i - 1, j) + \text{score}(x_i, -) 
\end{cases} \]

**Solution 1:** we can try all different length \( l \)

\[ S(i, j) = \max \begin{cases} 
  S(i - 1, j - 1) + \text{score}(x_i, y_j) 
\end{cases} \]

But the complexity increased to:

\[ O(nm \times \max\{n, m\}) \]

Why does the complexity increase?

a lot of recomputations, but where?
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[ S(i, j) = \max \begin{cases} 
S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
S(i, j - 1) + \text{score}(-, y_j) \\
S(i - 1, j) + \text{score}(x_i, -) 
\end{cases} \]

**Solution 1**: we can try all different length \( l \)

\[ S(i, j) = \max \begin{cases} 
S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
\max_{1 \leq l \leq j} S(i, j - l) - \text{op} - (l - 1) \times \text{ext} 
\end{cases} \]
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[ S(i, j) = \max \begin{cases} S(i - 1, j - 1) + \text{score}(x_i, y_j) \\ S(i, j - 1) + \text{score}(-, y_j) \\ S(i - 1, j) + \text{score}(x_i, -) \end{cases} \]

Solution 1: we can try all different length \( l \)

\[ S(i, j) = \max \begin{cases} S(i - 1, j - 1) + \text{score}(x_i, y_j) \\ \max_{1 \leq l \leq j} S(i, j - l) - \text{op} - (l - 1) \times \text{ext} \\ \max_{1 \leq l \leq i} S(i - l, j) - \text{op} - (l - 1) \times \text{ext} \end{cases} \]

But the complexity increased to: \( O(nm \times \max\{n, m\}) \)

Why does the complexity increase? a lot of recomputations, but where?
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[ S(i, j) = \max \begin{cases} 
  S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
  S(i, j - 1) + \text{score}(-, y_j) \\
  S(i - 1, j) + \text{score}(x_i, -) 
\end{cases} \]

Solution 1: we can try all different length \( l \)

\[ S(i, j) = \max \begin{cases} 
  S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
  \max_{1 \leq l \leq j} S(i, j - l) - \text{op} - (l - 1) \times \text{ext} \\
  \max_{1 \leq l \leq i} S(i - l, j) - \text{op} - (l - 1) \times \text{ext} 
\end{cases} \]

But the complexity increased to: \( O(nm \times \max\{n, m\}) \)
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[
S(i, j) = \max \left\{ \begin{array}{l}
S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
S(i, j - 1) + \text{score}(-, y_j) \\
S(i - 1, j) + \text{score}(x_i, -) \\
\end{array} \right. 
\]

Solution 1: we can try all different length $l$

\[
S(i, j) = \max \left\{ \begin{array}{l}
S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
\max_{1 \leq l \leq j} S(i, j - l) - \text{op} - (l - 1) \times \text{ext} \\
\max_{1 \leq l \leq i} S(i - l, j) - \text{op} - (l - 1) \times \text{ext} \\
\end{array} \right. 
\]

But the complexity increased to: $O(nm \times \max\{n, m\})$

Why does the complexity increase?
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[ S(i, j) = \max \begin{cases} S(i - 1, j - 1) + \text{score}(x_i, y_j) \\ S(i, j - 1) + \text{score}(-, y_j) \\ S(i - 1, j) + \text{score}(x_i, -) \end{cases} \]

\textbf{Solution 1:} we can try all different length \( l \)

\[ S(i, j) = \max \begin{cases} S(i - 1, j - 1) + \text{score}(x_i, y_j) \\ \max_{1 \leq l \leq j} S(i, j - l) - \text{op} - (l - 1) \times \text{ext} \\ \max_{1 \leq l \leq i} S(i - l, j) - \text{op} - (l - 1) \times \text{ext} \end{cases} \]

But the complexity increased to: \( O(nm \times \max\{n, m\}) \)

Why does the complexity increase?

a lot of recomputations,
Chapter 15. Dynamic Programming

Issue: we do not know how long a gap is.

\[ S(i, j) = \max \begin{cases} 
S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
S(i, j - 1) + \text{score}(-, y_j) \\
S(i - 1, j) + \text{score}(x_i, -)
\end{cases} \]

Solution 1: we can try all different length \( l \)

\[ S(i, j) = \max \begin{cases} 
S(i - 1, j - 1) + \text{score}(x_i, y_j) \\
\max_{1 \leq l \leq j} S(i, j - l) - \text{op} - (l - 1) \times \text{ext} \\
\max_{1 \leq l \leq i} S(i - l, j) - \text{op} - (l - 1) \times \text{ext}
\end{cases} \]

But the complexity increased to : \( O(nm \times \max\{n, m\}) \)

Why does the complexity increase?
   a lot of recomputations, but where?
Chapter 15. Dynamic Programming

So we want to do recursion "one step at a time":

Insertion
Deletion
Chapter 15. Dynamic Programming

So we want to do recursion "one step at a time":

but at the same time, differentiate different "states"
where the two tails are

Substitute
Chapter 15. Dynamic Programming

So we want to do recursion "one step at a time":

**but at the same time, differentiate different "states"**
where the two tails are

### Substitute

- $S(i, j)$
- $S(i-1, j-1)$
- $S(i, j)$
- $S(i, j)$

### Insertion

- $I(i, j)$
- $I(i, j)$
- $I(i, j)$
Chapter 15. Dynamic Programming

So we want to do recursion "one step at a time":

but at the same time, differentiate different "states"
where the two tails are

**Substitute**

**Insertion**

**Deletion**
Chapter 15. Dynamic Programming

Define $S(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being aligned to $y_j$.

Define $I(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $y_j$ being insertion.
Chapter 15. Dynamic Programming

Define $S(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being aligned to $y_j$.

$$S(i, j) = \max \begin{cases} S(i - 1, j - 1) + \text{score}(x_i, y_j) \\ I(i - 1, j - 1) + \text{score}(x_i, y_j) \\ D(i - 1, j - 1) + \text{score}(x_i, y_j) \end{cases}$$
Chapter 15. Dynamic Programming

Define $S(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being aligned to $y_j$.

Define $I(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $y_j$ being insertion.
Define $S(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being aligned to $y_j$.

$$S(i, j) = \max \left\{ \begin{array}{ll} S(i-1, j-1) + \text{score}(x_i, y_j) \\ I(i-1, j-1) + \text{score}(x_i, y_j) \\ D(i-1, j-1) + \text{score}(x_i, y_j) \end{array} \right.$$

Define $I(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $y_j$ being insertion.

$$I(i, j) = \max \left\{ \begin{array}{ll} I(i, j-1) - \text{ext} \\ S(i, j-1) - \text{op} \end{array} \right.$$
Define $D(i,j)$ to be the maximum score of alignment between $x_1...x_i$ and $y_1...y_j$ with $x_i$ being deletion. Note that there is no deletion right after insertion, neither insertion right after deletion. Why?

What is the desired value?

$\max \begin{cases} S(m,n) \\ I(m,n) \\ D(m,n) \end{cases}$

How to fill the table(s) and to traceback the optimal alignment?
Chapter 15. Dynamic Programming

Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.
Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.

$$D(i, j) = \max \left\{ D(i - 1, j) - ext, S(i - 1, j) - op \right\}$$
Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.

$$D(i, j) = \max \begin{cases} 
D(i - 1, j) - ext \\
S(i - 1, j) - op 
\end{cases}$$

- Note that there is no deletion right after insertion, neither insertion right after deletion. why?
Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.

$D(i, j) = \max \left\{ D(i-1, j) - ext, S(i-1, j) - op \right\}$

- Note that there is no deletion right after insertion, neither insertion right after deletion. Why?
Chapter 15. Dynamic Programming

Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.

$$D(i, j) = \max \left\{ \begin{array}{ll}
D(i - 1, j) - ext \\
S(i - 1, j) - op
\end{array} \right. $$

- Note that there is no deletion right after insertion, neither insertion right after deletion. why?

- What is the desired value?
Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.

$$D(i, j) = \max \left\{ D(i - 1, j) - \text{ext}, S(i - 1, j) - \text{op} \right\}$$

- Note that there is no deletion right after insertion, neither insertion right after deletion. why?

- What is the desired value? $\max \left\{ S(m, n), I(m, n), D(m, n) \right\}$
Chapter 15. Dynamic Programming

Define $D(i, j)$ to be the maximum score of alignment between $x_1 \ldots x_i$ and $y_1 \ldots y_j$ with $x_i$ being deletion.

$$D(i, j) = \max \left\{ D(i-1, j) - \text{ext}, S(i-1, j) - \text{op} \right\}$$

- Note that there is no deletion right after insertion, neither insertion right after deletion. why?

- What is the desired value? $\max \left\{ S(m, n), I(m, n), D(m, n) \right\}$

- How to fill the table(s) and to traceback the optimal alignment?
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are $n$ pairs of socks, each a different color;

- each day, remove arbitrarily two individual socks;
- compute the probability that, on none of the $k$ days, a pair of color-matched socks is removed.

When $n = 5$, $k = 1$

$$P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{10 \times 8}{10^2} = \frac{40}{45} = \frac{8}{9}$$

When $n = 5$, $k = 2$

$$P_2 = P_1 \times (P_u + P_m + P_{u,m}) = \frac{8}{9} \times \left( \frac{1}{(8^2)} + \frac{6 \times 4}{2 \times 8^2} + 2 \times 6 \times \frac{8^2}{28} \right) = \frac{8}{9} \times \frac{25}{28}$$

$$P_3 = P_2 \times \ldots$$
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem
DP applied to summation problems

Unmatched Socks Problem

There are $n$ pairs of socks, each a different color; each day, remove arbitrarily two individual socks; compute the probability that, on none of the $k$ days, a pair of color-matched socks is removed.
DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5, \ k = 1 \)
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[ P_1 = \]
DP applied to summation problems

Unmatched Socks Problem

There are $n$ pairs of socks, each a different color;
• each day, remove arbitrarily two individual socks;
compute the probability that, on none of the $k$ days, a pair of color-matched socks is removed.

When $n = 5$, $k = 1$

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}}
\]
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{10 \times 8}{2}
\]
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are $n$ pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the $k$ days, a pair of color-matched socks is removed.

When $n = 5$, $k = 1$

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}
\]
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
• each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45}
\]
DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}
\]
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color; each day, remove arbitrarily two individual socks; compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}
\]

When \( n = 5 \), \( k = 2 \)
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}
\]

When \( n = 5 \), \( k = 2 \)

\[
P_2 = P_1
\]
Chapter 15. Dynamic Programming

**DP applied to summation problems**

**Unmatched Socks Problem**

There are $n$ pairs of socks, each a different color;
- each day, remove arbitrarily two individual socks;
compute the probability that, on none of the $k$ days, a pair of color-matched socks is removed.

When $n = 5$, $k = 1$

$$P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}$$

When $n = 5$, $k = 2$

$$P_2 = P_1 \times (P_u + P_m + P_{u,m}) =$$
Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color;
• each day, remove arbitrarily two individual socks;
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}
\]

When \( n = 5 \), \( k = 2 \)

\[
P_2 = P_1 \times (P_u + P_m + P_{u,m}) = \frac{8}{9} \times \left( \frac{1}{\binom{8}{2}} + \frac{(6 \times 4)/2}{\binom{8}{2}} + \frac{2 \times 6}{\binom{8}{2}} \right) = \]

Chapter 15. Dynamic Programming

DP applied to summation problems

Unmatched Socks Problem

There are $n$ pairs of socks, each a different color;
• each day, remove arbitrarily two individual socks;
compute the probability that, on none of the $k$ days, a pair of color-matched socks is removed.

When $n = 5$, $k = 1$

$$P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}$$

When $n = 5$, $k = 2$

$$P_2 = P_1 \times (P_u + P_m + P_{u,m}) = \frac{8}{9} \times \left(\frac{1}{\binom{8}{2}} + \frac{(6 \times 4)/2}{\binom{8}{2}} + \frac{2 \times 6}{\binom{8}{2}}\right) = \frac{8}{9} \times \frac{25}{28}$$
DP applied to summation problems

Unmatched Socks Problem

There are \( n \) pairs of socks, each a different color; 
• each day, remove arbitrarily two individual socks; 
compute the probability that, on none of the \( k \) days, a pair of color-matched socks is removed.

When \( n = 5 \), \( k = 1 \)

\[
P_1 = \frac{\text{number of color-not-matched pairs}}{\text{number of total pairs}} = \frac{(10 \times 8)/2}{\binom{10}{2}} = \frac{40}{45} = \frac{8}{9}
\]

When \( n = 5 \), \( k = 2 \)

\[
P_2 = P_1 \times (P_u + P_m + P_{u,m}) = \frac{8}{9} \times \left( \frac{1}{\binom{8}{2}} + \frac{(6 \times 4)/2}{\binom{8}{2}} + \frac{2 \times 6}{\binom{8}{2}} \right) = \frac{8}{9} \times \frac{25}{28}
\]

\[
P_3 = P_2 \times \text{??}
\]
Chapter 15. Dynamic Programming

Unfortunately, the probability of individual days cannot be independently calculated,
Chapter 15. Dynamic Programming

Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day
Chapter 15. Dynamic Programming

Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day.

So we want to catalog choices to correct computation.
Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day. So we want to catalog choices to correct computation.

Let $m_k$ be the number of pairs of color-matched socks after selection on the $k$-th day.
Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day.

So we want to catalog choices to correct computation.

Let $m_k$ be the number of pairs of color-matched socks after selection on the $k$th day. Let $u_k$ be the number of unmatched socks after selection on the $k$th day.
Chapter 15. Dynamic Programming

Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day. So we want to catalog choices to correct computation.

Let $m_k$ be the number of pairs of color-matched socks after selection on the $k$th day. Let $u_k$ be the number of unmatched socks after selection on the $k$th day.

Note that

$$2m_k + u_k = 2n - 2k, \quad \text{for every } k \leq n$$
Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day. So we want to catalog choices to correct computation.

Let $m_k$ be the number of pairs of color-matched socks after selection on the $k$th day. Let $u_k$ be the number of unmatched socks after selection on the $k$th day.

Note that

$$2m_k + u_k = 2n - 2k, \text{ for every } k \leq n$$

We define $P_k(m_k, u_k)$ to be the total probability that not a pair of matched socks is selected on any day of the first $k$ days, resulting in $m_k$ and $u_k$. Then
Chapter 15. Dynamic Programming

Unfortunately, the probability of individual days cannot be independently calculated, but conditional on the choices made on the previous day. So we want to catalog choices to correct computation.

Let $m_k$ be the number of pairs of color-matched socks after selection on the $k$th day. Let $u_k$ be the number of unmatched socks after selection on the $k$th day.

Note that

$$2m_k + u_k = 2n - 2k, \text{ for every } k \leq n$$

We define $P_k(m_k, u_k)$ to be the total probability that not a pair of matched socks is selected on any day of the first $k$ days, resulting in $m_k$ and $u_k$. Then

$$P_k(m_k, u_k) = \sum \left\{ \begin{array}{l}
P_{k-1}(m_k + 2, u_k - 2) \times \frac{(m_k+2)(2m_k+2)}{(2m_k+2+u_k)} \\
P_{k-1}(m_k + 1, u_k) \times \frac{2(m_k+1)u_k}{(2m_k+2+u_k)} \\
P_{k-1}(m_k, u_k + 2) \times \frac{2}{(2m_k+2+u_k)} \end{array} \right.$$
Chapter 15. Dynamic Programming

Knapsack Problem
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT**: $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$
Knapsack Problem

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \) that maximizes \( \sum_{i \in A} v_i \)
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \) that maximizes \( \sum_{i \in A} v_i \)

with constraint \( \sum_{i \in A} s_i \leq B \)

Analysis:
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$

Analysis:

For $n$ items and knapsack size $B$; examine the last item $n$, then
Knapsack Problem

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \) that maximizes \( \sum_{i \in A} v_i \)

with constraint \( \sum_{i \in A} s_i \leq B \)

Analysis:

For \( n \) items and knapsack size \( B \); examine the last item \( n \), then

**either put item \( n \) into the knapsack or discard it;**
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \) that maximizes \( \sum_{i \in A} v_i \)

with constraint \( \sum_{i \in A} s_i \leq B \)

Analysis:

For \( n \) items and knapsack size \( B \); examine the last item \( n \), then

either put item \( n \) into the knapsack or discard it; That is
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$

Analysis:

For $n$ items and knapsack size $B$; examine the last item $n$, then

either put item $n$ into the knapsack or discard it; That is

• either increase value by $v_n$, 


Chapter 15. Dynamic Programming

Knapsack Problem

**Input:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**Output:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$

Analysis:

For $n$ items and knapsack size $B$; examine the last item $n$, then

- either **put item $n$ into the knapsack or discard it**; That is
- either **increase value by $v_n$, reduce** available space from $B$ to $B-s_n$, 
Chapter 15. Dynamic Programming

Knapsack Problem

**Input:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**Output:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$

Analysis:

For $n$ items and knapsack size $B$; examine the last item $n$, then

- either put item $n$ into the knapsack or discard it; That is
- either increase value by $v_n$, reduce available space from $B$ to $B-s_n$, reduce the number of items by 1,
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$

Analysis:

For $n$ items and knapsack size $B$; examine the last item $n$, then

either put item $n$ into the knapsack or discard it; That is

- either increase value by $v_n$, reduce available space from $B$ to $B-s_n$,
- reduce the number of items by 1,
- or simply reduce the number of items by 1
Chapter 15. Dynamic Programming

Knapsack Problem

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$ that maximizes $\sum_{i \in A} v_i$

with constraint $\sum_{i \in A} s_i \leq B$

Analysis:

For $n$ items and knapsack size $B$; examine the last item $n$, then

- either **put item $n$ into the knapsack or discard it**; That is
  - either **increase** value by $v_n$, **reduce** available space from $B$ to $B-s_n$,
    **reduce** the number of items by 1,
  - or simply **reduce** the number of items by 1

Both situations reduce the problem size to a subproblem.
Chapter 15. Dynamic Programming

In general, let \{1, 2, \ldots, k\} be the first \(k\) items, and \(X\) be the available space in the knapsack;
Chapter 15. Dynamic Programming

In general, let \( \{1, 2, \ldots, k\} \) be the first \( k \) items, and \( X \) be the available space in the knapsack;

If we define \( A(k, X) \) to be the subset of items drawn from \( \{1, 2, \ldots, k\} \) such that \( A \) maximizes the total value while fits into the space \( X \)
Chapter 15. Dynamic Programming

In general, let \( \{1, 2, \ldots, k\} \) be the first \( k \) items, and \( X \) be the available space in the knapsack;

If we define \( A(k, X) \) to be the subset of items drawn from \( \{1, 2, \ldots, k\} \) such that \( A \) maximizes the total value while fits into the space \( X \)

Then \( A(k, X) = \begin{cases} \text{either } & A(k - 1, X - s_k) \cup \{k\} \quad \text{value gained } v_k \\ \text{or } & A(k - 1, X) \quad \text{value not gained} \end{cases} \)

Define \( V(k, X) \) to be the maximum value of items drawn from \( \{1, 2, \ldots, k\} \) which fit into the space of \( X \), then

\[
V(k, X) = \max \left\{ \begin{array}{l}
V(k - 1, X - s_k) + v_k & X \geq s_k \\
V(k - 1, X) & \text{otherwise}
\end{array} \right.
\]
Chapter 15. Dynamic Programming

For every \( k \leq n \) and every \( X \leq B \).

\[
V(k, X) = \max \begin{cases} 
V(k - 1, X - s_k) + v_k & X \geq s_k \\
V(k - 1, X) & \end{cases}
\]

base case,

\[
V(0, X) = 0,
\]
Chapter 15. Dynamic Programming

- For every $k \leq n$ and every $X \leq B$.

\[
V(k, X) = \max \begin{cases} 
V(k - 1, X - s_k) + v_k & X \geq s_k \\
V(k - 1, X) & 
\end{cases}
\]

base case,

\[
V(0, X) = 0, ~ V(k, 0) = 0
\]

- What does the table look like?

- How to fill it out?

- How to traceback for $A$, the optimal subset of items?
Chapter 15. Dynamic Programming

- For every $k \leq n$ and every $X \leq B$.

\[
V(k, X) = \max \left\{ \begin{array}{ll}
V(k-1, X - s_k) + v_k & X \geq s_k \\
V(k-1, X) & \text{otherwise}
\end{array} \right.
\]

base case,

\[
V(0, X) = 0, \quad V(k, 0) = 0
\]

- What does the table look like? How to fill it out?

- How to traceback for $A$, the optimal subset of items?
Chapter 15. Dynamic Programming

- For every \( k \leq n \) and every \( X \leq B \).

\[
V(k, X) = \max \begin{cases} 
V(k - 1, X - s_k) + v_k & X \geq s_k \\
V(k - 1, X) & \end{cases}
\]

base case,

\[
V(0, X) = 0, \quad V(k, 0) = 0
\]

- What does the table look like? How to fill it out?

- How to traceback for \( A \), the optimal subset of items?
Chapter 15. Dynamic Programming

Example

The optimal knapsack should contain \{1, 2\} = 7

\[
V(k, X) = \max \left\{ V(k - 1, X - s_k) + v_k \quad X \geq s_k \\
V(k - 1, X) \right. \]

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbackslash \text{s} & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 3 & 3 & 3 & 3 \\
2 & 0 & 0 & 3 & 4 & 4 & 7 \\
3 & 0 & 0 & 3 & 4 & 5 & 7 \\
4 & 0 & 0 & 3 & 4 & 5 & 7 \\
\hline
\end{tabular}

Items \( (s_i, v_i) \)

1: (2, 3)  
2: (3, 4)  
3: (4, 5)  
4: (5, 6)
Chapter 15. Dynamic Programming

Example

The optimal knapsack should contain \{1, 2\} = 7

\[
\begin{array}{c|c|c|c|c|c|c}
\hline
i \backslash s & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 3 & 3 & 3 & 3 \\
2 & 0 & 0 & 3 & 4 & 4 & 7 \\
3 & 0 & 0 & 3 & 4 & 5 & 7 \\
4 & 0 & 0 & 3 & 4 & 5 & 7 \\
\hline
\end{array}
\]

\[
V(k, X) = \max \left\{ \begin{array}{l}
V(k - 1, X - s_k) + v_k \quad X \geq s_k \\
V(k - 1, X) \quad \text{otherwise}
\end{array} \right.
\]

- fill out the base case row and column;
- the order of cells to be filled;
- \( V(i, X) = V(i - 1, X) \) if \( X < s_i \).
- time complexity
Chapter 15. Dynamic Programming

We have seen a number of examples with ”forward DP” solutions.

Matrix Chain Multiplication problem
Input: matrices $A_1, \ldots, A_n$, where $A_i$ has dimension $p_{i-1} \times p_i$;
Output: a parenthesization by which the product $A_1 \times A_2 \times \cdots \times A_n$ uses the minimum number of scalar multiplications.
Chapter 15. Dynamic Programming

We have seen a number of examples with "forward DP" solutions.
(Most of these problems are solvable with "backward DP" as well).
Chapter 15. Dynamic Programming

We have seen a number of examples with "forward DP" solutions. (Most of these problems are solvable with "backward DP" as well).
We now consider an example with an "inside-out DP" solution.
Chapter 15. Dynamic Programming

We have seen a number of examples with "forward DP" solutions.

(Most of these problems are solvable with "backward DP" as well).

We now consider an example with an "inside-out DP" solution.

Matrix Chain Multiplication problem
We have seen a number of examples with "forward DP" solutions. (Most of these problems are solvable with "backward DP" as well).

We now consider an example with an "inside-out DP" solution.

Matrix Chain Multiplication problem

**Input**: matrices $A_1, \cdots, A_n$, where $A_i$ has dimension $p_{i-1} \times p_i$;  
**Output**: a parenthesization by which the product $A_1 \times A_2 \times \cdots \times A_n$ uses the minimum number of scalar multiplications.
We have seen a number of examples with "forward DP" solutions. (Most of these problems are solvable with "backward DP" as well).

We now consider an example with an "inside-out DP" solution.

**Matrix Chain Multiplication problem**

**Input:** matrices $A_1, \cdots, A_n$, where $A_i$ has dimension $p_{i-1} \times p_i$;  
**Output:** a parenthesization by which the product $A_1 \times A_2 \times \cdots \times A_n$ uses the minimum number of scalar multiplications.
Chapter 15. Dynamic Programming

scalable multiplications

\[ 5 \times 4 \times 8 = 5 \times 2 \]
Chapter 15. Dynamic Programming

scalable multiplications

= 5 × 4 × 8
Chapter 15. Dynamic Programming

Many possible parenthesizations

\[
P(n) = \sum_{k=1}^{n-1} P(k) \cdot P(n-k),
\]
Catalan number
Chapter 15. Dynamic Programming

Many possible parenthesizations

$$P(n) = \sum_{k=1}^{n-1} P(k)P(n-k)$$

Catalan number

1. $$(A (B (C D)))$$
   $$5(5)^2 + 5(4)^2 + 4(8)^2 = 154$$
2. $$(A ((B C) D))$$
   $$5(5)^2 + 5(4)8 + 5(8)^2 = 290$$
3. $$((A B) (C D))$$
   $$5(5)4 + 4(8)^2 + 5(4)^2 = 204$$
4. $$((A (B C)) D)$$
   $$5(4)^8 + 5(5)8 + 5(8)^2 = 440$$
5. $$(((A B) C) D)$$
   $$5(5)^4 + 5(4)^8 + 5(8)^2 = 340$$
Many possible parenthesizations

Note: The number of all possible parenthesizations is

\[ P(n) = \sum_{k=1}^{n-1} P(k)P(n-k), \] Catalan number
Step 1: identify *optimal substructure*:
Optimal solution in terms of optimal solutions to subproblems:
Step 1: identify optimal substructure:

Optimal solution in terms of optimal solutions to subproblems:

1. The best parenthesization of $A_iA_{i+1} \cdots A_j$ must be

   $$(A_i \cdots A_k)(A_{k+1} \cdots A_j)$$

   for some $k, i \leq k < j$. 
Chapter 15. Dynamic Programming

Step 1: identify optimal substructure:
Optimal solution in terms of optimal solutions to subproblems:

(1) the best parenthesization of $A_iA_{i+1}\cdots A_j$ must be

$$(A_i\cdots A_k)(A_{k+1}\cdots A_j)$$

for some $k, i \leq k < j$.

(2) The optimal cost of $A_iA_{i+1}\cdots A_j$ must be the smallest among optimal costs for

$$(A_i\cdots A_k)(A_{k+1}\cdots A_j)$$

$k = i, i + 1, \cdots, j - 1$. 
Chapter 15. Dynamic Programming

**Step 1:** identify *optimal substructure*:

Optimal solution in terms of optimal solutions to subproblems:

(1) the best parenthesization of \( A_i A_{i+1} \cdots A_j \) must be

\[
(A_i \cdots A_k)(A_{k+1} \cdots A_j)
\]

for some \( k, i \leq k < j \).

(2) The optimal cost of \( A_i A_{i+1} \cdots A_j \) must be the smallest among optimal costs for

\[
(A_i \cdots A_k)(A_{k+1} \cdots A_j)
\]

\( k = i, i + 1, \ldots, j - 1 \).

(3) For each \( k \), the optimal cost for the above =
- the optimal cost for \( (A_i \cdots A_k) \) +
- the optimal cost for \( (A_{k+1} \cdots A_j) \) +
- the number of scalar multiplications to multiply the two terms.
Step 2: objective function and recurrence

Define $f(i,j)$ to be the minimum number of scalar multiplications needed for $A_i A_{i+1} \cdots A_j$. Then

$$f(i,j) = \min_{i \leq k < j} \left\{ f(i,k) + f(k+1,j) + p_{i-1} p_k p_{j} \right\}$$

where base case is $f(i,i) = 0$ for single matrix $A_i$. 
Chapter 15. Dynamic Programming

**Step 2**: objective function and recurrence

Define $f(i, j)$ to be the minimum number of scalar multiplications needed for $A_i A_{i+1} \cdots A_j$. 
Chapter 15. Dynamic Programming

**Step 2:** objective function and recurrence

Define $f(i, j)$ to be the minimum number of scalar multiplications needed for $A_i A_{i+1} \cdots A_j$. Then

$$f(i, j) = \min_{i \leq k < j} \{ f(i, k) + f(k+1, j) + p_{i-1} p_k p_j \}$$

where base case is

$$f(i, j) = 0 \text{ when } i = j, \text{ for single matrix } A_i.$$
Step 3. Fill out the DP table for function $f$. 
Step 3. Fill out the DP table for function $f$.

- Table size $n \times n$;
Step 3. Fill out the DP table for function $f$.

- Table size $n \times n$;
- base cases are on the main diagonal;
Step 3. Fill out the DP table for function $f$.

- Table size $n \times n$;
- base cases are on the main diagonal;
- smaller instances are of smaller $j-1$ values;
Step 3. Fill out the DP table for function \( f \).

- Table size \( n \times n \);
- base cases are on the main diagonal;
- smaller instances are of smaller \( j-1 \) values;
- diagonal cells have the same \( j-1 \) values;
Chapter 15. Dynamic Programming

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>20</td>
<td>35</td>
<td>53</td>
<td>95</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0</td>
<td>60</td>
<td>132</td>
<td>270</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0</td>
<td>90</td>
<td>231</td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>126</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Side lengths: 1, 4, 5, 3, 6, 7, 1

\[ A_1^{(1\times4)} \times A_2^{(4\times5)} \times A_3^{(5\times3)} \times A_4^{(3\times6)} \times A_5^{(6\times7)} \times A_6^{(7\times1)} \]
Algorithm \textsc{MatrixChainOrder}(p)
1. \hspace{0.5em} \textit{n} = \textit{length}[p] - 1;
Chapter 15. Dynamic Programming

Algorithm \textsc{MatrixChainOrder}(p)
1. \hspace{0.5cm} n = length[p] − 1;
2. \hspace{0.5cm} \textbf{for} \ i = 1 \ \textbf{to} \ n
Algorithm \textsc{MatrixChainOrder}(p)
1. \hspace{1em} n = \text{length}[p] - 1;
2. \hspace{1em} \textbf{for} i = 1 \textbf{ to } n
3. \hspace{1em} \hspace{1em} M[i, i] = 0;
Algorithm MatrixChainOrder(p)
1. \( n = length[p] - 1; \)
2. \( \text{for } i = 1 \text{ to } n \)
3. \( M[i, i] = 0; \)
4. \( \text{for } l = 2 \text{ to } n \)
Chapter 15. Dynamic Programming

Algorithm \textsc{MatrixChainOrder}(p)
\begin{enumerate}
\item \hspace{1em} $n = \text{length}[p] - 1$;
\item \hspace{1em} \textbf{for} $i = 1$ \textbf{to} $n$
\item \hspace{1em} \hspace{1em} $M[i, i] = 0$;
\item \hspace{1em} \textbf{for} $l = 2$ \textbf{to} $n$
\item \hspace{1em} \hspace{1em} \textbf{for} $i = 1$ \textbf{to} $n - l + 1$
\end{enumerate}
Algorithm `MatrixChainOrder(p)`

1. \( n = \text{length}[p] - 1; \)
2. \( \text{for } i = 1 \text{ to } n \)
3. \( M[i,i] = 0; \)
4. \( \text{for } l = 2 \text{ to } n \)
5. \( \text{for } i = 1 \text{ to } n - l + 1 \)
6. \( j = i + l - 1; \)
Chapter 15. Dynamic Programming

Algorithm MatrixChainOrder($p$)
1. $n = length[p] - 1$;
2. for $i = 1$ to $n$
3. $M[i, i] = 0$;
4. for $l = 2$ to $n$
5. for $i = 1$ to $n - l + 1$
6. $j = i + l - 1$;
7. $M[i, j] = \infty$;
8. for $k = i$ to $j - 1$
10. if $q < M[i, j]$
11. $M[i, j] = q$
12. $S[i, j] = k$;
13. return ($M$, $S$)

Time complexity: $O(n^2 \times n)$
Chapter 15. Dynamic Programming

Algorithm $\text{MATRIXCHAINORDER}(p)$

1. $n = \text{length}[p] - 1$;
2. for $i = 1$ to $n$
3. $M[i, i] = 0$;
4. for $l = 2$ to $n$
5. for $i = 1$ to $n - l + 1$
6. $j = i + l - 1$;
7. $M[i, j] = \infty$;
8. for $k = i$ to $j - 1$
Algorithm $\text{MATRIXCHAINORDER}(p)$

1. $n = \text{length}[p] - 1$
2. \text{for } i = 1 \text{ to } n
3. \quad M[i, i] = 0$
4. \text{for } l = 2 \text{ to } n
5. \quad \text{for } i = 1 \text{ to } n - l + 1
6. \quad \quad j = i + l - 1$
7. \quad \quad M[i, j] = \infty$
8. \quad \text{for } k = i \text{ to } j - 1
9. \quad \quad q = M[i, k] + M[k + 1, j] + p[i - 1]p[k]p[j]$
Chapter 15. Dynamic Programming

Algorithm \textbf{MatrixChainOrder}(p)
1. \hspace{1em} \textbf{n} = \text{length}[p] - 1;
2. \hspace{1em} \textbf{for} i = 1 \textbf{ to } n
3. \hspace{1em} \hspace{1em} M[i, i] = 0;
4. \hspace{1em} \textbf{for} l = 2 \textbf{ to } n
5. \hspace{1em} \hspace{1em} \textbf{for} i = 1 \textbf{ to } n - l + 1
6. \hspace{1em} \hspace{1em} \hspace{1em} j = i + l - 1;
7. \hspace{1em} \hspace{1em} \hspace{1em} M[i, j] = \infty;
8. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{for} k = i \textbf{ to } j - 1
9. \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} q = M[i, k] + M[k + 1, j] + p[i - 1]p[k]p[j]
10. \hspace{1em} \hspace{1em} \hspace{1em} \textbf{if} q < M[i, j]
Chapter 15. Dynamic Programming

Algorithm \textsc{MatrixChainOrder}(p)

1. \( n = \text{length}[p] - 1; \)
2. \( \text{for } i = 1 \text{ to } n \)
3. \( M[i, i] = 0; \)
4. \( \text{for } l = 2 \text{ to } n \)
5. \( \text{for } i = 1 \text{ to } n - l + 1 \)
6. \( j = i + l - 1; \)
7. \( M[i, j] = \infty; \)
8. \( \text{for } k = i \text{ to } j - 1 \)
10. \( \text{if } q < M[i, j] \)
11. \( M[i, j] = q \)
Chapter 15. Dynamic Programming

Algorithm **MatrixChainOrder**(*p*)
1. \( n = \text{length}[p] - 1; \)
2. \( \text{for } i = 1 \text{ to } n \)
3. \( M[i, i] = 0; \)
4. \( \text{for } l = 2 \text{ to } n \)
5. \( \text{for } i = 1 \text{ to } n - l + 1 \)
6. \( j = i + l - 1; \)
7. \( M[i, j] = \infty; \)
8. \( \text{for } k = i \text{ to } j - 1 \)
10. \( \text{if } q < M[i, j] \)
11. \( M[i, j] = q \)
12. \( S[i, j] = k \)

Time complexity: \( O(n^2 \times n) \)
Algorithm `MatrixChainOrder(p)`

1. \( n = \text{length}[p] - 1; \)
2. \( \text{for } i = 1 \text{ to } n \)
3. \( M[i, i] = 0; \)
4. \( \text{for } l = 2 \text{ to } n \)
5. \( \text{for } i = 1 \text{ to } n - l + 1 \)
6. \( j = i + l - 1; \)
7. \( M[i, j] = \infty; \)
8. \( \text{for } k = i \text{ to } j - 1 \)
10. \( \text{if } q < M[i, j] \)
11. \( M[i, j] = q \)
12. \( S[i, j] = k \)
13. \( \text{return } (M, S) \)

Time complexity: \( O(n^2 \times n) \)
Algorithm \textsc{MatrixChainOrder}(p)
1. \( n = \text{length}[p] - 1; \)
2. \textbf{for} \( i = 1 \) \textbf{to} \( n \)
3. \( M[i,i] = 0; \)
4. \textbf{for} \( l = 2 \) \textbf{to} \( n \)
5. \textbf{for} \( i = 1 \) \textbf{to} \( n - l + 1 \)
6. \( j = i + l - 1; \)
7. \( M[i,j] = \infty; \)
8. \textbf{for} \( k = i \) \textbf{to} \( j - 1 \)
10. \textbf{if} \( q < M[i,j] \)
11. \( M[i,j] = q \)
12. \( S[i,j] = k \)
13. \textbf{return} \( (M,S) \)

Time complexity: \( O(n^2 \times n) \)
Step 4. obtain the optimization parenthesization
Step 4. obtain the optimization parenthesization

Algorithm \texttt{MatrixChainParenthesization}(i, j, S)
1. \textbf{if} \ i < j
2. \hspace{1em} k = s[i, j]
3. \hspace{1em} \textbf{print} (i, j,” : ”, k)
4. \hspace{1em} \texttt{MatrixChainParenthesization}(i, k, S)
5. \hspace{1em} \texttt{MatrixChainParenthesization}(k + 1, j, S)
6. \textbf{return}
Step 4. obtain the optimization parenthesization

Algorithm MatrixChainParenthesization\((i, j, S)\)

1. if \(i < j\)
2. \(k = s[i, j]\)
3. print \((i, j, \" : \", k)\)
4. MatrixChainParenthesization\((i, k, S)\)
5. MatrixChainParenthesization\((k + 1, j, S)\)
6. return

Usage: call MatrixChainParenthesization\((1, n, S)\)
**Step 4.** obtain the optimization parenthesization

Algorithm `MatrixChainParenthesization(i, j, S)`

1.  
   if \( i < j \)
2.  
   \( k = s[i, j] \)
3.  
   print \( (i, j, " : ", k) \)
4.  
   `MatrixChainParenthesization(i, k, S)`
5.  
   `MatrixChainParenthesization(k + 1, j, S)`
6.  
   return

Usage: call `MatrixChainParenthesization(1, n, S)`

Time complexity for `MatrixChainParenthesization`:

Chapter 15. Dynamic Programming

Step 4. obtain the optimization parenthesization

Algorithm \textbf{MatrixChainParenthesization}(i, j, S)
1. \textbf{if} \ i < j
2. \hspace{1em} k = s[i, j]
3. \hspace{1em} \textbf{print} (i, j, " : ", k)
4. \hspace{1em} \textbf{MatrixChainParenthesization}(i, k, S)
5. \hspace{1em} \textbf{MatrixChainParenthesization}(k + 1, j, S)
6. \textbf{return}

Usage: call \textbf{MatrixChainParenthesization}(1, n, S)

Time complexity for \textbf{MatrixChainParenthesization}: \(O(n)\).
Chapter 16. Greedy Algorithms

Chapter 16 Greedy Algorithms
Chapter 16. Greedy Algorithms

**Chapter 16** Greedy Algorithms

- Dynamic programming is to *consider all possible choices and select the best.*
Chapter 16. Greedy Algorithms

Chapter 16 Greedy Algorithms

- Dynamic programming is to *consider all possible choices and select the best*.
  
a DP approach always leads to the optimal solution
Chapter 16. Greedy Algorithms

Chapter 16 Greedy Algorithms

- Dynamic programming is to consider all possible choices and select the best.
  - A DP approach always leads to the optimal solution
- A greedy algorithm may ignore some choices and select the one that is locally the best.
Chapter 16. Greedy Algorithms

Chapter 16 Greedy Algorithms

• Dynamic programming is to consider all possible choices and select the best.
  
a DP approach always leads to the optimal solution

• A greedy algorithm may ignore some choices and select the one that is locally the best.
  
a greedy strategy may or may NOT lead to the optimal solution
Chapter 16. Greedy Algorithms

Activity-selection problem
Chapter 16. Greedy Algorithms

**Activity-selection problem**

**Input:** $n$ activities $S = \{a_1, \ldots, a_n\}$, each with a start time $s_i$ and finish time $f_i$, $1 \leq i \leq n$

**Output:** subset $A \subseteq A$ of mutually compatible activities such that $|A|$ is the maximum.

\[$A = \{a_1, a_3, a_6, a_8\}, \text{ or } A = \{a_2, a_5, a_7, a_8\}, \text{ or } A = \{a_2, a_5, a_7, a_9\}, \ldots.$\]
Chapter 16. Greedy Algorithms

Activity-selection problem

**Input:** $n$ activities $S = \{a_1, \ldots, a_n\}$, each with a start time $s_i$ and finish time $f_i$, $1 \leq i \leq n$

**Output:** subset $A \subseteq A$ of mutually compatible activities such that $|A|$ is the maximum.

$A = \{a_1, a_3, a_6, a_8\}$, or
Activity-selection problem

**Input:** \( n \) activities \( S = \{a_1, \ldots, a_n\} \), each with a start time \( s_i \) and finish time \( f_i \), \( 1 \leq i \leq n \)

**Output:** subset \( A \subseteq A \) of mutually compatible activities such that \( |A| \) is the maximum.

\[
A = \{a_1, a_3, a_6, a_8\}, \text{ or } A = \{a_2, a_5, a_7, a_8\}, \text{ or }
\]
Chapter 16. Greedy Algorithms

Activity-selection problem

**INPUT:** $n$ activities $S = \{a_1, \ldots, a_n\}$, each with a start time $s_i$ and finish time $f_i$, $1 \leq i \leq n$

**OUTPUT:** subset $A \subseteq A$ of mutually compatible activities such that $|A|$ is the maximum.

$A = \{a_1, a_3, a_6, a_8\}$, or $A = \{a_2, a_5, a_7, a_8\}$, or $A = \{a_2, a_5, a_7, a_9\}$,
Chapter 16. Greedy Algorithms

Activity-selection problem

**Input:** \( n \) activities \( S = \{a_1, \ldots, a_n\} \), each with a start time \( s_i \) and finish time \( f_i \), \( 1 \leq i \leq n \)

**Output:** subset \( A \subseteq A \) of mutually compatible activities such that \( |A| \) is the maximum.

\[
A = \{a_1, a_3, a_6, a_8\}, \text{ or } A = \{a_2, a_5, a_7, a_8\}, \text{ or } A = \{a_2, a_5, a_7, a_9\},
\]
A dynamic programming solution
Chapter 16. Greedy Algorithms

A dynamic programming solution

Step 1 analysis of problem
Chapter 16. Greedy Algorithms

A dynamic programming solution

Step 1 analysis of problem

• like the Knapsack Problem to consider the first \( k \) items and exhaustively consider to include \( a_k \) or not to set \( A \)
Chapter 16. Greedy Algorithms

A dynamic programming solution

Step 1 analysis of problem

• like the Knapsack Problem to consider the first $k$ items and exhaustively consider to include $a_k$ or not to set $A$

but how to put the activities in order?
Chapter 16. Greedy Algorithms

A dynamic programming solution

**Step 1** analysis of problem

- like the Knapsack Problem to consider the first $k$ items and exhaustively consider to include $a_k$ or not to set $A$

  but how to put the activities in order?

  perhaps there is no “forward DP” for this problem.
A dynamic programming solution

**Step 1** analysis of problem

- like the Knapsack Problem to consider the first \( k \) items and exhaustively consider to include \( a_k \) or not to set \( A \)
  
  but how to put the activities in order? perhaps there is no “forward DP” for this problem.

- instead, like Matrix Chain Multiplication problem, we consider “inside-out DP” method
  
  exhaustively consider to include \( a_k \), for some \( k \).
Chapter 16. Greedy Algorithms

For example, selecting $a_3$ would result in two subsets of activities to further consider: 

$\{a_1\}$ and $\{a_6, a_7, a_8, a_9\}$;

selecting $a_5$ would result in two subsets of activities to further consider: 

$\{a_1, a_2\}$ and $\{a_7, a_8\}$. 
For example, selecting $a_3$ would result in two subsets of activities to further consider: $\{a_1\}$ and $\{a_6, a_7, a_8, a_9\}$;
For example, selecting $a_3$ would result in two subsets of activities to further consider: \{a_1\} and \{a_6, a_7, a_8, a_9\};

selecting $a_5$ would result in two subsets of activities to further consider: \{a_1, a_2\} and \{a_7, a_8, a_9\};
Chapter 16. Greedy Algorithms

Define subset $S_{i,j} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$

e.g., $S_{2,9} = \{ a_5, a_6, a_7 \}$

introducing dummy activities: $a_0$ with $f_0$ = the earliest start time of all, and $a_{n+1}$ with $s_{n+1}$ = latest finish time of all.
Define subset $S_{i,j} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$
Define subset \( S_{i,j} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \} \)

e.g.,
\( S_{2,9} = \{ a_k \in S : f_2 \leq s_k < f_k \leq s_9 \} = \)
Define subset $S_{i,j} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$

e.g.,
$S_{2,9} = \{a_k \in S : f_2 \leq s_k < f_k \leq s_9\} = \{a_5, a_6, a_7\}$
Define subset $S_{i,j} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$

e.g.,

$S_{2,9} = \{ a_k \in S : f_2 \leq s_k < f_k \leq s_9 \} = \{ a_5, a_6, a_7 \}$

$S_{3,8} = \{ a_6, a_7 \}.$
Define subset $S_{i,j} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$

e.g.,
$S_{2,9} = \{a_k \in S : f_2 \leq s_k < f_k \leq s_9\} = \{a_5, a_6, a_7\}$
$S_{3,8} = \{a_6, a_7\}$.

introducing dummy activities:
$a_0$ with $f_0 = \text{the earliest start time of all, and}$
$a_{n+1}$ with $s_{n+1} = \text{latest finish time of all.}$
Define subset $S_{i,j} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$
Define subset $S_{i,j} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$

Define solution $A_{i,j} \subseteq S_{i,j}$ is the maximum size set of compatible activities.
Chapter 16. Greedy Algorithms

Define subset \( S_{i,j} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \} \)

Define solution \( A_{i,j} \subseteq S_{i,j} \) is the maximum size set of compatible activities.

Then

\[
|A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}|\}
\]
Define subset $S_{i,j} = \{a_k \in S : f_i \leq s_k < f_k \leq s_j\}$

Define solution $A_{i,j} \subseteq S_{i,j}$ is the maximum size set of compatible activities.

Then

$$|A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}|\}$$

E.g.,

$$|A_{0,10}| = \max \left\{ \ldots, |A_{0,6} \cup \{a_6\} \cup A_{6,10}|, \text{ where } S_{0,6} = \{a_1, \ldots, a_4\}, S_{6,10} = \{a_8, a_9\} \right\}$$
Chapter 16. Greedy Algorithms

Instead of going forward with the DP, we wonder if all but one of the subproblems could be made empty. \[ A_{i,j} = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}|\} \]

i.e., a greedy choice of \( a_k \in S_{i,j} \) makes \( A_{i,l} \cup \{a_l\} \cup A_{l,i} \) not needed, for all \( l \neq k \)

But the chosen \( a_k \) has to guarantee that \( |A_{i,j}| \) is the maximum.

called greedy-choice property (need to be proved)
Instead of go forward with the DP, we wonder if all but one of the subproblems could be made empty.

\[
|A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}|\}
\]
Instead of go forward with the DP, we wonder if all but one of the subproblems could be made empty.

\[ |A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}|\} \]

i.e., a greedy choice of \( a_k \in S_{i,j} \) makes \( A_{i,l} \cup \{a_l\} \cup A_{l,i} \) not needed, for all \( l \neq k \)
Instead of go forward with the DP, we wonder if all but one of the subproblems could be made empty.

\[ |A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}| \} \]

i.e., a greedy choice of \( a_k \in S_{i,j} \) makes \( A_{i,l} \cup \{a_l\} \cup A_{l,i} \) not needed, for all \( l \neq k \)

But the chosen \( a_k \) has to guarantee to maintain \( |A_{i,j}| \) is the maximum.
Instead of go forward with the DP, we wonder if all but one of the subproblems could be made empty.

\[ |A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}| \} \]

i.e., a greedy choice of \(a_k \in S_{i,j}\) makes \(A_{i,l} \cup \{a_l\} \cup A_{l,i}\) not needed, for all \(l \neq k\)

**But the chosen** \(a_k\) **has to guarantee** to maintain \(|A_{i,j}|\) is the maximum.

called **greedy-choice property**
Instead of go forward with the DP, we wonder if all but one of the subproblems could be made empty.

\[ |A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}| \} \]

i.e., a greedy choice of \( a_k \in S_{i,j} \) makes \( A_{i,l} \cup \{a_l\} \cup A_{l,i} \) not needed, for all \( l \neq k \)

But the chosen \( a_k \) has to guarantee to maintain \( |A_{i,j}| \) is the maximum.

called greedy-choice property (need to be proved)
Chapter 16. Greedy Algorithms

Activity Selection problem has the greedy-choice property.
Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.
Activity Selection problem has the greedy-choice property.

**Theorem 16.1:** Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time.
Chapter 16. Greedy Algorithms

Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that **selecting the activity with the earliest finish time**

- makes all other subproblems disappearing, and
- maintains the optimality of solution
Activity Selection problem has the greedy-choice property.

**Theorem 16.1:** Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof:** (Using the “swapping method”)
Chapter 16. Greedy Algorithms

Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof**: (Using the “swapping method”)

Let $A_{i,j}$ be an optimal solution for $S_{i,j}$.
Activity Selection problem has the greedy-choice property.

**Theorem 16.1:** Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof:** (Using the “swapping method”)

Let $A_{i,j}$ be an optimal solution for $S_{i,j}$.

(1) If $a_k \in A_{i,j}$, then the theorem is true.
Chapter 16. Greedy Algorithms

Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof**: (Using the "swapping method")

Let $A_{i,j}$ be an optimal solution for $S_{i,j}$.

(1) If $a_k \in A_{i,j}$, then the theorem is true.

(2) If $a_k \not\in A_{i,j}$, assume $a_p$ is the one with earliest finish time in $A_{i,j}$.
Activity Selection problem has the greedy-choice property.

**Theorem 16.1:** Let $S_{i,j}$ be a subproblem and $a_k$ be the activity of the earliest finish time, then $a_k$ is in some optimal solution for $S_{i,j}$.

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof:** (Using the “swapping method”)

Let $A_{i,j}$ be an optimal solution for $S_{i,j}$.

(1) If $a_k \in A_{i,j}$, then the theorem is true.

(2) If $a_k \not\in A_{i,j}$, assume $a_p$ is the one with earliest finish time in $A_{i,j}$.

We define $B_{i,j} = A_{i,j} - \{a_p\} \cup \{a_k\}$. Then

- because $f_p \geq f_k$, $a_k$ is compatible with other activities in $B_{i,j}$.
  
  So $B_{i,j}$ is a solution for $S_{i,j}$. 
Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let \( S_{i,j} \) be a subproblem and \( a_k \) be the activity of the earliest finish time, then \( a_k \) is in some optimal solution for \( S_{i,j} \).

The theorem is the same as that selecting the activity with the earliest finish time

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof**: (Using the “swapping method”)

Let \( A_{i,j} \) be an optimal solution for \( S_{i,j} \).

(1) If \( a_k \in A_{i,j} \), then the theorem is true.

(2) If \( a_k \not\in A_{i,j} \), assume \( a_p \) is the one with earliest finish time in \( A_{i,j} \).

We define \( B_{i,j} = A_{i,j} - \{a_p\} \cup \{a_k\} \). Then

- because \( f_p \geq f_k \), \( a_k \) is compatible with other activities in \( B_{i,j} \).
  
  So \( B_{i,j} \) is a solution for \( S_{i,j} \).

- \( |B_{i,j}| = |A_{i,j}| \), so \( B_{i,j} \) is also an optimal solution for \( S_{i,j} \).
Activity Selection problem has the greedy-choice property.

**Theorem 16.1**: Let \( S_{i,j} \) be a subproblem and \( a_k \) be the activity of the earliest finish time, then \( a_k \) is in some optimal solution for \( S_{i,j} \).

The theorem is the same as that **selecting the activity with the earliest finish time**

- makes all other subproblems disappearing, and
- maintains the optimality of solution

**Proof**: (Using the “swapping method”)

Let \( A_{i,j} \) be an optimal solution for \( S_{i,j} \).

(1) If \( a_k \in A_{i,j} \), then the theorem is true.

(2) If \( a_k \not\in A_{i,j} \), assume \( a_p \) is the one with earliest finish time in \( A_{i,j} \).

We define \( B_{i,j} = A_{i,j} - \{a_p\} \cup \{a_k\} \). Then

- because \( f_p \geq f_k \), \( a_k \) is compatible with other activities in \( B_{i,j} \).
  So \( B_{i,j} \) is a solution for \( S_{i,j} \).
- \( |B_{i,j}| = |A_{i,j}| \), so \( B_{i,j} \) is also an optimal solution for \( S_{i,j} \).

Since \( a_k \in B_{i,j} \), we prove the theorem.
Chapter 16. Greedy Algorithms

Using the Theorem 16.1 and the recurrence

\[ |A_{i,j}| = \max_{a_k \in S_{i,j}} \{|A_{i,k} \cup \{a_k\} \cup A_{k,j}|\} \]

we can derive greedy algorithms for the Activity Selection problem.
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times. 
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \))
Assume that the activities are sorted according to their finish times. 
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm Activity-Selection\((s, f, k, n)\)
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm \textsc{Activity-Selection}(s, f, k, n)
1. \( m = k + 1 \)
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm \( \text{Activity-Selection}(s, f, k, n) \)
1. \( m = k + 1 \)
2. \( \text{while } m \leq n \text{ and } s_m < f_k \)
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times. 
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm \textsc{Activity-Selection}(s, f, k, n)

1. \( m = k + 1 \)
2. \textbf{while} \( m \leq n \) and \( s_m < f_k \)
3. \( m = m + 1 \)
Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm Activity-Selection\((s, f, k, n)\)
1. \( m = k + 1 \)
2. while \( m \leq n \) and \( s_m < f_k \)
3. \( m = m + 1 \)
4. if \( m \leq n \)
Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm \textsc{Activity-Selection}(s, f, k, n)

1. \( m = k + 1 \)
2. \( \textbf{while} \ m \leq n \text{ and } s_m < f_k \)
3. \( m = m + 1 \)
4. \( \textbf{if} \ m \leq n \)
5. \( \textbf{return} \ \{a_m\} \cup \textsc{Activity-Selection}(s, f, m, n) \)
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times.
\[ f_1 \leq f_2 \leq \cdots \leq f_n. \]

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm \textsc{Activity-Selection}(s, f, k, n)
1. \( m = k + 1 \)
2. \textbf{while} \( m \leq n \) and \( s_m < f_k \)
3. \( m = m + 1 \)
4. \textbf{if} \( m \leq n \)
5. \textbf{return} \( \{a_m\} \cup \textsc{Activity-Selection}(s, f, m, n) \)
6. \textbf{else return} \( (\emptyset) \)
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times. 
\( f_1 \leq f_2 \leq \cdots \leq f_n \).

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm **Activity-Selection** \((s, f, k, n)\)
1. \( m = k + 1 \)
2. **while** \( m \leq n \) and \( s_m < f_k \)
3. \( m = m + 1 \)
4. **if** \( m \leq n \)
5. return \( \{a_m\} \cup \text{Activity-Selection}(s, f, m, n) \)
6. else return \( (\emptyset) \)

First called with **Activity-Selection** \((s, f_0, n)\)
Chapter 16. Greedy Algorithms

Assume that the activities are sorted according to their finish times. \( f_1 \leq f_2 \leq \cdots \leq f_n \).

Adding hypothetical activity \( a_0 \) (with \( s_0 = f_0 = s_1 \)) and activity \( a_{n+1} \) (with \( s_{n+1} = f_{n+1} = f_n \)).

Algorithm Activity-Selection\((s, f, k, n)\)
1. \( m = k + 1 \)
2. while \( m \leq n \) and \( s_m < f_k \)
3. \( m = m + 1 \)
4. if \( m \leq n \)
5. return \( \{a_m\} \cup \text{Activity-Selection}(s, f, m, n) \)
6. else return \( (\emptyset) \)

First called with Activity-Selection\((s, f_0, n)\)

Time complexity: \( O(n) \).
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

- **Input**: $n$ items of sizes $s_1, ..., s_n$ and values $v_1, ..., v_n$; and a knapsack size $B$.
- **Output**: a subset $A \subseteq \{1, 2, ..., n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$.

Define $K(S, X)$ be the maximum value of packing items from set $S$ into space $X$.

Then $K(S, X) = \max_{0 < f_i \leq 1, i \in S} \{f_i v_i + K(S \setminus f_i s_i)\}$.

- We hope to select some item $i$ that makes other subproblems disappear.
- We select item $i$ such that it has the highest density $d_i = \frac{v_i}{s_i}$.
- For convenience, assume the items are sorted according to the non-decreasing order of density.

**Theorem**: Fractional Knapsack problem has the greedy-choice property.
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \);
and a knapsack size \( B \)
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**INPUT**: $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$.

**OUTPUT**: a subset $A \subseteq \{1, 2, \ldots, n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$.
Fractional Knapsack Problem:

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

Input: $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

Output: a subset $A \subseteq \{1, 2, \ldots, n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$

Define: $K(S, X)$ be the maximum value of packing items from set $S$ into space $X$. 
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \), each with a fraction \( 0 < f_i \leq 1 \), which maximizes \( \sum_{i \in A} f_i v_i \) under the constraint \( \sum_{i \in A} f_i s_i \leq B \)

Define: \( K(S, X) \) be the maximum value of packing items from set \( S \) into space \( X \). Then

\[
K(S, X) = \max_{0 < f_i \leq 1, i \in S} \sum_{i \in A} f_i v_i
\]
Fractional Knapsack Problem:

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); 
and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \), each with a fraction \( 0 < f_i \leq 1 \), 
which maximizes \( \sum_{i \in A} f_i v_i \) under the constraint \( \sum_{i \in A} f_i s_i \leq B \)

Define: \( K(S, X) \) be the maximum value of packing items from set \( S \) into space \( X \).
Then

\[
K(S, X) = \max_{0 < f_i \leq 1, i \in S} \{ f_i v_i + K(S, X - f_i s_i) \}
\]
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$

Define: $K(S, X)$ be the maximum value of packing items from set $S$ into space $X$. Then

$$K(S, X) = \max_{0 < f_i \leq 1, i \in S} \{ f_i v_i + K(S, X - f_i s_i) \}$$

- We hope to select some item $i$ that makes other subproblems disappear.
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**INPUT:** \( n \) items of sizes \( s_1, \ldots, s_n \) and values \( v_1, \ldots, v_n \); and a knapsack size \( B \)

**OUTPUT:** a subset \( A \subseteq \{1, 2, \ldots, n\} \), each with a fraction \( 0 < f_i \leq 1 \), which maximizes \( \sum_{i \in A} f_i v_i \) under the constraint \( \sum_{i \in A} f_i s_i \leq B \)

Define: \( K(S, X) \) be the maximum value of packing items from set \( S \) into space \( X \). Then

\[
K(S, X) = \max_{0 < f_i \leq 1, i \in S} \left\{ f_i v_i + K(S, X - f_i s_i) \right\}
\]

- We hope to select some item \( i \) that makes other subproblems disappear.
- We select item \( i \) such that it has the highest density \( d_i = \frac{v_i}{s_i} \).
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**Input**: $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**Output**: a subset $A \subseteq \{1, 2, \ldots, n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$

Define: $K(S, X)$ be the maximum value of packing items from set $S$ into space $X$. Then

$$K(S, X) = \max_{0 < f_i \leq 1, i \in S} \{f_i v_i + K(S, X - f_i s_i)\}$$

- We hope to select some item $i$ that makes other subproblems disappear.
- We select item $i$ such that it has the highest density $d_i = \frac{v_i}{s_i}$.
- For convenience, assume the items are sorted according to the non-decreasing order of density.
Chapter 16. Greedy Algorithms

Fractional Knapsack Problem:

**INPUT:** $n$ items of sizes $s_1, \ldots, s_n$ and values $v_1, \ldots, v_n$; and a knapsack size $B$

**OUTPUT:** a subset $A \subseteq \{1, 2, \ldots, n\}$, each with a fraction $0 < f_i \leq 1$, which maximizes $\sum_{i \in A} f_i v_i$ under the constraint $\sum_{i \in A} f_i s_i \leq B$

Define: $K(S, X)$ be the maximum value of packing items from set $S$ into space $X$. Then

$$K(S, X) = \max_{0 < f_i \leq 1, i \in S} \{ f_i v_i + K(S, X - f_i s_i) \}$$

- We hope to select some item $i$ that makes other subproblems disappear.
- We select item $i$ such that it has the **highest density** $d_i = \frac{v_i}{s_i}$.
- For convenience, assume the items are sorted according to the non-decreasing order of density.

**Theorem:** Fractional Knapsack problem has the greedy-choice property.
Theorem: Fractional Knapsack problem has the greedy-choice property.

We need to prove the following:
Given a subset of items $S \subseteq \{1, 2, ..., n\}$ and space $X$. Assume item $i$ has the highest density in $S$. Then there is an optimal solution for $S$ which contains the fraction $f_i$ of the item $i$, for some maximum $f_i$, $0 \leq f_i \leq 1$, such that $f_is_i \leq X$.
(This is left as an exercise)
Chapter 16. Greedy Algorithms

**Theorem:** Fractional Knapsack problem has the greedy-choice property.

We need to prove the following:
Chapter 16. Greedy Algorithms

**Theorem:** Fractional Knapsack problem has the greedy-choice property.

We need to prove the following:

Given a subset of items $S \subseteq \{1, 2, \ldots, n\}$ and space $X$. Assume item $i$ has the highest density in $S$. Then there is an optimal solution for $S$ which contains the fraction $f_i$ of the item $i$, for some maximum $f_i$, $0 \leq f_i \leq 1$ such that $f_i s_i \leq X$. 
Chapter 16. Greedy Algorithms

**Theorem**: Fractional Knapsack problem has the greedy-choice property.

We need to prove the following:

Given a subset of items $S \subseteq \{1, 2, \ldots, n\}$ and space $X$. Assume item $i$ has the highest density in $S$. Then there is an optimal solution for $S$ which contains the fraction $f_i$ of the item $i$, for some maximum $f_i$, $0 \leq f_i \leq 1$ such that $f_i s_i \leq X$.

(This is left as an exercise)
Chapter 16. Greedy Algorithms

Huffman Code
Chapter 16. Greedy Algorithms

Huffman Code

compressing data using binary bits
Chapter 16. Greedy Algorithms

Huffman Code

compressing data using binary bits
code: a compressing scheme,
Chapter 16. Greedy Algorithms

Huffman Code

compressing data using binary bits
code: a compressing scheme, fixed length vs variable length code
Chapter 16. Greedy Algorithms

**Huffman Code**

compressing data using binary bits
code: a compressing scheme, fixed length vs variable length code

<table>
<thead>
<tr>
<th>character</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>.45</td>
<td>.13</td>
<td>.12</td>
<td>.16</td>
<td>.09</td>
<td>.05</td>
</tr>
<tr>
<td>fixed length code</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>variable length code</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>
Chapter 16. Greedy Algorithms

Huffman Code

compressing data using binary bits
code: a compressing scheme, fixed length vs variable length code

<table>
<thead>
<tr>
<th>character</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency</td>
<td>.45</td>
<td>.13</td>
<td>.12</td>
<td>.16</td>
<td>.09</td>
<td>.05</td>
</tr>
<tr>
<td>fixed length code</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>variable length code</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

![Huffman Code Tree](image)
Chapter 16. Greedy Algorithms

prefix code: a prefix of a codeword cannot be another codeword.
Chapter 16. Greedy Algorithms

prefix code: a prefix of a codeword cannot be another codeword.

The Optimal Prefix Code Problem:
prefix code: a prefix of a codeword cannot be another codeword.

The Optimal Prefix Code Problem:

**Input:** character set $C$ and frequencies $f$;
prefix code: a prefix of a codeword cannot be another codeword.

The Optimal Prefix Code Problem:

**Input:** character set $C$ and frequencies $f$;

**Output:** a code tree $T$ such that the cost
prefix code: a prefix of a codeword cannot be another codeword.

The Optimal Prefix Code Problem:

**Input:** character set $C$ and frequencies $f$;

**Output:** a code tree $T$ such that the cost

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

achieves the minimum

where $d_T(c)$ is the depth of character $c$ in tree $T$. 
prefix code: a prefix of a codeword cannot be another codeword.

The Optimal Prefix Code Problem:

**Input:** character set \(C\) and frequencies \(f\);
**Output:** a code tree \(T\) such that the cost

\[
B(T) = \sum_{c \in C} f(c)d_T(c)
\]

achieves the minimum

where \(d_T(c)\) is the depth of character \(c\) in tree \(T\).

Note that
- \(d_T(c)\) is the length of codeword for \(c\) under the code scheme \(T\).
prefix code: a prefix of a codeword cannot be another codeword.

The Optimal Prefix Code Problem:

**Input**: character set $C$ and frequencies $f$;

**Output**: a code tree $T$ such that the cost

$$B(T) = \sum_{c \in C} f(c) d_T(c)$$

achieves the minimum

where $d_T(c)$ is the depth of character $c$ in tree $T$.

Note that

- $d_T(c)$ is the length of codeword for $c$ under the code scheme $T$.
- $B(T) \times n$ is the number of bits required to code a file (of $n$ characters).
Algorithm \textsc{Huffman}(C, f)
Algorithm $\text{HUFFMAN}(C, f)$

1. $n = |C|$
Chapter 16. Greedy Algorithms

Algorithm \textsc{Huffman}(C, f)

1. \hspace{1em} n = |C|
2. \hspace{1em} Q = C
Chapter 16. Greedy Algorithms

Algorithm \textsc{Huffman}(C, f)

1. $n = |C|$
2. $Q = C$
3. \textbf{for} $i = 1$ \textbf{to} $n - 1$

$\text{Extract-Min}(Q)$

$\text{Insert}(Q, z)$

$\text{return} \text{Extract-Min}(Q)$
Chapter 16. Greedy Algorithms

Algorithm $\text{HUFFMAN}(C, f)$

1. $n = |C|$
2. $Q = C$
3. $\text{for } i = 1 \text{ to } n - 1$
4. $\text{newnode}(z)$
Algorithm \textsc{Huffman}(C, f)

1. \( n = |C| \)
2. \( Q = C \)
3. for \( i = 1 \) to \( n - 1 \)
4. \hspace{1em} \textbf{newnode}(z)
5. \hspace{1em} \( x = \text{Extract-Min}(Q) \) \hspace{1em} extract two least frequent characters
6. \hspace{1em} \( z_{\text{leftchild}} = x \)
7. \hspace{1em} \( y = \text{Extract-Min}(Q) \)
8. \hspace{1em} \( z_{\text{rightchild}} = y \)
9. \hspace{1em} \( f(z) = f(x) + f(y) \)
9. \hspace{1em} \textbf{Insert}(Q, z)
9. return \( \text{Extract-Min}(Q) \)
Algorithm \textsc{Huffman}(C, f)

1. \hspace{0.5cm} n = |C|
2. \hspace{0.5cm} Q = C
3. \hspace{0.5cm} \textbf{for} \ i = 1 \ \textbf{to} \ n - 1
4. \hspace{1cm} \textsc{newnode}(z)
5. \hspace{1cm} x = \textsc{Extract-Min}(Q) \hspace{1cm} \text{extract two least frequent characters}
6. \hspace{1cm} z.leftchild = x
Chapter 16. Greedy Algorithms

Algorithm **HUFFMAN**\((C, f)\)

1. \( n = |C| \)
2. \( Q = C \)
3. \textbf{for} \( i = 1 \) \textbf{to} \( n - 1 \)
4. \textit{newnode}(z)
5. \( x = \text{EXTRACT-MIN}(Q) \) \hfill \text{extract two least frequent characters}
6. \textit{z.leftchild} = \( x \)
7. \( y = \text{EXTRACT-MIN}(Q) \)
Algorithm \textsc{Huffman}(C, f)

1. \hspace{1cm} n = |C| \hfill 
2. \hspace{1cm} Q = C \hfill 
3. \hspace{1cm} \textbf{for} \ i = 1 \ \textbf{to} \ n - 1 \hfill 
4. \hspace{1cm} \textbf{newnode}(z) \hfill 
5. \hspace{1cm} x = \textsc{Extract-Min}(Q) \hspace{1cm} \text{extract two least frequent characters} \hfill 
6. \hspace{1cm} z.\text{leftchild} = x \hfill 
7. \hspace{1cm} y = \textsc{Extract-Min}(Q) \hfill 
8. \hspace{1cm} z.\text{rightchild} = y \hfill 
9. \hspace{1cm} f(z) = f(x) + f(y) \hfill 
10. \hspace{1cm} \textbf{Insert}(Q, z) \hfill
Algorithm \textsc{Huffman}(C, f)

1. \( n = |C| \)
2. \( Q = C \)
3. \textbf{for} \( i = 1 \) \textbf{to} \( n - 1 \)
4. \hspace{1em} \text{newnode}(z)
5. \hspace{1em} \( x = \text{Extract-Min}(Q) \) \hspace{1em} \textit{extract two least frequent characters}
6. \hspace{1em} \( z.\text{leftchild} = x \)
7. \hspace{1em} \( y = \text{Extract-Min}(Q) \)
8. \hspace{1em} \( z.\text{rightchild} = y \)
9. \hspace{1em} \( f(z) = f(x) + f(y) \)
Algorithm HUFFMAN($C$, $f$)

1. $n = |C|$
2. $Q = C$
3. for $i = 1$ to $n - 1$
4. \hspace{1em} newnode($z$)
5. \hspace{1em} $x = \text{EXTRACT-MIN}(Q)$ \hspace{1em} extract two least frequent characters
6. \hspace{1em} $z.leftchild = x$
7. \hspace{1em} $y = \text{EXTRACT-MIN}(Q)$
8. \hspace{1em} $z.rightchild = y$
9. \hspace{1em} $f(z) = f(x) + f(y)$
9. \hspace{1em} INSERT($Q$, $z$)
Algorithm \textsc{Huffman}(C, f)

1. \hspace{1em} n = |C|
2. \hspace{1em} Q = C
3. \hspace{1em} for \ i = 1 \text{ to } n - 1
4. \hspace{1em} \text{newnode}(z)
5. \hspace{1em} x = \text{Extract-Min}(Q) \quad \text{extract two least frequent characters}
6. \hspace{1em} z.\text{leftchild} = x
7. \hspace{1em} y = \text{Extract-Min}(Q)
8. \hspace{1em} z.\text{rightchild} = y
9. \hspace{1em} f(z) = f(x) + f(y)
9. \hspace{1em} \text{Insert}(Q, z)
9. \hspace{1em} \text{return} (\text{Extract-Min}(Q))
Chapter 16. Greedy Algorithms

An example of Huffman algorithm

- Symbols: A, B, C, D, E, F, G
  freq.: 2, 3, 5, 8, 13, 15, 18

- Huffman codes:
  A: 10100  B: 10101  C: 1011
  D: 100    E: 00    F: 01
  G: 11

A Huffman code Tree
Correctness of Huffman’s algorithm
Chapter 16. Greedy Algorithms

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)
Chapter 16. Greedy Algorithms

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Then there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ in the last bit.

Proof:
Assume $C$, $f$, $x$, and $y$ are as described in the lemma condition. Let $T$ be any optimal prefix code for $C$.

(a) if $T$ contains the situation about $x$ and $y$ stated in the lemma. Done for the proof!

(b) let $a, b \in C$ be two characters such that their codewords have the same length and differ in the last bit. Also assume that their codeword length $d_T(a) = d_T(b) \geq d_T(c)$, for every $c \in C$. We note that such $a$ and $b$ can be found from $T$ without difficulty.
Correctness of Huffman’s algorithm

**Lemma 16.2** (Greedy choice property)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Then there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ in the last bit.

**Proof:**
Assume $C$, $f$, $x$ and $y$ are as described in the lemma condition.
Chapter 16. Greedy Algorithms

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Then there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ in the last bit.

Proof:
Assume $C$, $f$, $x$ and $y$ are as described in the lemma condition. Let $T$ be any optimal prefix code for $C$.
Chapter 16. Greedy Algorithms

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Then there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ in the last bit.

Proof:
Assume $C$, $f$, $x$ and $y$ are as described in the lemma condition. Let $T$ be any optimal prefix code for $C$.

(a) if $T$ contains the situation about $x$ and $y$ stated in the lemma. Done for the proof!
Chapter 16. Greedy Algorithms

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Then there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ in the last bit.

Proof:
Assume $C$, $f$, $x$ and $y$ are as described in the lemma condition. Let $T$ be any optimal prefix code for $C$.

(a) if $T$ contains the situation about $x$ and $y$ stated in the lemma. Done for the proof!

(b) let $a, b \in C$ be two characters such that their codewords have the same length and differ in the last bit.
Chapter 16. Greedy Algorithms

Correctness of Huffman’s algorithm

Lemma 16.2 (Greedy choice property)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Then there exists an optimal prefix code for $C$ in which the codewords for $x$ and $y$ have the same length and differ in the last bit.

Proof:
Assume $C$, $f$, $x$ and $y$ are as described in the lemma condition. Let $T$ be any optimal prefix code for $C$.

(a) if $T$ contains the situation about $x$ and $y$ stated in the lemma. Done for the proof!

(b) let $a, b \in C$ be two characters such that their codewords have the same length and differ in the last bit. Also assume that their codeword length

$$d_T(a) = d_T(b) \geq d_T(c), \text{ for every } c \in C$$

We note that such $a$ and $b$ can be found from $T$ without difficulty.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$. Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$. The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$. 

$$B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_T'(c) = f(a)d_T(a) + f(b)d_T(b) + f(x)d_T(x) + f(y)d_T(y) - f(a)d_T'(a) - f(b)d_T'(b) - f(x)d_T'(x) - f(y)d_T'(y) = (f(a) - f(x))(d_T(a) - d_T(x)) + (f(x) - f(a))(d_T(x) - d_T(y)) \geq 0$$

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$.

So $T'$ satisfies the lemma.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$.
Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$.

So $T'$ satisfies the lemma.
Chapter 16. Greedy Algorithms

We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

\[
B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)
\]

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$.

So $T'$ satisfies the lemma.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

$$B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)$$

$$= f(a)d_T(a) + f(b)d_T(b) + f(x)d_T(x) + f(y)d_T(y)$$
We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \phi$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

\[
B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)
\]

\[
= f(a)d_T(a) + f(b)d_T(b) + f(x)d_T(x) + f(y)d_T(y)
\]

\[
- f(a)d_{T'}(a) - f(b)d_{T'}(b) - f(x)d_{T'}(x) - f(y)d_{T'}(y)
\]

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$. So $T'$ satisfies the lemma.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \phi$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

\[
B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)
\]
\[
= f(a)d_T(a) + f(b)d_T(b) + f(x)d_T(x) + f(y)d_T(y)
\]
\[
- f(a)d_{T'}(a) - f(b)d_{T'}(b) - f(x)d_{T'}(x) - f(y)d_{T'}(y)
\]
\[
= (f(a) - f(x))d_T(a) + (f(x) - f(a))d_T(x) + (f(b) - f(y))d_T(b)
\]

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$.

So $T'$ satisfies the lemma.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \phi$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

\[
B(T) - B(T') = \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c)
\]

\[
= f(a) d_T(a) + f(b) d_T(b) + f(x) d_T(x) + f(y) d_T(y)
\]

\[
- f(a) d_{T'}(a) - f(b) d_{T'}(b) - f(x) d_{T'}(x) - f(y) d_{T'}(y)
\]

\[
= (f(a) - f(x)) d_T(a) + (f(x) - f(a)) d_T(x) + (f(b) - f(y)) d_T(b)
\]

\[
+ (f(y) - f(b)) d_T(y)
\]

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$. So $T'$ satisfies the lemma.
We use the following swapping strategy to obtain another prefix code $T'$ for $C$. Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

$$B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)$$

$$= f(a)d_T(a) + f(b)d_T(b) + f(x)d_T(x) + f(y)d_T(y)$$

$$- f(a)d_{T'}(a) - f(b)d_{T'}(b) - f(x)d_{T'}(x) - f(y)d_{T'}(y)$$

$$= (f(a) - f(x))d_T(a) + (f(x) - f(a))d_T(x) + (f(b) - f(y))d_T(b)$$

$$+ (f(y) - f(b))d_T(y)$$

$$= (f(a) - f(x))(d_T(a) - d_T(x)) + (f(b) - f(y))(d_T(b) - d_T(y)) \geq 0$$

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$.

So $T'$ satisfies the lemma.
Chapter 16. Greedy Algorithms

We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \emptyset$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

$$B(T) - B(T') = \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c)$$

$$= f(a) d_T(a) + f(b) d_T(b) + f(x) d_T(x) + f(y) d_T(y)$$

$$- f(a) d_{T'}(a) - f(b) d_{T'}(b) - f(x) d_{T'}(x) - f(y) d_{T'}(y)$$

$$= (f(a) - f(x)) d_T(a) + (f(x) - f(a)) d_T(x) + (f(b) - f(y)) d_T(b)$$

$$+ (f(y) - f(b)) d_T(y)$$

$$= (f(a) - f(x))(d_T(a) - d_T(x)) + (f(b) - f(y))(d_T(b) - d_T(y)) \geq 0$$

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$. 

We use the following swapping strategy to obtain another prefix code $T'$ for $C$.

Without loss of generality, assume $\{a, b\} \cap \{x, y\} = \phi$.

The created code $T'$ is the same as $T$ except the positions $a$ and $x$ are swapped in $T'$; so are the positions of $b$ and $y$ swapped in $T'$.

$$B(T) - B(T') = \sum_{c \in C} f(c)d_T(c) - \sum_{c \in C} f(c)d_{T'}(c)$$

$$= f(a)d_T(a) + f(b)d_T(b) + f(x)d_T(x) + f(y)d_T(y)$$

$$- f(a)d_{T'}(a) - f(b)d_{T'}(b) - f(x)d_{T'}(x) - f(y)d_{T'}(y)$$

$$= (f(a) - f(x))d_T(a) + (f(x) - f(a))d_T(x) + (f(b) - f(y))d_T(b)$$

$$+ (f(y) - f(b))d_T(y)$$

$$= (f(a) - f(x))(d_T(a) - d_T(x)) + (f(b) - f(y))(d_T(b) - d_T(y)) \geq 0$$

which implies $B(T) \geq B(T')$. So $T'$ is also an optimal code for $C$.

So $T'$ satisfies the lemma.
Lemma 16.3 (Optimal substructure)
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies.
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$
C' = C - \{x, y\} \cup \{z\}
$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$. 

Proof:

The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$
B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{c \in C - \{x, y\}} f(c) d_{T'}(c) + [f(x) + f(y)] (d_{T'}(z) + 1) = \sum_{c \in C - \{x, y\} \cup \{z\}} f(c) d_{T'}(c) + f(x) + f(y) = B(T') + f(x) + f(y)
$$
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

Proof:
The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

**Proof:**
The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$B(T) = \sum_{c \in C} f(c)d_T(c) = \sum_{c \in C - \{x, y\}} f(c)d_{T'}(c) + f(x)d_T(x) + f(y)d_T(y)$$
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

Proof:
The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{c \in C - \{x, y\}} f(c) d_T(c) + f(x) d_T(x) + f(y) d_T(y)$$
$$= \sum_{c \in C - \{x, y\}} f(c) d_T(c) + [f(x) + f(y)] d_T(x)$$
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

Proof:
The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$B(T) = \sum_{c \in C} f(c) d_T(c) = \sum_{c \in C - \{x, y\}} f(c) d_T(c) + f(x) d_T(x) + f(y) d_T(y)$$

$$= \sum_{c \in C - \{x, y\}} f(c) d_T(c) + [f(x) + f(y)] d_T(x)$$

$$= \sum_{c \in C - \{x, y\}} f(c) d_{T'}(c) + [f(x) + f(y)] (d_{T'}(z) + 1)$$
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

Proof:
The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$B(T) = \sum_{c \in C} f(c)d_T(c) = \sum_{c \in C - \{x, y\}} f(c)d_T(c) + f(x)d_T(x) + f(y)d_T(y)$$

$$= \sum_{c \in C - \{x, y\}} f(c)d_T(c) + [f(x) + f(y)]d_T(x)$$

$$= \sum_{c \in C - \{x, y\}} f(c)d_{T'}(c) + [f(x) + f(y)](d_{T'}(z) + 1)$$

$$= \sum_{c \in C - \{x, y\} \cup \{z\}} f(c)d_{T'}(c) + f(x) + f(y)$$
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x, y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

Proof:
The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$B(T) = \sum_{c \in C} f(c)d_T(c) = \sum_{c \in C - \{x, y\}} f(c)d_T(c) + f(x)d_T(x) + f(y)d_T(y)$$

$$= \sum_{c \in C - \{x, y\}} f(c)d_T(c) + [f(x) + f(y)]d_T(x)$$

$$= \sum_{c \in C - \{x, y\}} f(c)d_{T'}(c) + [f(x) + f(y)](d_{T'}(z) + 1)$$

$$= \sum_{c \in C - \{x, y\} \cup \{z\}} f(c)d_{T'}(c) + f(x) + f(y)$$

$$= \sum_{c \in C'} f(c)d_{T'}(c) + f(x) + f(y) = B(T') + f(x) + f(y)$$
Lemma 16.3 (Optimal substructure)

Let $C$ be an alphabet and $f$ be the frequency function for characters in $C$. Let $x$ and $y$ be two characters in $C$ having the lowest frequencies. Let

$$C' = C - \{x,y\} \cup \{z\}$$

and the frequency function for $C'$ is the same as $f$ except that $f(z) = f(x) + f(y)$.

Let $T'$ be any an optimal prefix code tree for $C'$. Then the tree $T$ obtained from $T'$ by replacing the leaf node $z$ with an internal node having $x$ and $y$ as children, is an optimal prefix code tree for $C$.

Proof:

The code $T$ for $C$ constructed from $T'$, a code for $C'$, has the following objective function value

$$B(T) = \sum_{c \in C} f(c)d_T(c) = \sum_{c \in C - \{x,y\}} f(c)d_T(c) + f(x)d_T(x) + f(y)d_T(y)$$

$$= \sum_{c \in C - \{x,y\}} f(c)d_{T'}(c) + [f(x) + f(y)]d_T(x)$$

$$= \sum_{c \in C - \{x,y\}} f(c)d_{T'}(c) + [f(x) + f(y)](d_{T'}(z) + 1)$$

$$= \sum_{c \in C - \{x,y\} \cup \{z\}} f(c)d_{T'}(c) + f(x) + f(y)$$

$$= \sum_{c \in C'} f(c)d_{T'}(c) + f(x) + f(y) = B(T') + f(x) + f(y)$$
Now if $T$ is not optimal for $C$, assume optimal prefix code $S$ for $C$ such that $B(S) < B(T)$.
Now if $T$ is not optimal for $C$, assume optimal prefix code $S$ for $C$ such that $B(S) < B(T)$.

By Lemma 16.2, we assume $S$ to be such that codewords for $x$ and $y$ are of the same depth and differ in the last bit.
Now if $T$ is not optimal for $C$, assume optimal prefix code $S$ for $C$ such that $B(S) < B(T)$.

By Lemma 16.2, we assume $S$ to be such that codewords for $x$ and $y$ are of the same depth and differ in the last bit.

We construct another code $S'$ for $C'$ by removing the branches for $x$ and $y$ and assign $z$ to its parent node. We have $B(S') = B(S) - f(x) - f(y)$. But

$$B(S') < B(T) - f(x) - f(y) = B(T') + f(x) + f(y) - f(x) - f(y) = B(T')$$
Chapter 16. Greedy Algorithms

Now if $T$ is not optimal for $C$, assume optimal prefix code $S$ for $C$ such that $B(S) < B(T)$.

By Lemma 16.2, we assume $S$ to be such that codewords for $x$ and $y$ are of the same depth and differ in the last bit.

We construct another code $S'$ for $C'$ by removing the branches for $x$ and $y$ and assign $z$ to its parent node. We have $B(S') = B(S) - f(x) - f(y)$. But

$$B(S') < B(T) - f(x) - f(y) = B(T') + f(x) + f(y) - f(x) - f(y) = B(T')$$

This implies $T'$ is not optimal code for $C'$. Contradict.
Now if $T$ is not optimal for $C$, assume optimal prefix code $S$ for $C$ such that $B(S) < B(T)$.

By Lemma 16.2, we assume $S$ to be such that codewords for $x$ and $y$ are of the same depth and differ in the last bit.

We construct another code $S'$ for $C'$ by removing the branches for $x$ and $y$ and assign $z$ to its parent node. We have $B(S') = B(S) - f(x) - f(y)$. But

$$B(S') < B(T) - f(x) - f(y) = B(T') + f(x) + f(y) - f(x) - f(y) = B(T')$$

This implies $T'$ is not optimal code for $C'$. Contradict.

So $T$ should be optimal for $C$. 

Theorem 16.4

Huffman's algorithm produces an optimal prefix code.
Now if $T$ is not optimal for $C$, assume optimal prefix code $S$ for $C$ such that $B(S) < B(T)$.

By Lemma 16.2, we assume $S$ to be such that codewords for $x$ and $y$ are of the same depth and differ in the last bit.

We construct another code $S'$ for $C'$ by removing the branches for $x$ and $y$ and assign $z$ to its parent node. We have $B(S') = B(S) - f(x) - f(y)$. But

$$B(S') < B(T) - f(x) - f(y) = B(T') + f(x) + f(y) - f(x) - f(y) = B(T')$$

This implies $T'$ is not optimal code for $C'$. Contradict.

So $T$ should be optimal for $C$.

**Theorem 16.4** Huffman’s algorithm produces an optimal prefix code.
Chapter 16. Greedy Algorithms

Coin change problem

Input: money of value $n$, currency coin denominations $D = \{v_1, ..., v_m\}$

Output: the least number of coins with denominations in $D$ whose values sum up exactly to $n$.

A mathematical formulation of the problem

Input: positive integer $n$, and set of positive integers $D = \{v_1, ..., v_m\}$

Output: a set of positive integers $X = \{x_1, ..., x_m\}$ such that $\sum_{i=1}^{m} x_i v_i = n$ to minimize $(\sum_{i=1}^{m} x_i)$
Coin change problem

**INPUT:** money of value \( n \), currency coin denominations \( \mathbb{D} = \{v_1, \ldots, v_m\} \)
Chapter 16. Greedy Algorithms

Coin change problem

**Input:** money of value $n$, currency coin denominations $D = \{v_1, \ldots, v_m\}$

**Output:** the least number of coins with denominations in $D$ whose values sum up exactly to $n$. 
Chapter 16. Greedy Algorithms

Coin change problem

**Input:** money of value $n$, currency coin denominations $D = \{v_1, \ldots, v_m\}$

**Output:** the least number of coins with denominations in $D$ whose values sum up exactly to $n$.

A mathematical formulation of the problem

**Input:** positive integer $n$, and set of positive integers $D = \{v_1, \ldots, v_m\}$
Coin change problem

**INPUT:** money of value \( n \), currency coin denominations \( D = \{v_1, \ldots, v_m\} \)
**OUTPUT:** the least number of coins with denominations in \( D \) whose values sum up exactly to \( n \).

A mathematical formulation of the problem

**INPUT:** positive integer \( n \), and set of positive integers \( D = \{v_1, \ldots, v_m\} \)
**OUTPUT:** a set of positive integers \( X = \{x_1, \ldots, x_m\} \) such that
Coin change problem

**INPUT:** money of value $n$, currency coin denominations $D = \{v_1, \ldots, v_m\}$

**OUTPUT:** the least number of coins with denominations in $D$ whose values sum up exactly to $n$.

A mathematical formulation of the problem

**INPUT:** positive integer $n$, and set of positive integers $D = \{v_1, \ldots, v_m\}$

**OUTPUT:** a set of positive integers $X = \{x_1, \ldots, x_m\}$ such that

$$\sum_{i=1}^{m} x_i v_i = n \quad \text{to minimize} \quad \left(\sum_{i=1}^{m} x_i\right)$$
Chapter 16. Greedy Algorithms

A dynamic programming solution
A dynamic programming solution

analysis:
- for any value $k$, one coin of the $m$ denominations has to be used.
Chapter 16. Greedy Algorithms

A dynamic programming solution

**Analysis:**
- for any value $k$, one coin of the $m$ denominations has to be used.
- then for the left value, one coin of the $m$ denominations has to be used
A dynamic programming solution

analysis:
  • for any value $k$, one coin of the $m$ denominations has to be used.
  • then for the left value, one coin of the $m$ denominations has to be used
  • ...
Chapter 16. Greedy Algorithms

A dynamic programming solution

**analysis:**
- for any value $k$, one coin of the $m$ denominations has to be used.
- then for the left value, one coin of the $m$ denominations has to be used
- ... 

**define** objective function:
- $c(k)$ to be the least number of coins to change value $k$. Then

...
Chapter 16. Greedy Algorithms

A dynamic programming solution

**analysis:**
- for any value \( k \), one coin of the \( m \) denominations has to be used.
- then for the left value, one coin of the \( m \) denominations has to be used
- ...  

**define** objective function:
- \( c(k) \) to be the least number of coins to change value \( k \). Then

\[
c(k) = \min \left\{ \begin{array}{l}
c(k - v_1) + 1 \quad \text{if } k \geq v_1 \\
c(k - v_2) + 1 \quad \text{if } k \geq v_2 \\
\vdots \\
c(k - v_m) + 1 \quad \text{if } k \geq v_m
\end{array} \right\}
\]
A dynamic programming solution

**analysis:**
- for any value \( k \), one coin of the \( m \) denominations has to be used.
- then for the left value, one coin of the \( m \) denominations has to be used
- ...

**define** objective function:
- \( c(k) \) to be the least number of coins to change value \( k \). Then

\[
  c(k) = \min \begin{cases} 
    c(k - v_1) + 1 & k \geq v_1 \\
  \end{cases} 
\]
Chapter 16. Greedy Algorithms

A dynamic programming solution

**analysis:**
- for any value $k$, one coin of the $m$ denominations has to be used.
- then for the left value, one coin of the $m$ denominations has to be used
- ...

**define** objective function:
- $c(k)$ to be the least number of coins to change value $k$. Then

$$c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2
\end{cases}$$
Chapter 16. Greedy Algorithms

A dynamic programming solution

**analysis:**

- for any value \( k \), one coin of the \( m \) denominations has to be used.
- then for the left value, one coin of the \( m \) denominations has to be used
- ...

**define** objective function:

- \( c(k) \) to be the least number of coins to change value \( k \). Then

\[
c(k) = \min \left\{ \begin{array}{ll}
c(k - v_1) + 1 & k \geq v_1 \\
c(k - v_2) + 1 & k \geq v_2 \\
\ldots
\end{array} \right.
\]
A dynamic programming solution

**analysis:**
- for any value $k$, one coin of the $m$ denominations has to be used.
- then for the left value, one coin of the $m$ denominations has to be used
- ...

**define** objective function:
- $c(k)$ to be the least number of coins to change value $k$. Then

$$c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \ldots \\
  c(k - v_m) + 1 & k \geq v_m 
\end{cases}$$

base case: $c(v_1) = 1$, \ldots, $c(v_m) = 1$. 
Chapter 16. Greedy Algorithms

A dynamic programming solution

**analysis:**
- for any value $k$, one coin of the $m$ denominations has to be used.
- then for the left value, one coin of the $m$ denominations has to be used
-...

**define** objective function:
- $c(k)$ to be the least number of coins to change value $k$. Then

$$c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \vdots \\
  c(k - v_m) + 1 & k \geq v_m 
\end{cases}$$
Chapter 16. Greedy Algorithms

A dynamic programming solution

analysis:
- for any value $k$, one coin of the $m$ denominations has to be used.
- then for the left value, one coin of the $m$ denominations has to be used
- ...

define objective function:
- $c(k)$ to be the least number of coins to change value $k$. Then

$$
c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \vdots \\
  c(k - v_m) + 1 & k \geq v_m 
\end{cases}
$$

- base case: $c(v_1) = 1$, 

Chapter 16. Greedy Algorithms

A dynamic programming solution

analysis:
• for any value $k$, one coin of the $m$ denominations has to be used.
• then for the left value, one coin of the $m$ denominations has to be used
• ...

define objective function:
• $c(k)$ to be the least number of coins to change value $k$. Then

$$c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \ldots \\
  c(k - v_m) + 1 & k \geq v_m
\end{cases}$$

• base case: $c(v_1) = 1$, \ldots, $c(v_m) = 1$. 
Chapter 16. Greedy Algorithms

A greedy algorithm

Theorem: For the US coin denominations $D_{us} = \{1, 5, 10, 25\}$, the Coin Change problem has the greedy-choice property.

• always use the coin of the largest possible value.

but not all coin denominations have such property, e.g., $\{1, 3, 4, 10\}$, for $n = 6$. 
Chapter 16. Greedy Algorithms

A greedy algorithm

\[ c(k) = \min \left\{ \begin{array}{ll}
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \vdots & \\
  c(k - v_m) + 1 & k \geq v_m \\
\end{array} \right\} \]

Theorem: For the US coin denominations \( D_{us} = \{1, 5, 10, 25\} \), the Coin Change problem has the greedy-choice property.

- always use the coin of the largest possible value.

but not all coin denominations have such property, e.g., \( \{1, 3, 4, 10\} \), for \( n = 6 \).
A greedy algorithm

\[
c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \vdots \\
  c(k - v_m) + 1 & k \geq v_m 
\end{cases}
\]

only need to consider one of the denominations

**Theorem:** For the US coin denominations \(D_{us} = \{1, 5, 10, 25\}\), the Coin Change problem has the greedy-choice property.
Chapter 16. Greedy Algorithms

A greedy algorithm

\[
c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \vdots \\
  c(k - v_m) + 1 & k \geq v_m 
\end{cases}
\]

**Theorem**: For the US coin denominations \( D_{us} = \{1, 5, 10, 25\} \), the Coin Change problem has the greedy-choice property.

- always use the coin of the largest possible value.
Chapter 16. Greedy Algorithms

A greedy algorithm

\[
c(k) = \min \left\{ \begin{array}{ll}
c(k-v_1) + 1 & k \geq v_1 \\
c(k-v_2) + 1 & k \geq v_2 \\
\vdots & \\
c(k-v_m) + 1 & k \geq v_m
\end{array} \right.
\]

**Theorem:** For the US coin denominations \( D_{us} = \{1, 5, 10, 25\} \), the Coin Change problem has the greedy-choice property.

- always use the coin of the largest possible value.

but not all coin denominations have such property,
Chapter 16. Greedy Algorithms

A greedy algorithm

\[
c(k) = \min \begin{cases} 
  c(k - v_1) + 1 & k \geq v_1 \\
  c(k - v_2) + 1 & k \geq v_2 \\
  \ldots \\
  c(k - v_m) + 1 & k \geq v_m 
\end{cases}
\]

Theorem: For the US coin denominations \( D_{us} = \{1, 5, 10, 25\} \), the Coin Change problem has the greedy-choice property.

- always use the coin of the largest possible value.

but not all coin denominations have such property, e.g., \( \{1, 3, 4, 10\} \), for \( n = 6 \).
Chapter 16. Greedy Algorithms

Proof: Assume $A$ is the optimal solution for $n$. 

• I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

• II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.

   (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

   (2) there is one five-cent coin and some one-cent coins in $A$, let $B = A - \{1, 1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;

   (3) there is at least two five-cent coins in $A$, so $B = A - \{5, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;
Proof: Assume $A$ is the optimal solution for $n$. Consider various cases
Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins.
Chapter 16. Greedy Algorithms

**Proof:** Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$. 

II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.

   1. all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

   2. there is one five-cent coin and some one-cent coins in $A$, let $B = A - \{1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible.

   So $10 \in A$;

   3. there is at least two five-cent coins in $A$, so $B = A - \{5, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;
Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

- II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.
Proof: Assume \( A \) is the optimal solution for \( n \). Consider various cases

- I. For \( 5 \leq n < 10 \), assume \( 5 \notin A \), but all coins in \( A \) have to be one-cent coins. Let \( B = A - \{1, 1, 1, 1, 1\} \cup \{5\} \). \( |B| < |A| \), which is impossible. So \( 5 \in A \).

- II. For \( 10 \leq n < 25 \), assume \( 10 \notin A \), but all coins in \( A \) are either five-cent or one-cent coins.
  
  (1) all coins in \( A \) are one-cent coins, let \( B = A - \{1, 1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}, \)
Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

• I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

• II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.

  (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;
Chapter 16. Greedy Algorithms

Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins.
  Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

- II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.
  
  (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

  (2) there is one five-cent coin and some one-cent coins in $A$,
Chapter 16. Greedy Algorithms

Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

• I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

• II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.
   
   (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

   (2) there is one five-cent coin and some one-cent coins in $A$, let $B = A - \{1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible.
Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins.
  Let $B = A - \{1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

- II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.
  (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

  (2) there is one five-cent coin and some one-cent coins in $A$,
  let $B = A - \{1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;
**Proof:** Assume $A$ is the optimal solution for $n$. Consider various cases

- **I.** For $5 \leq n < 10$, **assume $5 \notin A$,** but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

- **II.** For $10 \leq n < 25$, **assume $10 \notin A$,** but all coins in $A$ are either five-cent or one-cent coins.

  1. all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

  2. there is one five-cent coin and some one-cent coins in $A$, let $B = A - \{1, 1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;

  3. there is at least two five-cent coins in $A$, so $B = A - \{5, 5\} \cup \{10\}$,
Chapter 16. Greedy Algorithms

Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

- II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.

  (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

  (2) there is one five-cent coin and some one-cent coins in $A$, let $B = A - \{1, 1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;

  (3) there is at least two five-cent coins in $A$, so $B = A - \{5, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;
Chapter 16. Greedy Algorithms

Proof: Assume $A$ is the optimal solution for $n$. Consider various cases

- I. For $5 \leq n < 10$, assume $5 \notin A$, but all coins in $A$ have to be one-cent coins. Let $B = A - \{1, 1, 1, 1, 1\} \cup \{5\}$. $|B| < |A|$, which is impossible. So $5 \in A$.

- II. For $10 \leq n < 25$, assume $10 \notin A$, but all coins in $A$ are either five-cent or one-cent coins.

  (1) all coins in $A$ are one-cent coins, let $B = A - \{1, 1, 1, 1, 1, 1, 1, 1\} \cup \{10\}$, then $|B| < |A|$, which is impossible. So $10 \in A$;

  (2) there is one five-cent coin and some one-cent coins in $A$, let $B = A - \{1, 1, 1, 1, 1, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;

  (3) there is at least two five-cent coins in $A$, so $B = A - \{5, 5\} \cup \{10\}$, $|B| < |A|$, which is impossible. So $10 \in A$;
III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.
III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.
III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins,
• III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . .
III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$
Chapter 16. Greedy Algorithms

• III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, ... So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$
So $|B| < |A|$, which is impossible. So $25 \in A$;
III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$ So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$. 
Chapter 16. Greedy Algorithms

• III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

  (1) all coins in $A$ are one cent coins, ... So $25 \in A$;

  (2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$
  So $|B| < |A|$, which is impossible. So $25 \in A$;

  (3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.
    • If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2),
Chapter 16. Greedy Algorithms

• III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$ So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.
• If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then $25$ is in the solution for $m$, thus $25 \in A$. 
Chapter 16. Greedy Algorithms

- III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

  (1) all coins in $A$ are one cent coins, ... So $25 \in A$;

  (2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$
  So $|B| < |A|$, which is impossible. So $25 \in A$;

  (3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.
  - If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then $25$ is in the solution for $m$, thus $25 \in A$.

  - If $10 \leq m < 25$, according to II, 10 is in the solution for $m$.
    So we conclude that there are at least two ten-cent coins are in $A$. 
Chapter 16. Greedy Algorithms

• III. For \( 25 \leq n \), assume \( 25 \notin A \), but all coins in \( A \) are either ten-cents, five-cents or one-cent.

  (1) all coins in \( A \) are one cent coins, \ldots So \( 25 \in A \);
  (2) there are some five-cent and one-cent coins in \( A \). \( B = A - C \cup \{25\} \), where \( C \) contains five-cent and one-cent coins making up to 25 cents, \(|C| > 1\)
  So \(|B| < |A|\), which is impossible. So \( 25 \in A \);
  (3) there is at least one ten-cent coin in \( A \). Let \( m = n - 10 \).
    • If \( 25 \leq m \), the solution for \( m \) has to be either case III.(1) or III.(2), then \( 25 \) is in the solution for \( m \), thus \( 25 \in A \).
    • If \( 10 \leq m < 25 \), according to II, 10 is in the solution for \( m \). So we conclude that there are at least two ten-cent coins are in \( A \). Now we assume \( k = n - 2 \times 10 \).
Chapter 16. Greedy Algorithms

- III. For \( 25 \leq n \), assume \( 25 \notin A \), but all coins in \( A \) are either ten-cents, five-cents or one-cent.

  (1) all coins in \( A \) are one cent coins, \ldots \text{ So } 25 \in A; \\
  (2) there are some five-cent and one-cent coins in \( A \). \( B = A - C \cup \{25\} \), where \( C \) contains five-cent and one-cent coins making up to 25 cents, \( |C| > 1 \) \\
  So \( |B| < |A| \), which is impossible. \text{ So } 25 \in A; \\
  (3) there is at least one ten-cent coin in \( A \). Let \( m = n - 10 \).
  - If \( 25 \leq m \), the solution for \( m \) has to be either case III.(1) or III.(2), \\
    then 25 is in the solution for \( m \), thus \( 25 \in A \).
  - If \( 10 \leq m < 25 \), according to II, 10 is in the solution for \( m \). \\
    So we conclude that there are at least two ten-cent coins are in \( A \). \\
    Now we assume \( k = n - 2 \times 10 \).
    
    If \( 10 \leq k < 25 \), according to II, 10 is in the solution for \( k \),
III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$ So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.

- If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then $25$ is in the solution for $m$, thus $25 \in A$.

- If $10 \leq m < 25$, according to II, $10$ is in the solution for $m$. So we conclude that there are at least two ten-cent coins are in $A$.

Now we assume $k = n - 2 \times 10$.

If $10 \leq k < 25$, according to II, $10$ is in the solution for $k$, then $\{10, 10, 10\} \subseteq A$, \
Chapter 16. Greedy Algorithms

- III. For $25 \leq n$, assume $25 \notin A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, ... So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$ So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.
   - If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then 25 is in the solution for $m$, thus $25 \in A$.

   - If $10 \leq m < 25$, according to II, 10 is in the solution for $m$. So we conclude that there are at least two ten-cent coins are in $A$. Now we assume $k = n - 2 \times 10$.

   If $10 \leq k < 25$, according to II, 10 is in the solution for $k$, then $\{10, 10, 10\} \subseteq A$, let $B = A - \{10, 10, 10\} \cup \{25, 5\}$,
Chapter 16. Greedy Algorithms

III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$
So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.
- If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then $25$ is in the solution for $m$, thus $25 \in A$.

- If $10 \leq m < 25$, according to II, 10 is in the solution for $m$.
So we conclude that there are at least two ten-cent coins are in $A$.
Now we assume $k = n - 2 \times 10$.

If $10 \leq k < 25$, according to II, 10 is in the solution for $k$,
then $\{10,10,10\} \subseteq A$, let $B = A - \{10,10,10\} \cup \{25,5\}$,
$|B| < |A|$, which is impossible. So $25 \in A$;
Chapter 16. Greedy Algorithms

- **III.** For \(25 \leq n\), assume \(25 \notin A\), but all coins in \(A\) are either ten-cents, five-cents or one-cent.

  1. all coins in \(A\) are one cent coins, \ldots So \(25 \in A\);

  2. there are some five-cent and one-cent coins in \(A\). \(B = A - C \cup \{25\}\), where \(C\) contains five-cent and one-cent coins making up to 25 cents, \(|C| > 1\). So \(|B| < |A|\), which is impossible. So \(25 \in A\);

  3. there is at least one ten-cent coin in \(A\). Let \(m = n - 10\).
    - If \(25 \leq m\), the solution for \(m\) has to be either case III.(1) or III.(2), then \(25\) is in the solution for \(m\), thus \(25 \in A\).
    - If \(10 \leq m < 25\), according to II, \(10\) is in the solution for \(m\). So we conclude that there are at least two ten-cent coins are in \(A\).
      
      Now we assume \(k = n - 2 \times 10\).

      If \(10 \leq k < 25\), according to II, \(10\) is in the solution for \(k\), then \(\{10, 10, 10\} \subseteq A\), let \(B = A - \{10, 10, 10\} \cup \{25, 5\}\), \(|B| < |A|\), which is impossible. So \(25 \in A\);

      Otherwise, \(5 \geq k < 10\), according to I, \(5\) is in the solution for \(k\).
Chapter 16. Greedy Algorithms

• III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$

So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.

• If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then $25$ is in the solution for $m$, thus $25 \in A$.

• If $10 \leq m < 25$, according to II, 10 is in the solution for $m$.

So we conclude that there are at least two ten-cent coins are in $A$. Now we assume $k = n - 2 \times 10$.

If $10 \leq k < 25$, according to II, 10 is in the solution for $k$, then $\{10, 10, 10\} \subseteq A$, let $B = A - \{10, 10, 10\} \cup \{25, 5\}$, $|B| < |A|$, which is impossible. So $25 \in A$;

Otherwise, $5 \geq k < 10$, according to I, 5 is in the solution for $k$.
then $\{10, 10, 5\} \subseteq A$. Let $B = A - \{10, 10, 5\} \cup \{25\}$
III. For $25 \leq n$, assume $25 \not\in A$, but all coins in $A$ are either ten-cents, five-cents or one-cent.

(1) all coins in $A$ are one cent coins, . . . So $25 \in A$;

(2) there are some five-cent and one-cent coins in $A$. $B = A - C \cup \{25\}$, where $C$ contains five-cent and one-cent coins making up to 25 cents, $|C| > 1$
So $|B| < |A|$, which is impossible. So $25 \in A$;

(3) there is at least one ten-cent coin in $A$. Let $m = n - 10$.
   • If $25 \leq m$, the solution for $m$ has to be either case III.(1) or III.(2), then $25$ is in the solution for $m$, thus $25 \in A$.
   • If $10 \leq m < 25$, according to II, $10$ is in the solution for $m$. So we conclude that there are at least two ten-cent coins are in $A$.

Now we assume $k = n - 2 \times 10$.

If $10 \leq k < 25$, according to II, $10$ is in the solution for $k$, then $\{10, 10, 10\} \subseteq A$, let $B = A - \{10, 10, 10\} \cup \{25, 5\}$, $|B| < |A|$, which is impossible. So $25 \in A$;

Otherwise, $5 \geq k < 10$, according to I, $5$ is in the solution for $k$. then $\{10, 10, 5\} \subseteq A$. Let $B = A - \{10, 10, 5\} \cup \{25\}$ $|B| < |A|$, which is impossible. So $25 \in A$. 
Review for Parts I, II, and III

Summaries for Parts I, II, and III
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

• time/space complexity functions
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size

- asymptotic notations
  - big-O
  - big-Omega

- recurrences for complexities of recursive algorithms
- recurrence proof methods:
  - recursive tree (unfolding)
  - substitution (induction)
Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

• time/space complexity functions
  input size
  upper bound
  lower bound
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
  - lower bound

- asymptotic notations
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

• time/space complexity functions
  input size
  upper bound
  lower bound

• asymptotic notations
  big-$O$
Review for Parts I, II, and III

Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

• time/space complexity functions
  input size
  upper bound
  lower bound

• asymptotic notations
  big-$O$
  big-$\Omega$
Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
  - lower bound

- asymptotic notations
  - big-$O$
  - big-$\Omega$
Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
  - lower bound

- asymptotic notations
  - big-$O$
  - big-$\Omega$

- recurrences for complexities of recursive algorithms
Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
  - lower bound
- asymptotic notations
  - big-$O$
  - big-$\Omega$
- recurrences for complexities of recursive algorithms
- recurrence proof methods:
Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
  - lower bound
- asymptotic notations
  - big-$O$
  - big-$Ω$
- recurrences for complexities of recursive algorithms
- recurrence proof methods:
  - recursive tree (unfolding)
Summaries for Parts I, II, and III

Part I: Fundamentals of Analysis of algorithms

- time/space complexity functions
  - input size
  - upper bound
  - lower bound

- asymptotic notations
  - big-$O$
  - big-$\Omega$

- recurrences for complexities of recursive algorithms

- recurrence proof methods:
  - recursive tree (unfolding)
  - substitution (induction)
Review for Parts I, II, and III

Part II: Sorting and order statistics
Review for Parts I, II, and III

Part II: Sorting and order statistics

• sorting algorithms: heap, insertion, merge, quick
Review for Parts I, II, and III

Part II: Sorting and order statistics

- sorting algorithms: heap, insertion, merge, quick
  their worst case time complexities (upper and lower bound)
Part II: Sorting and order statistics

- sorting algorithms: heap, insertion, merge, quick
  their worst case time complexities (upper and lower bound)
- randomize sorting algorithms
Review for Parts I, II, and III

Part II: Sorting and order statistics

- sorting algorithms: heap, insertion, merge, quick
  their worst case time complexities (upper and lower bound)
- randomize sorting algorithms
  quick sort, expected time complexity
Part II: Sorting and order statistics

- sorting algorithms: heap, insertion, merge, quick
  their worst case time complexities (upper and lower bound)
- randomize sorting algorithms
  quick sort, expected time complexity
- lower bound for sorting (comparison-based model)
Part II: Sorting and order statistics

- sorting algorithms: heap, insertion, merge, quick
  their worst case time complexities (upper and lower bound)
- randomize sorting algorithms
  quick sort, expected time complexity
- lower bound for sorting (comparison-based model)
- linear time sorting algorithms
Part II: Sorting and order statistics

- sorting algorithms: heap, insertion, merge, quick
  their worst case time complexities (upper and lower bound)
- randomize sorting algorithms
  quick sort, expected time complexity
- lower bound for sorting (comparison-based model)
- linear time sorting algorithms
- linear time to find $k$th smallest element
Review for Parts I, II, and III

Part III. Exhaustive search, DP and greedy algorithms

- Exhaustive search by simple enumeration of all possible solutions

- Dynamic programming:
  - Recursive solution (with optimal substructure)
  - Recurrence for numerical objective function
  - Iterative, bottom-up table-filling
  - Traceback of solution

- Greedy algorithm:
  - DP solution
  - Proof of greedy-choice property (via swapping method)
  - Efficient algorithms
Review for Parts I, II, and III

Part III. Exhaustive search, DP and greedy algorithms

• exhaustive search by

\[ T(n) = T(n-1) + T(n-1 - m), \quad m \geq 1. \]
Review for Parts I, II, and III

Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.

- greedy algorithm
  DP solution
  proof of greedy-choice property (via swapping method)
  efficient algorithms
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  - simple enumeration of all possible solutions
  - search tree method

- dynamic programming
  - recursive solution (with optimal substructure)
  - recurrence for numerical objective function
  - iterative, bottom-up table-filling
  - traceback of solution. 'forward DP', 'backward DP', and 'inside-out DP'

- greedy algorithm
  - DP solution
  - proof of greedy-choice property (via swapping method)
  - efficient algorithms
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), m \geq 1$. 

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.

- greedy algorithm
  DP solution
  proof of greedy-choice property (via swapping method)
  efficient algorithms
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m)$, $m \geq 1$. 
Part III. Exhaustive search, DP and greedy algorithms

- Exhaustive search by simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), \ m \geq 1$.

- Dynamic programming

  - Recursive solution (with optimal substructure)
  - Recurrence for numerical objective function
  - Iterative, bottom-up table-filling
  - Traceback of solution
    - 'forward DP', 'backward DP', and 'inside-out DP'

- Greedy algorithm
  - DP solution
  - Proof of greedy-choice property (via swapping method)
  - Efficient algorithms
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), m \geq 1$.

- dynamic programming
  recursive solution (with optimal substructure)
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), m \geq 1$.

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function

- greedy algorithm
  DP solution
  proof of greedy-choice property (via swapping method)
  efficient algorithms
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), m \geq 1$.

- dynamic programming recursive solution (with optimal substructure) recurrence for numerical objective function iterative, bottom-up table-filling
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  - simple enumeration of all possible solutions
  - search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), \ m \geq 1$.  

- dynamic programming
  - recursive solution (with optimal substructure)
  - recurrence for numerical objective function
  - iterative, bottom-up table-filling
  - traceback of solution.
Part III. Exhaustive search, DP and greedy algorithms

- Exhaustive search by simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n-1) + T(n-1-m), m \geq 1$.

- Dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.

  ‘forward DP’, ‘backward DP’, and ‘inside-out DP’
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), \ m \geq 1$.

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.
  ‘forward DP’, ’backward DP’, and ’inside-out DP’

- greedy algorithm
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m), m \geq 1$.

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.

  ‘forward DP’, ’backward DP’, and ’inside-out DP’

- greedy algorithm
  DP solution
Review for Parts I, II, and III

Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in $T(n) = T(n - 1) + T(n - 1 - m)$, $m \geq 1$.

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.

  ‘forward DP’, ‘backward DP’, and ‘inside-out DP’

- greedy algorithm
  DP solution
  proof of greedy-choice property (via swapping method)
Part III. Exhaustive search, DP and greedy algorithms

- exhaustive search by
  simple enumeration of all possible solutions
  search tree method resulting in \( T(n) = T(n - 1) + T(n - 1 - m), \ m \geq 1 \).

- dynamic programming
  recursive solution (with optimal substructure)
  recurrence for numerical objective function
  iterative, bottom-up table-filling
  traceback of solution.

  ‘forward DP’, ’backward DP’, and ’inside-out DP’

- greedy algorithm
  DP solution
  proof of greedy-choice property (via swapping method)
  efficient algorithms