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PREFACE

Philosophy is written in this grand book of the universe, which stands
continually open to our gaze.... It is written in the language of math-
ematics.

Galileo Galilei

One of the foundations of the mathematical method is that knowledge
leads to more knowledge.

Michael Meyerson

Roughly speaking: Mathematics can be concerned as the essentially scientific
part of any thoery. When investigating a ”real world problem” we make a lot
of assumptions. The logical combination of these assumptions yields hints to
the solution of the problem. Mathematics gives the possibility to order and to
verify scientific facts.

Discrete Mathematics devoted to the study of discrete objects, these are

a finite or countable set of distinct and unconnected elements; which are

separated and discontiuous.

Discrete mathematics is used whenever objects are counted, when relationships
between finite or countable sets are studied, and when processes involving a
finite number of steps are analyzed.

Branches of discrete mathematics are

ix
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Combinatorics
which is the ”Art of Counting”.
Many of the problems can be phrased in the form ”How many ways...?”,
”Does there exist an object such that...?” or ”Can we construct... ?”

Discrete probability and information theory
Probability is the branch of mathematics that deals with possible outcomes
of events and their relative likelihoods.
Information theory is concerned with discovering the laws of governing
systems designed to communicate or manipulate information.

Graph Theory
which deals with binary relations.

Discrete Optimization
A general optimization problem is for a given configuration is to find an
object, fulfilling some predetermined requirements and minimizes a given
objective function.

More and more discrete structures are used in genetics, biochemistry, evolution,
agriculture, experimental design and other parts of modern biology. Here, the
results are very powerful and the research frontier are perhaps more accessible
than in some more traditional areas of applied mathematics.
This book has been written for students reading biology, biochemistry or similar
subjects. The aim in this under-graduate-level text is to outline the key mathe-
matical concepts that underpin the important questions in discrete mathemat-
ics. In any case we will give examples for modelling structures and processes
of biology with help of such objects.
This book originates from lectures and seminars given by the author at both
Greifswald University and University of Science, Hanoi.
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1
BASICS

Set theory, founded by Cantor in the second half of the 19th century, has pro-
foundly transformed mathematics. It is the foundation of modern mathematics.

1.1 SETS

A set is a collection of distinct objects. In contrast to a sequence of objects, a
set is unordered. Usually, but not exclusive, we refer to the objects in a set as
the elements. These elements may be sets themselves.
A set S′ is a subset of a set S, written S′ ⊆ S, if every element of S′ is also an
element of S. A proper subset is a subset with fewer elements than the whole
set. Two sets S and S′ are equal if they contain the same elements. In other
words

S = S′ if and only if S ⊆ S′ and S′ ⊆ S, (1.1)

which gives a method for proving the equality of sets.
Two sets with no common elements are called disjoint.

There are two specific sets: the empty set ∅ containing no elements, and the
universe U of all objects currently under consideration, or more philosophically,
the part of the world under discussion1.

We now introduce the following operations for sets.
1The universe of discourse.

1
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The union of sets:

S ∪ S′ = {x ∈ U : x ∈ S or x ∈ S′}. (1.2)

The intersection of sets:

S ∩ S′ = {x ∈ U : x ∈ S and x ∈ S′}. (1.3)

The set-difference of sets:

S \ S′ = {x ∈ U : x ∈ S but not x ∈ S′}. (1.4)

The symmetric difference of sets:

S�S′ = (S ∪ S′) \ (S ∩ S′) (1.5)
= (S \ S′) ∪ (S′ \ S). (1.6)

The complement of a set:

Sc = {x ∈ U : x �∈ S}. (1.7)

A split of the set S is a set {A, B} of two nonempty subsets of S such that

(a) A�B = S, or equivalently

(b) A ∪ B = S and A ∩ B = ∅.

The following table shows the effect of the symmetric difference for a split
{A, B} of S.

∅ A B S

∅ ∅ A B S
A A ∅ S B
B B S ∅ A
S S B A ∅

Observation 1.1.1 Let R, S, T ⊆ U . Then the following properties hold.

(a) The associative laws:

(R ∪ S) ∪ T = R ∪ (S ∪ T ), (1.8)
(R ∩ S) ∩ T = R ∩ (S ∩ T ). (1.9)
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(b) The commutative laws:

R ∪ S = S ∪ R, (1.10)
R ∩ S = S ∩ R. (1.11)

(c) The distributive laws:

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ), (1.12)
R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ). (1.13)

(d) The empty set is the neutral element for the union:

S ∪ ∅ = ∅ ∪ S = S. (1.14)

(e) The universe is the neutral element for the intersection:

S ∩ U = U ∩ S = S. (1.15)

(f) The double-complement law:

(Sc)c = S. (1.16)

It can be easily verified that these properties are almost direct consequences of
the definitions of the set operations. A more difficult property is given in the
next theorem.

Theorem 1.1.2 (De Morgan’s law) Let R and S be subsets of a universe U .
Then

(R ∪ S)c = Rc ∩ Sc, (1.17)
(R ∩ S)c = Rc ∪ Sc. (1.18)

Proof. Consider an element x ∈ (R ∪ S)c. Then x �∈ R ∪ S, and hence x �∈ R
and x �∈ S. This implies x ∈ Rc and x ∈ Sc. Thus x ∈ Rc ∩ Sc which means

(R ∪ S)c ⊆ Rc ∩ Sc.

Similarly it can be shown that

(R ∪ S)c ⊇ Rc ∩ Sc,

whence equality holds.
The proof of the second formula can be carried out similarly.
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�

In general, one cannot list the elements of a, in particular infinite, set. Nor it
is practical to list the elements of a very large finite set. To determine a set
of either kind we specify a property P shared by all of its elements and not
belonging to any element not in the set:

S = {x ∈ U : x satisfies P}. (1.19)

The logical universe of discourse defines the set by all objects which posses an
attribute.

1.2 THE NUMBER OF OBJECTS IN A SET

With |S| we denote the number of elements of the set S. We can count the
elements of S by finding a bijection (a one-to-one correspondence) between S
and {1, . . . , n}.2

Observation 1.2.1 Let R and S be sets in a universe U .

(a) |Sc| = |U | − |S|.
(b) |R \ S| = |R| − |R ∩ S|.
(c) |R ∪ S| = |R| + |S| − |R ∩ S|.
(d) |R�S| = |R ∪ S| − |R ∩ S| = |R| + |S| − 2|R ∩ S|.

Consider the power set of a set:

P(S) = {S′ : S′ ⊆ S}. (1.20)

Each subset S′ of a set S = {x1, . . . , xn} can be uniquely described by a 0/1-
sequence b1, . . . , bn of length n:

bi =
{

1 : xi ∈ S′

0 : otherwise

Obviously, there are 2n such sequences. Hence, the power set contains more
elements than the set itself:

2Here we assume that S is a finite set; later we will discuss the counting of infinite sets.
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Observation 1.2.2
|P(S)| = 2|S|. (1.21)

Moreover, our consideration gives us a way to enumerate methodically the sub-
sets, beginning with the empty set ∅, and then adding each successive element
of S to a copy of each of all the previously listed subsets. Let us start with the
following way of encoding subsets, illustrating it on the subsets of S = {a, b, c}.
We look at the elements one by one, and write down a ”1” if the element oc-
curs in the subset and ”0” if it does not. Thus each subset corresponds with a
binary sequence of length 3. Moreover, such sequences remind us of the binary
representation of integers.

subset binary seqence integer

∅ 000 0
{c} 001 1
{b} 010 2
{b, c} 011 3
{a} 100 4
{a, c} 101 5
{a, b} 110 6

S = {a, b, c} 111 7

We see that the subsets correspond to the numbers 0,. . .,7. What happens if we
consider subsets of a set with n elements? We have binary sequences of length
n and use the numbers 0, 1, . . . , 2n − 1.

1.3 ORDERED PAIRS, RELATIONS,
CORRESPONDENCES

A list with two elements is normally called an ordered pair. If the first element
of the pair is a and the second element is b, we write (a, b). The characteristic
properties of pairs is that (a, b) = (a′, b′) if and only if a = a′ and b = b′.
A list of n objects is called an n-tupel, written (a1, a2, . . . , an). The cross-
product of n sets S1, . . . , Sn is the set of all n-tupels

S1 × · · · × Sn = {(a1, . . . , an) : ai ∈ Si, i = 1, . . . , n}. (1.22)
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Briefly we write
Sn = S × · · · × S︸ ︷︷ ︸

n−times

. (1.23)

It will be helpful to understand an n-tupel (a1, a2, . . . , an) equivalently as an
consecutive written form of the objects: a1a2 . . . an, called a word, a (finite)
sequence or a string.

1.3.1 Words

Molecular data comes in the form of

DNA sequences, which are molecules containing information. This infor-
mation is stored in the sequence of nucleotides from an alphabet of four
letters; or

Proteins, which are the operational molecules, composed of sequences of
amino acids from an alphabet of 20 letters; or

RNA sequences, which stand between both and are composed of nucleotides
from an alphabet of four letters.

The relationship between DNA, RNA and protein as described by the Central
Dogma of Molecular Biology can be summed up as follows:

Integral form: DNA makes RNA makes protein.

Differential form: Changed DNA can make changed protein.

An alphabet A is a nonempty and finite set of distinguished letters (or symbols).
If A contains exactly one letter, all further discussed concepts and problems
are senseless or trivial, respectively. Hence, we assume that A contains at least
two elements. If A contains exactly two letters it is called a binary alphabet.
Important examples of alphabets are:

(a) A = {0, 1} is an alphabet which plays a central role in coding theory.
Moreover, we consider a word of 0’s and 1’s as a description of some
individual, perhaps a genetic sequence in which each entry may take on
one of two possible values.
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(b) A = {a, c, g, t} is the alphabet which codes the nucleotides of a DNA
molecule, where a stands for adenine, c for cytosine, g for guanine and t
for thymine. A similar alphabet, namely A = {a, c, g, u} is used for the
nucleotides of RNA, where u codes for uracil.
Derived from this alphabet there is a binary alphabet A′ = {r, y} in which
r codes for a purine (a or g), and y codes for a pyrimidine (c or t).

(c) The amino acids commonly found in proteins are coded by the alphabet
A = {ala, arg, . . . , val}, where the letters abbreviat the amino acids ala-
nine, arginine,...,valine. In the usual genetic code |A| = 20 amino acids
are coded, namely

One-letter code Three-letter code Name

1 A ala alanine
2 C cys cysteine
3 D asp aspartic acid
4 E glu glutamatic acid
5 F phe phenylalanine
6 G gly glycine
7 H his histidine
8 I ile isoleucine
9 K lys lysine
10 L leu leucine
11 M met methionine
12 N asn asparagine
13 P pro proline
14 Q gln glutamine
15 R arg arginine
16 S ser serine
17 T thr threonine
18 V val valine
19 W trp tryptophan
20 Y tyr tyrosine

(d) The English language needs 26 letters: A,B,...,Y,Z, and a letter for the
empty space. German needs several letters more: Ä, Ö, Ü, ß.

A word over an alphabet A is a finite sequence of letters from A. The length
|w| of the word w is the number of letters composing it. We additionally define
an empty word λ of length 0.
Note that the description of a word contains a left-to-right order of the letters.
We will write w = a1a2 . . . an for a word w consisting of the letters a1, a2, . . .
an in this order. The letter ai in the word is called the ith position.
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We say that two words w = a1a2 . . . an and w′ = b1b2 . . . bm over the same
alphabet are equal, and we write w = w′, if n = m and ai = bi for all i =
1, . . . , n.

Let w = a1a2 . . . an and w′ = b1b2 . . . bm be two words over the same alphabet
A. The concatenation of w and w′, written ww′, is the word a1a2 . . . anb1b2 . . . bm

over A. Hence, |ww′| = |w| + |w′|. Moreover, we will write wk = w . . . w︸ ︷︷ ︸
k−times

and

w0 = λ for each word w.
For instance human insulin is composed by two words (chains):

A: gly ile val glu gln cys cys thr ser ile cys ser leu tyr glu leu glu asn tyr cys
asn.

B: phe val asn gln his leu cys gly ser his leu val glu ala leu tyr leu val cys gly
glu arg gly phe phe tyr thr pro lys thr.

An is the set of all words over A with length exactly n. Clearly, A0 = {λ} and
A1 = A. The set

A� =
⋃
n≥0

An (1.24)

contains all words over the alphabet A; equipped with concatenation as a binary
operation it satisfies the following properties:

(i) Closure: For all v, w ∈ A�, vw ∈ A�;

(ii) Association: For all u, v, w ∈ A�, (uv)w = u(vw);

(iii) Identity: For the unity λ it holds that for any v ∈ A� it is vλ = λv = v.

1.3.2 Relations

Let U be a universe. A subset of U2 is called a relation over U .
Two specific kinds of relations will play important roles in our further consid-
erations.

The elements of a universe U are said to satisfy a partial order 	 if

(i) 	 is reflexive: For all x ∈ U it holds that x 	 x;
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(ii) 	 is antisymmetric: If x 	 y and y 	 x then x = y;

(iii) 	 is transitive: For any three elements x, y and z, if x 	 y and y 	 z then
x 	 z.

The pair (U ,	) is called a partially ordered set, or shortly a poset.
	 is called a linear order if, additionally,

(iv) For any two elements x and y of U , x 	 y, x = y or y 	 x.

It is customary to use the symbol ≺ to denote 	 and �=.

There are several important examples of ordered universes:

(a) Let U be a family of sets, then the relation ⊆ of set inclusion is a partial,
but of course not linear, order.

(b) Let A be an alphabet. If there is an order ≤ of the letters in A, then the
set An is endowed with the following partial order ≤H of the words: For
w = a1a2 . . . an and w′ = b1b2 . . . bn from An we put

1. w ≤H w′ if and only if ai ≤ bi for all i = 1, . . . , n; and

2. w <H w′ if and only if w ≤H w′ and w �= w′.

(c) Let A be an alphabet. If there is an order < of the letters in A, the set
A� is endowed with the following linear order <L of the words, which is
called the lexicographic order: For two words w = a1a2 . . . an and w′ =
b1b2 . . . bm we define w <L w′ if

1. n < m and a1 = b1, . . . , an = bn; or

2. a1 = b1, . . . , ak = bk for k < n, m and ak+1 < bk+1.

We write w ≤L w′ if w <L w′ or w = w′.

A relation in U is called an equivalence relation ∼ if

(i) ∼ is reflexive: For all x ∈ U it holds that x ∼ x;

(ii) ∼ is symmetric: If x ∼ y then y ∼ x;

(iii) ∼ is transitive: For any three elements x, y and z, if x ∼ y and y ∼ z then
x ∼ z.
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Let ∼ be an equivalence relation, then we define the equivalence classes by

Cx = {y ∈ U : x ∼ y}. (1.25)

The collection
C(∼) = {Cx : x ∈ U} (1.26)

of all equivalence classes creates a partition of U , that means:

(i) No member of C(∼) is empty;

(ii) Any two different members of C(∼) are disjoint;

(iii) The union of all members of C(∼) is U .

Conversely, a partition C = {Ci : i ∈ I} creates an equivalence relation ∼ by
x ∼ y if and only if there is an index i such that x, y ∈ Ci.
Altogether, we find the following key result.

Theorem 1.3.1 If C is a partition of U , then there is one and only one equiv-
alence relation whose equivalence classes are the members of C.

1.3.3 Correspondences

We define a correspondence from a set X to a set Y to be a set of ordered pairs
whose first entries are in X and whose second entries are in Y . A function or
mapping is a correspondence from X to Y that associates with each element
x ∈ X a unique element in Y . We frequently use a letter such as f to stand for
a function and write f(x) for the element f associates with x. We say f maps
x to f(x). The set

imf = {y ∈ Y : there is an element x ∈ X : f(x) = y} (1.27)

is called the image of f .

A function from X to Y is called a one-to-one function or injection if it as-
sociates different elements in Y with different elements in X . The function is
called onto or a surjection if each element of Y is associated with an element
of X . A one-to-one function from X onto Y is called a bijection.
If f is a bijection from X onto Y , then the correspondence f−1 defined by

f−1 = {(y, x) : (x, y) ∈ f}, (1.28)
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is a bijection from Y onto X , which is called the inverse correspondence.

Let f : X → Y be a function from the set X to a set Y , and let g : Y ′ → Z be
a function from the set Y ′ ⊇ Y to a set Z. Then the composition of f and g is
the function g ◦ f : X → Z given by

g ◦ f(x) = g(f(x)) (1.29)

for all x ∈ X .

Observation 1.3.2 Let f be a bijection from X onto Y , and let g be the
inverse function to f . Then f ◦ g is the identity on X and g ◦ f is the identity
on Y .

1.3.4 Permutations

A permutation is a bijection from a finite nonempty set S onto itself. In
general we assume that S = {1, 2, 3, . . . , n}, whenever S contains n elements.
A convenient way to express a permutation π is to write π in an array form as

π =
(

1 2 3 . . . n
π(1) π(2) π(3) . . . π(n)

)
. (1.30)

Let π and κ be permutations, then we define its product π·κ by the composition
π ◦ κ, that means π · κ(i) = π(κ(i)). In this sense, we also defined the inverse
of a permutation.

There is another notation commonly used to specify permutations, the so-called
cycle notation. Each cycle is created by the following sequence: Start with the
number i; then π(i), π2(i) = π(π(i)), π3(i), . . . until πk(i) = i for some k.
Notice that for k = 1 the cycle contains only i. For instance:

π =
(

1 2 3 4 5 6 7 8 9
2 4 3 7 6 5 1 9 8

)
(1.31)

is π = (1247)(3)(56)(89).
This cycle notation can be extended to any permutation by saying that the
permutation can be written as product of disjoint cycles.
A transposition is a cycle of length 2. Notice that

(a1a2a3 . . . an) = (a1an)(a1an−1) · · · (a1a3)(a1a2) (1.32)

so that every permutation can be written as a product of transpositions.
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1.4 THE MULTIPLICATION PRINCIPLE

We start with the following observation: If one thing can be done in α ways
and a second thing can be done in β ways independent of how the first thing is
done, then the two things can be done in α · β ways. More generally we have
considering the cross-product of sets Si:

S1 × · · · × Sn = {(x1, . . . , xn) : xi ∈ Si}. (1.33)

This notation is predictable, since the size of S1 × · · · × Sn is the product of
the sizes of the Si:

Observation 1.4.1 (The multiplication principle)

|S1 × · · · × Sn| = |S1| · · · |Sn|. (1.34)

The proof is easy to understand: for n = 2 consider the rectangle of all pairs
(ai, bj), i = 1, . . . , |S1|, j = 1, . . . , |S2|. For the general case use induction on
the number n.

�

A first application is to determine the size of the hypercube: Qn = {0, 1}n.
The multiplication principle immediately gives

Theorem 1.4.2
|Qn| = 2n. (1.35)

The number 2n increases very rapidly as n increases.3

As a second application consider the set An of all words over A with length
exactly n. Clearly,

3This observation is expressed in ancient legends. The most famous is the following: A
wise man who taught the king to play chess. As compensation, he asked the king to give him
just one grain of rice on the first square of the chess board, two grains of the next square,
and so on, doubling the number of grains for each succesive square. The result was that all
the king’s depots did not contain enough rice. (How much was necessary?)
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Theorem 1.4.3
|An| = |A|n. (1.36)

Moreover, we can count the number of functions from a finite set X into a finite
set Y .

Theorem 1.4.4 Let X and Y be finite sets with |X | = m and |Y | = n. Then
the number of functions from X to Y is nm.

Proof. List the elements of X in some order. Then each function can be
represented by a m-tupel of elements from Y .

�

1.5 THE ADDITION PRINCIPLE

Suppose some event can occur in α ways and a second event can occur in β
ways, and suppose both events cannot occur simultaneously. Then both events
can occur in α + β ways.

Observation 1.5.1 (The addition principle)
For a collection of pairwise disjoint sets the following holds:

|S1 ∪ . . . ∪ Sn| = |S1| + . . . + |Sn|. (1.37)

A≤n denotes the set of all words of length at most n, which is the union of n
pairwise disjoint sets

A≤n = A0 ∪ A1 ∪ . . . ∪ An. (1.38)

The addition principle and 1.4.3 lead to

|A≤n| = |A0 ∪ A1 ∪ . . . ∪ An|
= |A0| + |A1| + . . . + |An|
= |A|0 + |A|1 + . . . + |A|n
= 1 + |A| + . . . + |A|n.
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If we multiply this equation |A|-times with itself and then subtract the equation
from the product we get

(|A| − 1) · |A≤n| = |A|n+1 − 1. (1.39)

Hence,

Theorem 1.5.2 Let A be an alphabet of at least two letters. Then

|A≤n| =
|A|n+1 − 1
|A| − 1

< |A|n+1. (1.40)

A very interesting example in biology is the following: The number of polypep-
tide sequences with at most 100 amino acids which can theoretically exist is

|{ ala , . . . , val }≤100| − 1 =
20101 − 1

19
− 1 ≈ 10130, (1.41)

which is a number greater than the number of atoms in the universe. Conse-
quently only very few sequences describe proteins of present or ancient living
entities.

Shortly, we discuss the important case that the sets are not disjoint:

|S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2|. (1.42)

That is we ”include” S1 and S2, and we ”exclude” S1 ∩ S2. This follows from
the fact that, when we add |S1| and |S2| elements, we have counted the elements
from S1 ∩ S2 twice.
Similar for three sets: In the sum |S1| + |S2| + |S3| an element of S1 ∩ S2 is
included at least twice; an element of S1 ∩ S2 ∩ S3 three times. Hence,

|S1 ∪ S2 ∪ S3| = |S1| + |S2| + |S3|
−|S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|
+|S1 ∩ S2 ∩ S3|. (1.43)

Such a formula is called an inclusion-exclusion formula, and we can generalize
it to:

Theorem 1.5.3 Let S1, . . . , Sn be a collection of sets. Then

|
n⋃

i=1

Si| =
n∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj|

+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| ∓ . . . − (−1)n|
n⋂

i=1

Si|. (1.44)
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1.6 FACTORIALS

1.6.1 Placing objects in a row

How many ways are there of placing the three objects x,y and z in a row?
There are six ways, namely xyz,xzy,yxz,yzx,zxy and zyx.
Such linear arrangements of distinct objects are permutations, which number
can easily be determined.

Theorem 1.6.1 There are

n! = n · (n − 1) · (n − 2) · · · 2 · 1 (1.45)

ways to place n objects in a row.

Proof. There are n possibilities for the first place, then n − 1 for the second
place, and so on until there is just one for the last place. So we get the assertion
from the multiplication principle.

�

It is convenient to define 0! = 1. Obviously, the function ! satisfies the following
recurrence relation:

n! = n · (n − 1)! for n ≥ 1; (1.46)
0! = 1. (1.47)

1.6.2 Anagrams

The number of arrangements of the four letters in BALL is not 24 = 4!, since
we do not have four distinct letters to arrange. The letter L occurs twice, and
we have to count 4!/2 = 12. Generalizing this idea we solved a new type of
problem by relating it to the previous enumeration principles:

Observation 1.6.2 If there are n objects of r types with ni of the ith type,
i = 1, . . . , r, where n1 + . . . + nr = n, then there are

n!
n1! · n2! · · ·nr!

(1.48)
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(linear) arrangements of the objects.

RNA is a messenger molecule whose links are defined by DNA. The possible
bases (letters) are adenine (a), cytosine (c), guanine (g) and uracil (u). A se-
quence (word) of bases encodes certain genetic information. It is an elementary
problem of combinatorics to find the number of possible RNA sequences with
certain link makeup.
Let nk with k ∈ {a, c, g, u} be the number of bases of this type. Then n =
na + nc + ng + nu is the length of the RNA, and in view of 1.6.2 we have
n!/na! · nc! · ng! · nu! of these sequences.

Genralizing this example and combining 1.4.3 and 1.6.2 we find

Observation 1.6.3 ∑
n1+n2+...+nr=n

n!
n1! · n2! · · ·nr!

= rn. (1.49)

1.7 METRIC SPACES

Distance is the mathematical description of the idea of proximity, and conse-
quently, will play an important role in mathematics.

A pair (X, ρ) is called a metric space if X is a nonempty set of elements called
the points, and ρ : X × X → IR is a real-valued function satisfying:

(i) ρ(x, y) ≥ 0 for all x, y in X ;

(ii) ρ(x, y) = 0 if and only if x = y;

(iii) ρ(x, y) = ρ(y, x) for all x, y in X ; and

(iv) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z in X (triangle inequality).

Usually, such a function ρ is called a metric.
We will say that the quantity ρ(x, y) is the distance between the points x and
y.
The following variants of ”metric approaches” will be also of interest:
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If ρ satisfies (ii) only in the weaker form

(ii’) ρ(x, x) = 0 for all x in X ;

we say that ρ is a pseudometric.

If the function ρ satisfies the conditons (i),(ii’) and (iii) it is called a dis-
similarity.4

We will find distances for many sets and of great importance. Firstly, we
consider the following examples.

(a) The Euclidean plane is defined in the affine plane with the Euclidean
metric

√
(x1 − x2)2 + (y1 − y2)2 between the points (x1, y1) and (x2, y2)

derived from a norm ||.||:

||(x, y)|| =
√

x2 + y2. (1.50)

(b) Space with rectilinear distance: In the d-dimensional affine space the dis-
tance between (x1, . . . , xd) and (y1, . . . , yd) is defined as

d∑
i=1

|xi − yi|. (1.51)

(c) Using the binary operation � we find a metric for sets

Observation 1.7.1 |S1�S2| is a metric.

It is sufficient to show the triangle inequality.

S1�S2 ⊆ S1�S3 ∪ S3�S2. (1.52)

Moreover,

S1�S3 ∩ S3�S2 = ((S1 ∩ S2) \ S3) ∪ (S3 \ (S1 ∪ S2)). (1.53)

That means, if an element is in S1�S3 ∩ S3�S2, then it cannot be in
S1�S2.

�

4We will give the reason for this name later. There are various measures of dissimilarity,
and not all of them yield a metric, but many do.
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(d) The following metric can be created over any set X of points:

ρ(x, y) =
{

0 : x = y
1 : otherwise

(e) To consider the problem of reconstruction of evolutionary (phylogenetic)
trees, we introduce so-called sequence spaces. These are metric spaces
whose points are arbitrary words generated by letters from some (finite)
alphabet, and the metric measuring ”sameness” of the words: Let v =
a1a2 . . . an and w = b1b2 . . . bn be DNA-sequences of length n. We de-
fine the Hamming distance by the number of positions in which v and w
disagree:

ρH((a1, . . . , an), (b1, . . . , bn)) = |{i : ai �= bi for i = 1, . . . , n}|. (1.54)

Let (X, ρ) be a metric space. A set S is called bounded, if there exists a real
number d such that

ρ(x, y) ≤ d (1.55)

for each pair x, y ∈ S. For a bounded set S we define the diameter as

D(S) = sup{ρ(x, y) : x, y ∈ S}. (1.56)

1.8 INFINITE SETS

The concept of infinity has always fascinated philosophers and theologians, but
that was avoided or met with open hostility throughout most of the history of
mathematics. Only within the last two centuries mathematicians dealt with it
head on and accepted infinity as a number.
How can we count the elements of an infinite set? We have to compare the
sets; that means we ask for a bijective mapping between these sets.

1.8.1 Can a part be equal to the whole?

One dogma that we have to brush aside is the statement ”A part is less than
the whole”. This is indisputately true for finite sets, but it loses its force when
we try to apply it to infinite sets. Consider the following mapping:

f : IN → IN : n �→ 2n. (1.57)
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This sets up a one-to-one correspondence between the set of natural numbers
and a proper part of this set: the set of even numbers, which was already
observed by Galilei.5 Dedekind introduced the concept of infinite sets by the
following definition.

An infinite set is as one that can be placed into a one-to-one corre-
spondence with a proper subset of itself.

1.8.2 Transfinite numbers

Cantor developed the idea of levels of infinity. To carry a notion of equal size
of two finite or infinite sets X and Y we define that this is given if a bijective
mapping from X onto Y exists. In other terms, the elements of X and Y
may be paired with each other in such a way that to each element of X there
corresponds one and only one element of Y and vice versa. This notation for
finite sets coincides with the ordinary notation of equality of numbers.

Observation 1.8.1 The notion of equal size is an equivalence relation.

Proof. We check the three properties of an equivalence relation.

(i) The identity is a bijective mapping.

(ii) For symmetry compare 1.3.2.

(iii) Let f : X → Y be a bijective mapping from X to Y , and let g : Y → Z
be a bijective mapping from Y to Z. Then the composition of f ◦ g is also
bijective.

�

Consequently, we can associate a number, called cardinal number, with ev-
ery class of equal-sized sets. The cardinal numbers of infinite sets are called
transfinite numbers.

5Here is the story of Hilbert’s hotel: It is a hotel with an infinite number of rooms. All
the rooms are full, but more guests are waiting outside. We amke space by the following
operation: the guest occypying room 1 moves to room 2, the occypant from room 2 moves to
room 4, and so on, all the way down the line, an infinite number of newcomer can be placed
in the empty rooms.
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1.8.3 Countable sets

We call sets with as many elements as the set of natural numbers countable
sets. In other words, a set is called countable if it is infinite and its elements
can be counted with the aid of the natural numbers. For example the set Γ of
integers is countable:

IN 0 1 2 3 4 · · · 2n− 1 2n · · ·
Γ 0 1 -1 2 -2 · · · n −n · · ·

That means the following function f : IN → Γ is one-to-one and onto:

f(n) =
{ −n

2 : n even
n+1

2 : otherwise

It is more difficult to show that the rational numbers are also countable. Ob-
viously this is paradoxical: Between any two rational numbers we can still find
infinitely many rational numbers. So it is quite unclear how we should go about
numbering them.
First we prove that IN2 is countable. Consider the following tabulation, which
is called Cantor’s first diagonal principle.

x \ y 0 1 2 3 4 . . .

0 0 1 3 6 10 . . .
1 2 4 7 11 16 . . .
2 5 8 12 17 23 . . .
3 9 13 18 24 31 . . .
4 14 19 25 32 40 . . .
...

...
...

...
...

...

That means at first we count all pairs (x, y) with x+ y = 0, then all pairs with
x + y = 1, then with x + y = 2, and so on. The pair (x, y) lies in position
number x between (0, x + y) and (x + y, 0). Before (0, x + y) we have exactly

1 + 2 + . . . + (x + y) =
(x + y)(x + y + 1)

2

pairs. Hence,
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Theorem 1.8.2 The function

c : (x, y) �→ (x + y)(x + y + 1)
2

+ x (1.58)

is a bijective mapping from IN2 onto IN .

The functions

l(n) = n − 1
2

⌊�√8n + 1� + 1
2

⌋⌊�√8n + 1� − 1
2

⌋
(1.59)

r(n) =
⌊�√8n + 1� + 1

2

⌋
− l(n) − 1 (1.60)

are the inverse mappings of c, which means

c(l(n), r(n)) = n. (1.61)

We will omit the proof.
With 1.8.2 in mind, we have several considerations.

Corollary 1.8.3 For any integer n ≥ 2 there exist a bijective mapping c(n)

from INn onto IN .

Proof. Let c be a bijective mapping from IN2 onto IN , compare 1.8.2. We
create c(n) by the following recursive equations:

c(2) = c, (1.62)
c(n)(x1, . . . , xn) = c(n−1)(c(x1, x2), x3, . . . , xn), (1.63)

n = 3, 4, . . ..

�

For further applications we start with the observation that a countable set is
the smallest of the infinite sets:

Lemma 1.8.4 Consider infinite sets.
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(a) Any infinite set contains a countable set.

(b) An infinite subset of a countable set is also countable.

Proof. (a): We can select a countable subset from an infinite set S in the
following way: Take any element x0 from S. Clearly, we have not exhausted
the elements of S with the selection of x0, so we can proceed to select a second
element x1. After that we select a third element x2 and so on. We have thus
extracted from S a countable subset of indexed element.
(b) is an immediately consequence of (a).

�

Corollary 1.8.5 The set of all rational numbers is countable.

Proof. Consider the correspondence

(x, y) ∈ IN2 �→
{ x

y : y �= 0
x : otherwise

Then apply 1.8.4(b) and our introductionary example.

�

Theorem 1.8.6 Let S1, S2, . . . be a countable number of finite sets, then the
union S =

⋃
i Si is finite or countable.

Proof. We define sets R1, R2, . . . where Ri contains the elements of Si which
do not belong to preceding sets, that means

R1 = S1 (1.64)
Ri = Si \ (S1 ∪ S2 ∪ . . . ∪ Si−1) (1.65)

for i ≥ 2. Then the Ri are disjoint and
⋃

i Ri = S.
Let

Ri = {bi1, bi2, . . . , bimi}. (1.66)

If S = {bij} is infinite, then we define a bijective function f from S onto the
natural numbers by

f(bij) = m1 + m2 + . . . + mi−1 + j. (1.67)
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�

Theorem 1.8.7 A countable union of countable sets is countable.

Proof. Let S1, S2, . . . be a countable number of countable sets, and suppose that
ai1, ai2, . . . are the elements of Si. We define sets R2, R3, R4, . . . as follows:

Rk = {aij : i + j = k}. (1.68)

Observe that each Rk is a finite set and⋃
k

Rk =
⋃
i

Si. (1.69)

Then we apply 1.8.6.

�

1.8.4 The number of words

Remember our definition of words over an alphabet A. An is the set of all
words over A with length exactly n. We know |An| = |A|n, that means, that
each of the sets An is finite.
The set

A� =
⋃
n≥0

An (1.70)

contains all words over the alphabet A. In any case, this is an infinite, but
countable, set.6 To see the countableness, we use 1.8.3 and 1.8.7. Additionally,
we will give a direct method to count the words. First count the word λ, then
the members of A itself, then the words of length 2, and so on. More precisely,
let A = {a1, . . . , an}, then

6Also for a one-element alphabet A the set A� is infinite: A = {|}, then A� =
{λ, |, ||, |||, |4, |5, . . .}.
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IN A�

0 λ
1 a1

2 a2

...
...

n an

n + 1 a1a1

n + 2 a1a2

...
...

2n a1an

2n + 1 a2a1

2n + 2 a2a2

...
...

3n a2an

3n + 1 a3a1

...
...

n2 + 1 ana1

...
...

n2 + n anan

n2 + n + 1 a1a1a1

...
...

1.8.5 Uncountable sets

All the sets we have constructed so far have been countable. This naturally
leads us to ask whether all infinite sets are countable. But the situation turns
out to be more complicated than that; uncountable sets exist, and of more than
one cardinality.

First we show, using Cantor’s second diagonal principle

Theorem 1.8.8 The set of all (infinite) binary sequences is not countable.

Proof. Assume that there is a counting of {0, 1}∞ given by the following double
infinite array:
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IN {0, 1}∞

0 b00, b01, b02, b03, . . .
1 b10, b11, b12, b13, . . .
2 b20, b21, b22, b23, . . .
3 b30, b31, b32, b33, . . .
...

...

The sequence b0, b1, b2, . . . with bi = 1 − bii cannot be in this table.

�

With 1.8.8 in mind, we have the following considerations.

Observation 1.8.9 The set of all real numbers is uncountable.

Any set that can be brought into a bijective correspondence with the set of real
numbers is called a continuum.7

1.8.6 Functions and the power set

F(X, Y ) denotes the collection of all functions f : X → Y .

Theorem 1.8.10 The set F(X, Y ) contains more elements than X whenever
Y contains at least two elements.8

7Cantor’s next discovery was a shock even to Cantor himself:
The real plane IR2 has the same size as IR.
Consequently, all sets IRn, n ≥ 1 are of the same size.

For the proof, it will be sufficient to map all pairs (x, y), 0 ≤ x, y < 1 bijectively onto the
interval [0, 1). Consider (x, y) and write x and y in their digits:

x = 0.a1a2a3 . . .

y = 0.b1b2b3 . . . .

We now create a number z by ”mixing” the digits:

z = 0.a1b1a2b2a3 . . . .

(There is a little problem in this correspondence. Do you see which?)
This result is not what we would expect from our idea of dimension. Dimension is not
generally preserved by bijective mappings.

8The proof will show that this assertion is true for finite and infinite sets X.
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Proof. First we show that there are as many functions in F(X, Y ) as elements
in X . Consider for each x0 ∈ X the function f [x0] defined by

f [x0](x) =
{

y1 : x = x0

y2 : otherwise

where y1 and y2 are distinct elements of Y .
If x0 �= x1 then f [x0] �= f [x1].
Now assume that there is a bijective mapping

x ∈ X �→ f [x] ∈ F(X, Y ). (1.71)

Choose yx ∈ Y such that yx �= f [x](x). The function f defined by

f : x �→ yx, (1.72)

cannot be one of the function f [x].

�

As exercise prove the following fact.

Theorem 1.8.11 The power set P(X) = {X ′ : X ′ ⊆ X} contains more ele-
ments than X.

In view of these facts we have the following two important consequences:

A largest cardinal number, both finite and transfinite, does not exist, since
in both cases we start with a finite and infinite set X , respectively, and
build the following infinite sequence of sets:

X,P(X),P(P(X)),P(P(P(X))), . . . . (1.73)

Each language is a countable set.9 In view of 1.8.7 a union of all ”real-
world” languages is countable. But, paying attention 1.8.11, the collection
of all languages is uncountable, and hence not each language can be num-
bered.

9In the strict sense all practical languages are finite, this comes from the finiteness of the
real world; compare [35] and [60].
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1.9 ORDERS OF GROWING AND
ASYMPTOTICS

In the following discussion we will use the phrase ”on the order of” to express
lower and upper bounds. For this purpose we introduce specific notations,
called Landau symbols.

1.9.1 Landau symbols

Let f and g be functions from the positive integers into the real numbers. Then:

(i) The function g(n) is said to be of order at least f(n), denoted Ω(f(n)),
if there are positive constants c and n0 such that g(n) ≥ c · f(n) for all
n ≥ n0.

(ii) The function g(n) is said to be of order at most f(n), denoted O(f(n)),
if there are positive constants c and n0 such that g(n) ≤ c · f(n) for all
n ≥ n0.

(iii) The function g(n) is said to be of order f(n), denoted Θ(f(n)), if g(n) =
Ω(f(n)) and g(n) = O(f(n)). That is, f(n) and g(n) both grow at the
same rate; only the multiplicative constants may be different.

This notation allows us to concentrate on the dominating term in an expression
describing a lower or upper bound and to ignore any multiplicative constants.
O(f(n)) is to be read ”big-O of f of n”. Note that it is not an equation in the
usual sense. It has to be read only from left to right.

Theorem 1.9.1 If f(n) is a polynomial of degree k that means

f(n) = akxk + ak−1x
k−1 + . . . + a1x + a0. (1.74)

Then
f(n) = O(nk). (1.75)

Proof.

|f(n)| = |akxk + ak−1x
k−1 + . . . + a1x + a0|

≤ |akxk| + |ak−1x
k−1| + . . . + |a1x| + |a0|
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= |ak|xk + |ak−1|xk−1 + . . . + |a1|x + |a0|
≤ (|ak| + |ak−1| + . . . + |a1| + |a0|)xk

= axk.

�

It is not hard to see that the following facts are true.

Observation 1.9.2 The ”Order”-notations have the following properties:

(a) g(n) = O(f(n)) if and only if f(n) = Ω(g(n)).

(b) The order of the sum of two functions is given by the order of the faster
growing function: f(n) + g(n) = O(max{f(n), g(n)}).

(c) The relation represented by ”O” is transitive.

(d) For the logarithmic order O(log n) the base is irrelevant since logb n =
loga n · logb a.

(e) Exponential functions grow faster than polynomial functions: nk = O(bn)
for all k > 0 and b > 1. Conversely, logarithmic functions grow more
slowly than polynomial functions.

(f) f(n) = Θ(g(n)) if and only if g(n) = Θ(f(n)).

For our purpose we will use the following ”classes of order”, which are defined
in terms of the input size n:

Order Name of the ”class” Remark
O(1) constant the function is bounded

O(log n) logarithmic the base is irrelevant
O(n) linear

O(n log n) log-linear the base is irrelevant
O(n2) quadratic
O(n3) cubic

...
O(nk) polynomial k is a fixed positive integer
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Mention that the previous table shows the ”slow growing” orders, this table
the ”fast growing” ones:

Order Name of the ”class” Remark
O(cn) exponential c > 1 is a fixed positive real number

...
O(n!) factorial n! = n · (n − 1) · (n − 2) · · · 2 · 1

...
Ω(22n

) superexponential

In particular, we say that the function f is polynomially bounded if there is a
positive integer k such that f(n) = O(nk).

Often we have no exact formula for counting the number of combinatorial
objects of some kind, but we can describe its asymptotic behavior. Then we
use the following notation: Let f and g be functions from the positive integers
into the real numbers, then

(i) The function g(n) is said to be growing faster than f(n), denoted f(n) =
o(g(n)), if

lim
n→∞

f(n)
g(n)

= 0. (1.76)

(ii) The function g(n) is said to be approximately f(n), denoted f(n) ≈ g(n),
if

lim
n→∞

f(n)
g(n)

= 1. (1.77)

This notation allows us to concentrate on the dominating term in an expression
describing a lower or upper bound and to ignore any multiplicative constants.

Observation 1.9.3 The asymptotic-notations have the following properties:

(a) The relation represented by ”o” is transitive.
In particular, we have the following increasing sequence of functions:

c, log log n, log n, n, n · log n, n2, n3, cn, n!, nn. (1.78)

(b) If f(n) ≈ g(n), then f(n) = Θ(g(n)), but not vice versa.
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A broader discussion on the growth of functions can be found in [1].

1.9.2 The order of magnitude of the factorials

The quantity n! (factorial) increases very quickly. Particularly 20! ≈ 2.432 ·
1018. We can describe the order of growing by the following considerations. In
calculus, an integral can be regarded as the area under a curve, and we can
approximate this area by adding up long, ”skinny” rectangles that touch the
curve. Consider the function lnx. Then

n−1∑
k=1

ln k ≤
∫ n

1

ln xdx ≤
n∑

k=2

ln k

ln
n−1∏
k=1

k ≤ n ln n − n + 1 ≤ ln
n∏

k=2

k

ln
n!
n

≤ ln nn − n + 1 ≤ ln n!

n!
n

≤ e
nn

en
≤ n!

which gives the

Observation 1.9.4 (Stirling’s inequalities)

e
nn

en
≤ n! ≤ en

nn

en
. (1.79)

The following approximation is essentially harder to prove and we will omit
this calculation.

Remark 1.9.5 (Stirling’s equality)

n! ≈ √
2πn · nn

en
. (1.80)



2
SELECTING OBJECTS

Consider a set of n objects. How many ways are there of selecting k from these?
We will distinguish two kinds of choosing:

ordered or unordered;

repititions allowed or not.

This gives us four distinct questions.

2.1 THE NUMBER OF SUBSETS

As introductionary example choose two elements from {1, 2, 3, 4}, where we
respect its order, but ignore repititions:

1,2 1,3 1,4
2,1 2,3 2,4
3,1 3,2 3,4
4,1 4,2 4,3

More systematically, if we select only k objects, we start with n possibilities
and count down k numbers, the last one will be n− k + 1. Hence, we have the
following theorem.

31
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Theorem 2.1.1 The number of subsets with k ordered elements of a set with
n elements is

n(n − 1) · · · (n − k + 1) =
n!

(n − k)!
. (2.1)

From this we can easily derive one of the most important counting results.

Theorem 2.1.2 The number of subsets containing k elements of a set with n
elements is

n(n − 1) · · · (n − k + 1)
k!

=
n!

k!(n − k)!
. (2.2)

Proof. In 2.1.1 we counted ordered subsets. If we want to know the number of
unordered subsets, then every subset was counted exactly k! times, namely all
possible orderings of the elements. So we have to divide this number by k! to
get the assertion.

�

As an example choose two elements from {1, 2, 3, 4}:

1,2 1,3 1,4
2,3 2,4

3,4

The number defined in 2.1.2 is such an important quantity that there is a special
notation for it: (

n

k

)
=

n!
k!(n − k)!

, (2.3)

read ”n choose k”. These numbers are also called binomial coefficients; we will
later see why.1 In view of 2.1.1 we will write

(
X
k

)
for the collection of all subsets

1Of course, for a calculation of a simple binomial coefficients it is not pleasant to use this
formulae; better: (n

k

)
=

n

k
· n − 1

k − 1
· n − 2

k − 2
· · · n − k + 1

1
.
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of X with exactly k elements. This gives for the power set

P(X) =
|X|⋃
k=0

(
X

k

)
. (2.4)

Recall 1.2.2 which says that the power set P(X) contains 2|X| elements.

2.2 BINOMIAL COEFFICIENTS

Binomial coefficients play a very important role in combinatorics. Conse-
quently, we will investigate these quantities more extensively.

2.2.1 The Pascal triangle

We have two descriptions for the binomial coefficients:

Arithmetic:
(
n
k

)
= n!

k!(n−k)! .

Set theoretic:
(
n
k

)
= number of choosing k elements from n.

Consequently, we have two methods to find facts.

Observation 2.2.1 (
n

k

)
=

(
n

n − k

)
. (2.5)

Proof. Algebraic this is obvious.
Since selecting the k elements out of n, we’re in effect selecting the n − k
unchosen elements.

�

Observation 2.2.2 (
n + 1

k

)
=

(
n

k

)
+
(

n

k − 1

)
. (2.6)
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Proof. (
n

k

)
+
(

n

k − 1

)
=

n!
k!(n − k)!

+
n!

(k − 1)!(n − k + 1)!

=
n!(n − k + 1)
k!(n − k + 1)!

+
n!k

k!(n − k + 1)!

=
n!(n − k + 1 + k)

k!(n − k + 1)!

=
(n + 1)!

k!(n + 1 − k)!

=
(

n + 1
k

)
.

Alternatively, consider n + 1 objects x1, . . . , xn+1. A choice of k of the objects
may or may not include xn+1. If it does not, then k objects have to be chosen
from x1, . . . , xn and there are

(
n
k

)
such choices. If it does contain xn+1, then

k − 1 further objects have to be chosen from x1, . . . , xn, and there are
(

n
k−1

)
such choices. The result now follows from the addition principle.

�

A nice description of the binomial coefficients is given by the so-called Pascal’s
triangle, which displays 2.2.1 and 2.2.2:

row 0 1
row 1 1 1
row 2 1 2 1
row 3 1 3 3 1
row 4 1 4 6 4 1
row 5 1 5 10 10 5 1
row 6 1 6 15 20 15 6 1
...

. . .

In the nth row, the entries are the binomial coefficients
(
n
k

)
for k = 0, . . . , n.
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2.2.2 The binomial theorem

We called the numbers
(
n
k

)
the binomial coefficients. Now we will see why.

Consider

(x + y)0 = 1;
(x + y)1 = x + y;
(x + y)2 = x2 + 2xy + y2;
(x + y)3 = x3 + 3x2y + 3xy2 + y3;
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Note that the coefficients are the entries of the Pascal’ triangle. And indeed,

Theorem 2.2.3 (The binomial theorem) For any real numbers x and y and
nonnegative integers n

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk (2.7)

holds.

Proof.
(x + y)n = (x + y) · · · (x + y)︸ ︷︷ ︸

n−times

. (2.8)

So the coefficient of the term xn−kyk is the number of ways of getting xn−kyk

when the n brackets are multiplied out. Each term in the expansion is the
product of one term from each bracket; so xn−kyk is obtained as many times
as we can choose y from k of the brackets and x from the remaining n − k
brackets. But this can be done just in

(
n
k

)
ways.

�

Corollary 2.2.4 For any real number y and nonnegative integers n

(1 + y)n =
n∑

k=0

(
n

k

)
yk (2.9)

holds.
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This corollary is the origin of several important facts. First the entries in each
row of the Pascal triangle satisfy the following equations:

n∑
k=0

(
n

k

)
= 2n. (2.10)

n∑
k=0

(−1)k

(
n

k

)
= 0. (2.11)

Second, the following inequality holds.

Observation 2.2.5 (Bernoulli’s inequality) Let a be a positive real number
and let n ≥ 2 be an integer. Then

(1 + a)n > 1 + na. (2.12)

Proof. In view of 2.2.4 we have

(1 + a)n =
(

n

0

)
a0 +

(
n

1

)
a1 +

(
n

2

)
a2 + . . .︸ ︷︷ ︸
>0

> 1 + na.

�

2.2.3 The order of growing for binomial
coefficients

To find orders of growing and asymptotic behaviour of the binomial coefficients
we start with the so-called trinomial revision:

Lemma 2.2.6 (
n

k

)(
k

m

)
=
(

n

m

)(
n − m

k − m

)
. (2.13)

Proof. The left-hand side counts the ways to select a group of k elements from
a set of n elements and then (multiplication principle) to select a subset of m
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of this group.
Equivalently, counted on the right-hand side, we could first select the subset
of m elements from the set of n elements and then select the remaining k − m
elements of the group from the remaining n − m elements.

�

A specific application of 2.2.6 with m = 1 is

Corollary 2.2.7 (
n

k

)
=

n

k

(
n − 1
k − 1

)
. (2.14)

On one hand, repeated application of 2.2.7 gives us(
n

k

)
=

n

k
· n − 1
k − 1

· n − 2
k − 2

· · · n − k + 1
1

≥ n

k
· · · n

k

=
(n

k

)k

. (2.15)

On the other hand(
n

k

)
=

n

k
· n − 1
k − 1

· n − 2
k − 2

· · · n − k + 1
1

≤ nk

k!

≤ 1
e

(en

k

)k

, (2.16)

using the Stirling inequality. Hence, considering together

Theorem 2.2.8 (n

k

)k

≤
(

n

k

)
≤ 1

e

(en

k

)k

. (2.17)

For the sum of binomial coefficients we know 2n as upper bound. A partially
better bound is given by the following formulae.
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Theorem 2.2.9 ([58]) Let k ≤ n, then

k∑
j=0

(
n

j

)
≤
(en

k

)k

. (2.18)

Proof. We use 2.2.4:(
n

0

)
+
(

n

1

)
x +

(
n

2

)
x2 + . . . +

(
n

n

)
xn = (1 + x)n (2.19)

for all real numbers x. In particular for 0 < x < 1(
n

0

)
+
(

n

1

)
x + . . . +

(
n

k

)
xk ≤ (1 + x)n. (2.20)

Dividing this by xk we get

1
xk

(
n

0

)
+

1
xk−1

(
n

1

)
+ . . . +

(
n

k

)
≤ (1 + x)n

xk
. (2.21)

Since x < 1 we have(
n

0

)
+
(

n

1

)
+ . . . +

(
n

k

)
≤ (1 + x)n

xk
. (2.22)

Note that the left-hand side is independent of the value of x; in particular we
can use x = k/n which gives us

(1 + x)n

xk
=

(
1 + k

n

)n(
k
n

)k
≤
(
e

k
n

)n (n

k

)k

= ek
(n

k

)k

. (2.23)

To get this result we have to apply some calculus which shows 1 + x ≤ ex, so
that we come to the inequality(

1 + k
n

)n(
k
n

)k
≤

(
e

k
n

)n (n

k

)k

.

Hence the assertion.

�

The bound in 2.2.9 is essentially less than 2n when

k ≤ e
√

ln 2−1 · n = 0.84582 . . . · n. (2.24)



Selecting objects 39

2.2.4 The bird’s-eye view of Pascal’s triangle

Let us ask a more quantitative question about the shape of a row in Pascal’s
triangle: What is the ratio of any binomial coefficients in a row to the largest
b.c. in this row? It is not hard to see that the element in the middle of the row
is the largest. To make it easier we consider the case when n is even, and write
n = 2m. Then the largest, middle entry in the nth row is

(
2m
m

)
. Now consider

the binomial coefficient that is t steps from the middle and compare it with the
largest element, that means we are interested in the term

(
2m

m−t

)
/
(
2m
m

)
.

Theorem 2.2.10

e−
t2

m−t+1 ≤
(

2m
m−t

)(
2m
m

) ≤ e−
t2

m+t . (2.25)

Proof. To derive the formula, we take the ratio to its reciprocal, which is larger
than 1. (

2m
m

)(
2m

m−t

) =
(2m)!
m!m!
(2m)!

(m−t)!(m+t)!

=
(m − t)!(m + t)!

m!m!

=
(m + t)(m + t − 1) · · · (m + 1)

m(m − 1) · · · (m − t + 1)

=
m + t

m
· m + t − 1

m − 1
· · · m + 1

m − t + 1
.

to handle with this term the following idea helps: Take the logarithm.

ln
(

m + t

m

)
+ ln

(
m + t − 1

m − 1

)
+ . . . + ln

(
m + 1

m − t + 1

)
.

We estimate the logarithms using the well-known fact

x − 1
x

≤ ln x ≤ x − 1. (2.26)

For a typical term in the sum we have

ln
(

m + t − k

m − k

)
≤ m + t − k

m − k
− 1 =

t

m − k
,
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and so we get by

ln
(

m + t

m

)
+ ln

(
m + t − 1

m − 1

)
+ . . . + ln

(
m + 1

m − t + 1

)
≤ t

m
+

t

m − 1
+ . . . +

t

m − t + 1

≤ t

m − t + 1
+

t

m − t + 1
+ . . . +

t

m − t + 1

=
t2

m − t + 1
an upper bound on the logarithm of the ratio. To get an upper bound on the
ratio itself, we have to apply the exponential function.
Similar the lower bound.

�

The lower and upper bounds in 2.2.10 are quite similar to the (imprecise)
approximation (

2m
m−t

)(
2m
m

) ≈ e−t2/m, (2.27)

which is the famous Gauß curve.

2.2.5 Splits

Let U be a universe of n elements. A pair (S, Sc) of two nonempty subsets of
U is called a split.
If we choose k elements for S, 0 < k < n, then we also choose n − k elements
for Sc. Hence, each selecting of k elements creates a split. We can do it in(
n
k

)
ways. But we find each split twice, namely by choosing k, and by choosing

n − k. Consequently, the number of splits is

1
2

n−1∑
k=1

(
n

k

)
=

1
2

(
n∑

k=0

(
n

k

)
−
(

n

0

)
−
(

n

n

))

=
1
2
(2n − 1 − 1)

= 2n−1 − 1.

Theorem 2.2.11 The number of splits of a set of n elements is 2n−1 − 1.
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2.2.6 The multinomial theorem

In expanding (x1 + x2 + x3)7, we think of writing down seven (x1 + x2 + x3)
terms in a row, and then adding up xi

1x
j
2x

k
3 for all ways of selecting x1 from

i of the terms, x2 from j of the terms and x3 from k of the terms. Note that
i + j + k = 7 in each case. In view of 1.6.2 we get

Theorem 2.2.12 (The multinomial theorem) Let x1, . . . , xm be any real num-
bers and let n be a nonnegative integer, then

(x1 + . . . + xm)n =
∑

k1+...+km=n

n!
k1! · · · km!

xk1
1 · · ·xkm

m , (2.28)

where we read the sum sign that appears in the formula as ”the sum over all
lists k1, . . . , km such that k1 + . . . + km = n”.2

With x1 = . . . = xm = 1 we get (again) 1.6.3.

2.3 THE HARDY-WEINBERG
EQUILIBRIUM

A Mendelian population may be considered to be a group of sexually reproduc-
ing organisms with a relatively close degree of genetic relationships. If all the
gametes produced by a Mendelian population are considered as a hypothetical
mixture of genetic units from which the next generation will arise, we have the
concept of a gene pool.

2.3.1 The Hardy-Weinberg law

Consider zygotes with two factors, one from each parent. Then the zygotes
are called diploid. How does the ”genetic make-up” of population change over
generations? Suppose that what happens at a given locus is independent of
what happens at any other, and focus on changes at a single locus. Furthermore,
suppose that there are two and only two alleles A and B that may sit at

2The number of terms which are to sumarize is equal
(

m+n−1
n

)
. We will prove this later

in 2.4.2.
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this locus. A given individual may then have one of three genotypes: the
homozygotes AA or BB or the heterozygote AB.

Let p be the frequency of allele A in a population, defined by

p =
number of allele A

total number of alleles
. (2.29)

Similarly, let q be the frequency of allele B. Of course, p + q = 1.
We are interested in the frequencies of the genotypes AA, AB and BB, denoted
by x,y and z, respectively. Then, assuming that the population contains n
individuals, the allele A can be found x · 2n + y · n times. Hence,

p =
x · 2n + y · n

2n
= x +

y

2
. (2.30)

Similarly, for allele B,

q =
z · 2n + y · n

2n
= z +

y

2
. (2.31)

Let us now make the following assumptions:

(a) Expected sex ratio is independent of genotype.

(b) Mating is random.

(c) Fertility and survivorship are independent of genotype.

(d) There is no mutation or migration.

Then the frequency of genotypes for the subsequent generation is

mating frequency AA AB BB
of matings

AA × AA x2 x2 0 0
AA × AB xy xy

2
xy
2 0

AA × BB xz 0 xz 0
AB × AA xy xy

2
xy
2 0

AB × AB y2 y2

4
y2

2
y2

4
AB × BB yz 0 yz

2
yz
2

BB × AA xz 0 xz 0
BB × AB yz 0 yz

2
yz
2

BB × BB z2 0 0 z2

sum x1 y1 z1.
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Then

x1 = x2 + xy +
y2

4
=

(
x +

y

2

)2

= p2,

y1 = xy + 2xz +
y2

2
+ yz = 2

(
x +

y

2

)(
z +

y

2

)
= 2pq,

and

z1 =
y2

4
+ yz + z2 =

(y

2
+ z

)2

= q2.

Furthermore, for the frequency of the alleles in the subsequent generation

p1 = x1 +
y1

2
= p2 + pq = p(p + q) = p,

and
q1 = z1 +

y1

2
= q2 + pq = q(p + q) = q.

It follows immediately that pn+1 = pn and qn+1 = qn, where n is the generation
number. In other words, pn and qn are constants independent of n. Let us go
back to calling them p and q again.

Generation 0 is known as the parental generation (P = F0), and generation n
as the nth filial generation (Fn).

Theorem 2.3.1 (Hardy, Weinberg) Under the assumptions listed above

(a) Allele frequencies p and q remain unchanged from generation to genera-
tion, and are therefore the same in the filial generations as in the parental
generation;

(b) From generation F1 onwards3 the genotype frequencies x, y and z remain
unchanged, and are therefore the same in the filial generations as in the
parental generation with x = p2, y = 2pq and z = q2.

An equilibrium has come to mean pretty much the same as stability that is a
system which is largely unaffected by internal or external changes since it is
easily returned to its original condition after being disturbed.

3but not necessarily for F0
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2.3.2 Selecting pressure

In absence of selection there is no evolution. Now we are interested in including
this work.

Let the allele frequencies at the end of gametic phase of generation n be pn and
qn, and the genotype frequencies xn, yn and zn. Then we saw that xn = p2

n,
yn = 2pnqn and zn = q2

n. Now we introduce a selection pressure by the following
considerations. Let the probability of survival from zygotic phase to breeding
phase for the various genotypes be in the ratio wx : wy : wz . These values
measured the relative fitness of a genotype in terms of its reproductive success.
Usually norming wx = 1 the quantities wy and wz are the relative selection
values of genotypes AB and BB relative to to the probability of survival of
genotype AA. Then at the breeding phase the ratios of the genotypes AA, AB
and BB have been modified to

wxp2
n : 2wypnqn : wzq

2
n, (2.32)

so that allele frequencies are now in the ratio

wxp2
n + wypnqn : wypnqn + wzq

2
n. (2.33)

Similar to our computations above we find the following equation of mathe-
matical population genetics.

Theorem 2.3.2 (Fisher, Haldane, Wright) Under the assumptions listed above
the allele frequencies follows from generation to generation by

pn+1 =
(wxpn + wyqn)pn

wxp2
n + 2wypnqn + wzq2

n

and (2.34)

qn+1 =
(wyqn)qn + wypn

wxp2
n + 2wypnqn + wzq2

n

. (2.35)

The extant of change in the frequency of allele B per generation is denoted by
∆q. It is not hard to see that

∆q = qn+1 − qn =
pq(p(wy − wx) + q(wz − wy))

wxp2 + 2wypq + wzq2
. (2.36)
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2.3.3 Dominance

We described the three genotypes assigned with the following fitness values and
initial frequencies:

genotype AA AB BB
fitness wx wy wz

frequency p2 2pq q2

In the following, we assume that A is the original allele in the population.
We shall also assume that the population is diploid, and therefore the initial
population consists only of one genotype, namely AA.
The fitness of the newly created genotypes AB and BB will depend on the mode
of interaction between A and B. In this sense we distinguish the following cases.

In dominant selection the two homozygotes have different fitness values,
whereas the fitness of the heterozygote is the same as the fitness of one of
the homozygous genotypes.

genotype AA AB BB
fitness 1 1 + s 1 + s

From (2.36) we obtain the following change in the frequency of allele B
per generation:

∆q =
sp2q

1 − s − p2s
. (2.37)

The new allele is recessive

genotype AA AB BB
fitness 1 1 1 + s

From (2.36) we obtain the following change in the frequency of allele B
per generation:

∆q =
spq2

1 + sq2
. (2.38)

In codominant selection the two homozygotes have different fitness, whereas
the fitness of the heterozygote is the mean of the fitness of the two homozy-
gous genotypes.
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genotype AA AB BB
fitness 1 1 + s 1 + 2s

From (2.36) we obtain the following change in the frequency of allele B
per generation:

∆q =
spq

1 + 2spq + 2sq2
. (2.39)

In overdominant selection the heterozygote has the highest fitness.

genotype AA AB BB
fitness 1 1 + s 1 + t

where s > 0 and s > t.
From (2.36) we obtain the following change in the frequency of allele B
per generation:

∆q =
pq(2sq − tq − s)
1 + 2spq + tq2

. (2.40)

In underdominant selection the heterozygote has the lowest fitness.

genotype AA AB BB
fitness 1 1 + s 1 + t

where s > 0 and s < t.
In this case the change in the frequency is also described by (2.40).

More information is given by [40].

2.4 SELECTIONS WITH REPETITIONS

Recall what we discussed until now for selecting k objects from a set of n:

ordered unordered

no repititions n!
(n−k)!

(
n
k

)
repitions allowed nk ?
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The first row we complete discussed.
The first case in the second we discussed in the first chapter.4 As an example
choose ordere two elements from {1, 2, 3, 4} where repititions are allowed:

1,1 1,2 1,3 1,4
2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4
4,1 4,2 4,3 4,4

”?” in the second row means that we have to determine the number of ways
these are to choose k objects from n, where repititions are allowed, but where
order does not matter.
As an example choose two elements from {1, 2, 3, 4}:

1,1 1,2 1,3 1,4
2,2 2,3 2,4

3,3 3,4
4,4

More systematically

Theorem 2.4.1 The number of unordered choices of k from n, with repitio-
tions allowed is (

n + k − 1
k

)
=

(
n + k − 1

n − 1

)
. (2.41)

Proof. Any choice will consist of x1 choices of the first object, x2 choices of the
second object, and so on, where the condition x1 + . . . + xn = k is satiesfied.
We can represent such collection x1, . . . , xn of integers by a binary sequence:

0, . . . , 0︸ ︷︷ ︸
x1−times

, 1, 0, . . . , 0︸ ︷︷ ︸
x2−times

, 1, 0, . . . , 0︸ ︷︷ ︸
x3−times

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
xn−times

(2.42)

In this representation there will be n−1 times the digit 1 and k times the digit
0, and so each sequence will be of length n + k − 1, containing exactly k 0s.
Conversely, any such sequence corresponds to a nonnegative integer solution of
x1 + . . . + xn = k.
The k 0s can be in any of the n + k − 1 positions, so the number of such
sequences is

(
n+k−1

k

)
.

4Do you remember where?
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�

From the first fact in the proof we get

Theorem 2.4.2 The number of solutions for the equation x1 + . . . + xn = k
in nonnegative integers xi equals(

n + k − 1
k

)
. (2.43)

As an example consider

x + y + z = 8
subject to x ≥ 2

y ≥ 4

We substitute x = 2 + u, y = 4 + v and solve u + v + z = 2 with help of 2.4.2
to find

(
3+2−1

2

)
= 6 solutions.



3
PARTITIONS

Recall 1.6.2. We can prove the theorem in another way using the following
considerations: If there are n objects of k types with ni of the ith type, i =
1, . . . , k, where n1 + . . . + nk = n, then the number of arrangements are(

n

n1

)
·
(

n − n1

n2

)
· · ·

(
n −∑k−1

i=1 ni

nk

)

=
n!

n1!(n − n1)!
· (n − n1)!
n2!(n − n1 − n2)!

· · · (n −∑k−1
i=1 ni)!

nk!

=
n!

n1! · n2! · · ·nk!
.

The quantity
n!

n1! · n2! · · ·nk!
(3.1)

is called the multinomial coefficient, see 2.2.12.

3.1 PARTITION OF A SET

A partition of a (not necessarily finite) set S is a collection of subsets Si, i ∈ I
of S such that

(i) Si �= ∅ for all i ∈ I;

(ii) Si ∩ Sj = ∅ for i �= j; and

(iii)
⋃

i∈I Si = S.

49
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The subsets Si are called the parts of the partition. A partition of a set into
exactly two parts is called a bipartition or a split.

In particular we will discuss classifications, which are hierarchies of partitions,
and of great relevance in biology. In the book The System of Nature Linnaeus
introduced a system still in use today. He gave every species two Latinized
names; the first for the group it belongs to, the genus; and the second for the
particular organism itself. Today we divide life into: Domain1; Kingdom; Phy-
lum; Class; Order; Family; Genus; and Species.
More or less all these groups are artificial, insofar as their members are cate-
gorized according to agreed-upon levels of similarity rather than precise defi-
nitions. The exception is species, which are defined as a group of individual
organisms that are able to interbreed and produce fertile offspring. This defini-
tion creates an equivalence relation, and the species are the equivalence classes.
Each group is a partition of the set of all species. For example

group \ species human fruit fly

Domain Eukarya Eukarya
Kingdom Animalia Animalia
Phylum Chordata Arthropoda
Class Mammalia Insecta
Order Primata Diptera
Family Hominidae Drosophilidae
Genus Homo Drosophila
Species sapiens melanogaster

Remember 1.3.1 which declares a one-to-one correspondence between partitions
and equivalence relations. A direct consequence of the multiplication principle
is

Observation 3.1.1 If ∼ is an equivalence relation on a set S with n elements
and each equivalence class has the same number m of elements. Then ∼ has
n/m equivalence classes.

1There are three domains. The first two, Bacteria and Archea, are made up of many
microscopic single-celled organisms. The third domain, Eukarya, is diverse.
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3.2 PARTITIONS OF A GIVEN SIZE

Now we are interested in the number of partitions with specified, but not nec-
essarily equal, part sizes. Consider a set S of n elements and a partition of S
into α1 parts of size 1, α2 parts of size 2, up to αn parts of size n, where, of
course, 1 ≤ i ≤ n and

n∑
i=1

iαi = n. (3.2)

Such a partition is called of the type [1]α1[2]α2 . . . [n]αn. Recall 1.6.2. The n
elements can be placed in n! ways. To count distinct partitions we have to take
into account the ways of ordering the elements within the parts and the ways
of ordering the parts of the same size i. Hence,

Theorem 3.2.1 The number of partitions of type [1]α1[2]α2 . . . [n]αn is

n!∏n
i=1(i!)αi · αi!

. (3.3)

In particular, the number of partitions of type [2]m, with m = n
2 is

n!
2m · m!

. (3.4)

3.3 THE STIRLING NUMBERS OF THE
FIRST KIND

We are interested to calculate the number of partitions. In a first view we
consider the similar question that the elements in the parts are ordered, that
means we consider cycles in permutations.

The Stirling numbers of the first kind is defined as follows: s(n, k) is the number
of permutations of 1, . . . , n consisting of exactly k cycles.

As an example consider the permutations of the set {1, 2, 3, 4}. Clearly, these
24 permutations can be classified according to the cycles they have, as follows.
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1. There are 6 permutations with exactly one cycle: (1234), (1324), (2134),
(2314), (3124) and (3214).

2. There are 11 permutations with exactly two cycles: (123)(4), (124)(3),
(134)(2), (234)(1), (132)(4), (142)(3), (143)(2), (243)(1), (12)(34), (13)(24)
and (14)(23).

3. There are 6 permutations with exactly three cycles: (12)(3)(4), (13)(2)(4),
(14)(2)(3), (23)(1)(4), (24)(1)(3) and (34)(1)(2).

4. There is only one permutation with four cycles: (1)(2)(3)(4).

Here are several elementary facts about the Stirling number of the first kind.2

Obviously, s(n, n) = 1 and
n∑

k=1

s(n, k) = n!. (3.5)

Theorem 3.3.1
s(n, 1) = (n − 1)!. (3.6)

Proof. If we select the first n−1 elements, then the nth is determined. Selecting
n − 1 elements can be done in (n − 1)! ways.

�

Theorem 3.3.2

s(n, n − 1) =
(

n

2

)
. (3.7)

The proof remains as an exercise for the reader.

Theorem 3.3.3 For n, k ≥ 2 it holds

s(n, k) = (n − 1) · s(n − 1, k) + s(n − 1, k − 1). (3.8)

2Further results we will find later when considering the Stirling number of the second
kind.
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Proof. Consider n elements and the nth element explicitely. n either forms a
1-cycle on its own or can be slotted into a cycle in one of the s(n − 1, k − 1)
permutations of 1, . . . , n − 1.

�

It is customary to write the Stirling numbers as Stirling’s triangle (of the first
kind) in the form of a right triangle.

n \ k 1 2 3 4 5 6

1 1
2 1 1
3 2 3 1
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1

3.4 THE STIRLING NUMBERS OF THE
SECOND KIND

The Stirling number S(n, k) of the second kind denotes the number of ways of
partitioning of a set of n elements into exactly k parts.

As an example consider the partitions of the set {1, 2, 3, 4}. These partitions
can be classified according to the number of parts they have, as follows.

1. There is only one partition with exactly one part: {{1, 2, 3, 4}}.
2. There are 7 partitions with exactly two parts:

{{1, 2, 3}, {4}} {{1, 2, 4}, {3}} {{1, 3, 4}, {2}} {{2, 3, 4}, {1}}
{{1, 2}, {3, 4}} {{1, 3}, {2, 4}} {{1, 4}, {2, 3}}

3. There are 6 partitions with exactly three parts:

{{1, 2}, {3}, {4}} {{1, 3}, {2}, {4}} {{1, 4}, {2}, {3}}
{{2, 3}, {1}, {4}} {{2, 4}, {1}, {3}} {{3, 4}, {1}, {2}}
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4. There is only one partition with four parts: {{1}, {2}, {3}, {4}}.

Of course, for all n ≥ 1, S(n, 1) = S(n, n) = 1.

Theorem 3.4.1 For all n ≥ 2,

(a)
S(n, 2) = 2n−1 − 1. (3.9)

(b)

S(n, n − 1) =
(

n

2

)
. (3.10)

Proof. (a): S(n, 2) is the number of splits, which we counted in 2.2.11.
(b): On of the parts must have two elements. You can choose this part in

(
n
2

)
ways.

�

Theorem 3.4.2 Whenever 1 < k < n,

S(n, k) = S(n − 1, k − 1) + k · S(n − 1, k). (3.11)

Proof. Consider a partition of {1, . . . , n} into k parts; consider the element n.
Case 1: n appears by itself as a 1-element part.
Then the remaining n − 1 elements have to form a partition of {1, . . . , n − 1}
into k − 1 subsets. There are S(n − 1, k − 1) ways in which this can be done.
Case 2: n is in a part of size at least two.
Then we can think of partitioning {1, . . . , n−1} into k sets (which can be done
in S(n− 1, k) ways) and then of adding n in one of the k sets (there are k ways
of doing this).
The addition and multiplication principles give the assertion.

�



Partitions 55

There is an explicit formulae for the Stirling number of the second kind, but
we will omit the proof3:

S(n, k) =
1
k!

k−1∑
i=0

(−1)i

(
k

i

)
(k − i)n. (3.12)

It is customary to write the Stirling numbers as Stirling’s triangle in the form
of a right triangle, where the second column is the number of splits and the
diagonal under the main diagonal are the binomial coefficients.

n \ k 1 2 3 4 5 6

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1

3.5 THE INTERRELATION BETWEEN
THE STIRLING NUMBERS AND THE
BELL NUMBERS

The Stirling number of the first kind must be at least as large as the number
of the second kind, since vvery partition into nonempty parts leads to at least
one arrangement of cycles:

Theorem 3.5.1 For all integers n and k it holds

s(n, k) ≥ S(n, k). (3.13)

Equality holds in 3.5.1 when all the cycles are necessarily singletons or double-
tons, because cycles are equivalent to subsets in such cases:

s(n, n) = S(n, n) = 1, (3.14)

s(n, n − 1) = S(n, n − 1) =
(

n

2

)
. (3.15)

3Compare [3].
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In all other cases the inequality in 3.5.1 is strict. Moreover, s(n, 1) = (n−1)! �
1 = S(n, 1).

B(n) is the total number of partitions of a set of n elements, and is called a
the Bell number:

B(n) =
n∑

k=1

S(n, k), (3.16)

where we define B(0) = 1 = S(0, 0). Immediately from 3.5.1 we have

B(n) ≤ n!. (3.17)

Theorem 3.5.2 For all n ≥ 1,

B(n) =
n−1∑
k=0

(
n − 1

k

)
B(k). (3.18)

Proof. Consider the nth element of a set which is partitioned. It is in one
of parts of the partition with j ≥ 0 other elements. There are

(
n−1

j

)
ways of

choosing these j elements. The remaining n−1− j elements can be partitioned
in B(n − 1 − j) ways. Hence,

B(n) =
n−1∑
j=0

(
n − 1

j

)
B(n − 1 − j)

=
n−1∑
k=0

(
n − 1

k

)
B(k),

putting n − 1 − j = k.

�

3.5.2 yields an elegant (recursive) procedure for the computation of these num-
bers.

n 1 2 3 4 5 6 7 8

B(n) 1 2 5 15 52 203 877 4140



4
RECURRENCE RELATIONS

Recursion is a process that wraps back on itself and feeds the output of a
process back in as the input.

Remember that n! satisfies the following equations:

n! = n · (n − 1)! for n ≥ 1; (4.1)
0! = 1. (4.2)

Recall the triangles of the binomial coefficients b(n, k) =
(
n
k

)
, the Stirling num-

bers s(n, k) of the first and S(n, k) of the second kind. We constructed these
triangles by

b(n, k) = b(n − 1, k) + b(n − 1, k − 1), (4.3)
s(n, k) = (n − 1) · s(n − 1, k) + s(n − 1, k − 1), (4.4)
S(n, k) = k · S(n − 1, k) + S(n − 1, k − 1), (4.5)

compare 2.2.2, 3.3.3 and 3.4.2.

It often happens that in studying a sequence of numbers, a connection between
the current value and several of the previous values is obtained. This connection
is called a recurrence relation. We will discuss how such recurrences arise and
how they may be solved. A general solution method is unknown, but we will
find solutions for several specific and important cases.

In any case we have to handle recurrences with care: Consider the following
sequence

an =
{

1 + an
2

: n even
1 + a3n−1 : otherwise

57
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with a1 = 1. We get

a5 = 1 + a14

= 1 + (1 + a7) = 2 + a7

= 2 + (1 + a20) = 3 + a20

= 3 + (1 + a10) = 4 + a10

= 4 + (1 + a5) = 5 + a5,

which means that a5 is not defined.

4.1 LINEAR RECURRENCE RELATIONS

Let k be a positive integer and let c1, . . . , ck be real numbers with ck �= 0. Then

an = c1an−1 + c2an−2 + . . . + ckan−k (4.6)

with given real numbers
a0, . . . , ak−1, (4.7)

is called a linear recurrence relation (with constant coefficients) of order k. The
equation (4.6) is called the recurrence equation, and the values (4.7) are called
the initial conditions. Note that the order of the recurrence relation is, on the
one hand, the number of the dependences on previous elements of the sequence,
and on the other hand, the number of initial conditions.

Observation 4.1.1 If the sequences an and a′
n satisfy the recurrence equation

(4.6), then the linear combination α · an + α′ · a′
n satisfies this as well.

4.1.1 First order

Suppose that the population of a colony of ants doubles in each successive year.
A colony is established with an initial population of a0 = a ants. How many
ants will this colony have after n years? Let an denote this number. Then

an = 2 · an−1 = 22 · an−2 = . . . = 2n−1 · a1 = 2n · a. (4.8)

Another example is when we consider the well-known Towers of Hanoi: Con-
sider n discs, all of different sizes. A collection of discs forms a tower if they
ordered according to their sizes, the largest at the bottom. Now
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(i) All the n discs form a tower on position 1.

(ii) There are two other positions: 2 and 3.

(iii) Move the original tower from position 1 to position 3 by moving only
exactly one disc in one step, and by producing only towers at the positions.

What is minimum number of steps required? Let an be the smallest number of
steps required to move the n discs. It is easy to see that: a1 = 1, a2 = 3 and
a3 = 7 (exercise).
What about an? Forget the bottom disc and move the remaining n − 1 discs
to position 2. To get this stage, an−1 steps are needed. Then move the disc
from position 1 to position 3: one step. Now move the tower from position 2 to
position 3. Altogether we need an−1 + 1 + an−1 steps. Hence we have to solve

an = 2 · an−1 + 1, (4.9)

with a1 = 1.1 Then
an = 2n − 1. (4.10)

This is an immediate consequence of the following formulae.

Observation 4.1.2 Let
an = can−1 + g, (4.11)

n ≥ 1, with given constants c and g, and an initial condition

a0, (4.12)

be a (nonhomogeneous) recurrence relation of the first order. Then

an =
{

cna0 + cn−1
c−1 g : c �= 1

a0 + ng : c = 1

For 0 < c < 1 we have
an → 1

1 − c
g.

Proof.

an = c · an−1 + g

1In reality, we only proved an ≤ 2 · an−1 + 1, since these moves suffice. As exercise show
that so many moves are also necessary.
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= c · (c · an−2 + g) + g = c2 · an−2 + cg + g

= c2 · (c · an−3 + g) + cg + g = c3 · an−3 + c2g + cg + g

...
= cn−1 · a1 + cn−2g + . . . + c2g + cg + g

= cna0 + cn−1g + . . . + c2g + cg + g

= cna0 + (cn−1 + . . . + c2 + c + 1) · g.

Now, we distinguish between c = 1 and c �= 1.
For 0 < c < 1 we have an convergent geometric sequence.

�

As exercise

(a) Discuss the equilibrium case.

(b) Consider the case c = −1, g = 1 and a0 = 1.

4.1.2 Second order

In his famous book Liber Abaci, Fibonacci raised the following question

A certain man put a pair of rabbits in a place surround on all sides
by a wall. How many pairs of rabbits can be produced from that pair
in a year if it is supposed that every month each pair begets a new
pair which from the second month on becomes productive.

For convenience, we will count the rabbits in male-female pair. F0 represents
the initial population, and Fi represents the population in the ith month.

fi = |Fi| (4.13)

denotes the total number of pairs in the ith generation.
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generation F0 F1 F2 F3 F4 F5 F6

number of
mature pairs 0 1 1 2 3 5 8

number of
baby pairs 1 0 1 1 2 3 5

fi 1 1 2 3 5 8 13

We can see from this table that

fn = fn−1 + fn−2, (4.14)

for n ≥ 2 with f0 = 1 and f1 = 1.

Now, we concentrate on the recurrence relation

an = c1an−1 + c2an−2 (4.15)

with given a0, a1, and constants c1, c2, where c2 �= 0. There is a very neat
method of solving such relations. Substituting αn with α �= 0 for an in (4.15)
gives αn = c1α

n−1 + c2α
n−2, that is α2 = c1α + c2. Consequently, αn is a

solution of (4.15) if and only if α is a solution of the so-called characteristic
equation

x2 = c1x + c2. (4.16)

We have to distinguish between two cases:

(i) We assume that α and β are distinct solutions of (4.16). Then αn and βn

satisfy (4.15), hence its linear combination also:

an = d1α
n + d2β

n. (4.17)

Choose d1, d2 so that

a0 = d1 + d2

a1 = d1α + d2β.

(ii) On the other hand, when the characteristic equation has a repeated root
α, that means of multiplicity two, then

x2 − c1x − c2 = (x − α)2 = x2 − 2αx + α2 (4.18)
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so that c1 = 2α and c2 = α2. Following nαn also satisfies (4.15), since

c1an−1 + c2an−2 = c1(n − 1)αn−1 + c2(n − 2)αn−2

= 2(n − 1)αn − (n − 2)αn

= nαn

= an.

Choose d1, d2 so that

a0 = d1

a1 = d1α + d2α.

Solving these equations we get the following theorem.

Theorem 4.1.3 Suppose that {an} satisfies the recurrence relation

an = c1an−1 + c2an−2 (4.19)

with given a0, a1.
Let α and β be the roots of the characteristic equation

x2 − c1x − c2 = 0. (4.20)

(a) If α �= β then
an = d1α

n + d2β
n, (4.21)

with

d1 =
a1 − a0β

α − β
, (4.22)

d2 =
a0α − a1

α − β
. (4.23)

(b) If α = β then
an = (a0 + nd2)αn, (4.24)

with
d2 =

a1

α
− a0. (4.25)

Recall Fibonacci’s rabbits to find the characteristic equation in

x2 − x − 1 = 0,

with the roots

α, β =
1 ±√

5
2

,
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Corollary 4.1.4 The Fibonacci sequence

fn = fn−1 + fn−2, (4.26)

for n ≥ 2 with f0 = 1 and f1 = 1, has the solution

fn =
1√
5

⎛
⎝(

1 +
√

5
2

)n+1

−
(

1 −√
5

2

)n+1
⎞
⎠ . (4.27)

This result is strange, since fn is in any case an integer.2

In the nineteenth century Fibonnacci numbers were discovered in many natural
forms. For example, many types of flower have a Fibonacci number of petals:
certain types of daises tend to have 34 or 55 petals, while sunflowers have 89 or
144. The understanding of these relations are called phylotaxis, compare [24].

4.1.3 A general solution method

Generalising the method used in 4.1.3 we outline the theory for solving recur-
rence relations of the form

an = c1an−1 + c2an−2 + . . . + ckan−k (4.29)

with given
a0, . . . , ak−1, (4.30)

where the ci’s are given constants, ck �= 0.
The recurrence allows us to compute an for any n we like, but it only gives
indirect information. A solution to the recurrence in a ”closed form” helps us
to understand what an really stands for.

Algorithm 4.1.5 Let a recurrence relation (4.29), (4.30) be given. Then

1. Solve the characteristic equation

xk − c1x
k−1 − c2x

k−2 − . . . − ck = 0. (4.31)
2The number

1 +
√

5

2
= 1.61803 . . . (4.28)

is important in many parts of mathematics as well as in the art world since ancient times.
Therefore is has a special name, the golden ratio.
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It has k roots, some of which may be multiple.3

2. If α1, . . . , αr are the roots of (4.31), then an = αn
i is a solution of the

recurrence equation (4.29). Any linear combination of such solutions is
also a solution, see 4.1.1.
Compose a linear combination for the roots in the following sense: If root
α has multiplicity m then use

αn, nαn, n2αn, . . . , nm−1αn. (4.32)

3. We need to be given the initial conditions of the first k values (4.30).
The k equations can be solved if we insert these conditions. This forms a
system of k linear equations with k unknowns, which is simple to solve.

An example: an satisfies the relation

an = −2an−2 − an−4

with a0 = 0, a1 = 1, a2 = 2 and a3 = 3.
The characteristic equation is

0 = x4 + 2x2 + 1 = (x2 + 1)2.

The roots of this equation are i and −i (where i =
√−1) and each root has

multiplicity 2. so the general solution is

an = x1i
n + x2nin + x3(−i)n + x4n(−i)n.

Substituting the initial conditions and solving the four simultaneous equations
in the four unknowns x1, . . . , x4 we obtain

an = −3
2
in+1 + (−1

2
+ i)nin +

3
2
i(−i)n + (−1

2
− i)n(−i)n.

4.1.4 Nonhomogeneous recurrence relations

Consider recurrence relations of the form

an = c1an−1 + c2an−2 + . . . + ckan−k + g(n) (4.33)

3A solution is explicetely possible if k ≤ 4, but maybe not for the case k > 4. For
considerations behind these questions, the so-called Galois theory, see [81].
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with given
a0, . . . , ak−1, (4.34)

where the ci’s are given constants, ck �= 0, and g(n) is a given function.
If g(n) is zero, the recurrence relation is called homogeneous, which is what we
discussed extensively above, and otherwise, nonhomogeneous.
A solution method uses the following fact, which is similar to 4.1.1.

Observation 4.1.6 The difference of two solutions of a nonhomogeneous re-
currence equation is a solution of its homogeneous part.

As an example consider the special case

an = an−1 + g(n). (4.35)

We have

a1 = a0 + g(1)
a2 = a1 + g(2) = a0 + g(1) + g(2)
a3 = a2 + g(3) = a0 + g(1) + g(2) + g(3)

...
an = a0 + g(1) + g(2) + . . . + g(n)

an = a0 +
n∑

i=1

g(i),

which shows that we can solve this type of relation in terms of n, if we can find
a suitable summation formula for

n∑
i=1

g(i). (4.36)

In particular the recurrence equation (4.35) with g(n) = cn2 has the solution

an = a0 + c · n(n + 1)(2n + 1)
6

. (4.37)

For practice prove the following generalization.

Theorem 4.1.7 Consider the nonhomogeneous recurrence equation

an + cn−1an−1 = crn, (4.38)

of first order, where c is a constant.
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(i) If rn is not a solution of the associated homogeneous equation

an + cn−1an−1 = 0, (4.39)

then
an = Arn (4.40)

is a solution of (4.38), where A is a constant.

(ii) When rn is a solution of the associated homogeneous equation (4.39)
then

an = Anrn (4.41)

is a solution of (4.38), where A is a constant.

4.2 THE DYNAMICS OF POPULATION
GROWTH

Recall the ants colony or Fibonacci’s rabbits. The growth of a population is
a dynamical process, meaning that it represents a situation that changes over
time.
The ebb and the flow of a population over time can be conveniently thought
of as a list of numbers called the population sequence. Every population start
with a initial population N0, the 0th generation, and continues with N1, N2, . . .,
where Nn is the size of the nth generation.

Graham et al. [39] discussed that ”bee trees” provide a good and more real-
istic example of such a point of view. Let’s consider the pedigree of a male
bee. Each male (called a drone) is produced asexually from a female (called a
queen); each female, however, has two parents, a male and a female.
The drone has one grandfather and one grandmother; he has one great-grandfa-
ther and two great-grandmothers, he has two great-great-grandfathers and
three great-great-grandmothers. In general, by induction, we see that he has
exactly fn+1 greatn-grandfathers and fn+2 greatn-grandmothers.
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4.2.1 The Malthusian equation

Let us assume that the size Nn of a population at time n completely determines
its size at time n + 1.4 More formally:

Nn+1 = f(Nn). (4.42)

As an introductory example consider a continuous population censused at in-
tervals. Let the probability of any given individual dying between censuses be
d, and let the average number of births to any given individual in the same
period be b. Then the total number of deaths is d · Nn, the total number of
births b · Nn, and consequently

Nn+1 = (1 + b − d) · Nn. (4.43)

Such a linear model is known as the Malthusian equation. The parameter
λ = 1 + b − d is called the growth ratio. For

(a) λ < 1, we have decay;

(b) λ > 1, we have actual growth; and

(c) λ = 1 we have a constant population.

Observation 4.2.1 A Malthusian process with constant growth ratio λ and
initial condition N0 is given by

Nn = N0 · λn. (4.44)

4.2.2 The logistic equation

In nature an exponential growth, as described above, cannot go on indefinitely
because several limiting factors of the enviroment, for instance lack of food,
oxygen, space, light etc. or simply the adverse effects of overcrowding, slows
down growth sooner or later. The simplest model is the following: To put it
very informally, the key idea is that the rate of growth of the population is
directly proportional to ”room” available in the population’s habitat.
There are two ways to describe the situation mathematically. Suppose C is
some constant that describes the total saturation point of the habitat. Then

4The use of discrete time is sometimes rather artificial, but it may be appropriate if the
the population is censused in intervals, or in generations.
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for a population of size Nn, we can say that the amount of elbow room is the
difference between this capacity and the population size, namely C−Nn. When
the growth rate is proportional to the amount of elbow room we have

growth rate for a period n = r(C − Nn) + 1,

where r is a constant. Altogether we have

Nn+1 = population at period n + 1
= ( population at period n) · (growth rate for a period n)
= Nn(r · (C − Nn) + 1).

Normalizing this equation we get the logistic equation

Nn+1 = cNn(1 − Nn). (4.45)

This equation is sometimes known as the Verhulst equation.5

4.2.3 Age-structured populations

Fibonacci’s rabbits are age-structured, that means their age is very important
in determining their vital parameters. In this case the only vital parameter is
the birth rate, as none of the rabbits ever die. If we define

(i) N1,n to be the number of one-month-old pairs of rabbits at time n; and

(ii) N2,n to be the number of adult pairs of rabbits at time n.

Of course,

N1,n+1 = N2,n (4.48)
N2,n+1 = N1,n + N2,n. (4.49)

Hence, in matrix notation(
N1,n+1

N2,n+1

)
=

(
0 1
1 1

)
·
(

N1,n

N2,n

)
. (4.50)

5In general, this equation is given in differential form:

dN

dt
= cN(1 − N), (4.46)

with solution

N =
N(0)ect

1 − N(0) + N(0)ect
, (4.47)

compare [11] or [32].
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Generalizing, we may have to consider a (matrix-) recurrence-relation

Nn+1 = LNn, (4.51)

where Nn is a m-vector and L is a m×m-matrix known as Leslie matrix, with
N0 given.
If L is constant, we are interested in establishing when the process is stationary,
that means we consider Ln when n runs to infinity.
Let us look for a solution in the form Nn = λnN . Substituting this in (4.51)
and dividing the equation by λn gives

λN = LN (4.52)

or, equivalently,
(L − λE)N = o. (4.53)

Of course we are interested in non-trivial solution for this equation; we look for
an Eigenvalue of L. For this to happen the matrix L − λE must be singular,
which implies

det(L − λE) = 0. (4.54)

This is a polynomial of degree m and has m roots.

Theorem 4.2.2 Let the recurrence equation (4.51) with a Leslie matrix L be
given. Assuming that all eigenvalues λ1, . . . , λm of L are distinct, then a general
solution of the recurrence relation is

Nn =
m∑

i=1

αiλ
n
i ci, (4.55)

where ci is the eigenvector corresponding to λi. The numbers αi are constants
that are determined by the initial conditions.

For further information compare [11].

4.3 NUMERICAL RECURRENCES

4.3.1 The arithmetic-geometric mean

Let x1, . . . , xn be nonnegative real numbers. The geometric mean for these
numbers is defined by

G(x1, . . . , xn) = n
√

x1 · · ·xn, (4.56)
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and the arithmetic mean by

A(x1, . . . , xn) =
x1 + . . . + xn

n
. (4.57)

Many different and ingenious proofs of the very important inequality G ≤ A
have been devised. The simplest way is the following.

Theorem 4.3.1 Let x1, . . . , xn be nonnegative real numbers. Then

G(x1, . . . , xn) ≤ A(x1, . . . , xn), (4.58)

where equality holds if and only if x1 = . . . = xn.

Proof. Let s =
∑n

i=1 xi. Consider the function

f(x1, . . . , xn) =
n∏

i=1

xi. (4.59)

Since the set {(x1, . . . , xn) : xi ≥ 0,
∑n

i=1 = s} is compact, the quantity Maxf
exists.
We may assume that all xi are positive.
Assume that x1 �= x2, then for y1 = y2 = x1+x2

2 it holds

y1 + y2 + x3 + . . . + xn = s, (4.60)

and

y1y2 − x1x2 =
(

x1 + x2

2

)2

− x1x2 =
(

x1 − x2

2

)2

> 0. (4.61)

Consequently, y1y2x3 · · ·xn > x1 · · ·xn. In the same way we can prove that
x1 = xi, where xi is any one of the x’s and we may assume that Maxf is
achieved if xi = xj = x for all i, j. Then s = nx.

n∏
i=1

xi = f(x1, . . . , xn)

≤ f
( s

n
, . . . ,

s

n

)
=

( s

n

)n

=
(∑n

i=1 xi

n

)n

.

This gives the assertion.
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�

In particular, √
ab ≤ a + b

2
. (4.62)

Consider the following recurrence relation

an+1 =
1
2
an +

1
2
gn; (4.63)

gn+1 =
√

an · gn (4.64)

with a1 = a and g1 = b.
In view of (4.62) we have g2 ≤ a2, and moreover, gn ≤ an for all numbers n.
Consequently

an+1 =
1
2
an +

1
2
gn

≤ 1
2
an +

1
2
an

= an,

and

gn+1 =
√

an · gn

≥ √
gn · gn

= gn,

which shows that {an} is a monotonic decreasing sequence, and {gn} a mono-
tonic increasing sequence, and consequently both are convergent sequences. We
have

an =
g2

n+1

gn
,

which implies

Theorem 4.3.2 The sequences defined by the recurrence relations

an+1 =
1
2
an +

1
2
gn; (4.65)

gn+1 =
√

an · gn (4.66)

with a1 = a and g1 = b converge to the same limit, called the arithmetic-
geometric mean.

As an exercise determine the limit of the sequence an for which the general
term is the arithmetic mean of its two preceding terms: an+2 = A(an, an+1).
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4.3.2 The square root

Let a be a positive real number whose square root is to be found. Suppose x is
an estimate of the square root arrived at by some means. If x is greater than√

a, then a/x will be smaller than
√

a, and conversely. The product of x and
a/x is a. These two numbers serve as reciprocal estimates of

√
a. Newton’s

algorithm iteratively replace the estimate x by the means of the reciprocal
estimates:

x1 = a (4.67)

xn+1 =
1
2

(
xn +

a

xn

)
, (4.68)

until the difference of the reciprocal estimates has been made as small as desired.
In other terms

lim
n→∞ xn =

√
a. (4.69)



5
COMBINATORIAL PROBABILITY

The theory of probability is one of the most important areas of mathematics
as regards applications. In this book our only goal is to illustrate the impor-
tance of combinatorial results by explaining several key facts of the theory of
probability.1

Historically, counting problems have been closely associated with probability.
Indeed, any problem of the kind ”How many objects are there which . . .” has
the closely related form ”What fraction of all objects . . .”, which in turn can be
posed as ”What is the probability that a randomly chosen object . . .?” when
expressed in terms of the theory of probability. In this sense Laplace defined
probability as follows

Probability =
number of favorable cases

total number of cases
. (5.1)

Probability will be a measure of how likely it is that some event will occur,
given as a number between 0 (=impossible) and 1 (=certain).
In the present book we only deal with probability problems where Laplace’s
definition of probability applies.

5.1 EVENTS AND PROBABILITIES

Let S = {s1, . . . , sn} be the set of possible outcomes of an experiment. To get
a probability space we assume that each outcome si ∈ S has a probability p(si)

1And its applications in biomathematics.

73
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such that
n∑

i=1

p(si) = 1 and (5.2)

p(si) ≥ 0, (5.3)

for all i = 1, . . . , n. Consequently

p(si) ≤ 1, (5.4)

for all i = 1, . . . , n.

A subset E of S is called an event. The probability of an event E ⊆ S is defined
as the sum of probabilities of outcomes in E, and is denoted by p(E):

p(E) =
∑
s∈E

p(s). (5.5)

A probability space in which every outcome has the same probability is called
a uniform probability space. In this case the probability of an event E is

p(E) =
|E|
|S| . (5.6)

5.2 THE ALGEBRA OF PROBABILITIES

The following theorem follows directly from the Laplace definition, and gives
the characteristic properties for probability.

Theorem 5.2.1 The probability function p defined on the class of all events
in a finite probability space has the following properties:

(a) For every event E, 0 ≤ p(E) ≤ 1.

(b) p(S) = 1.

(c) If events E and F are mutually exclusive, then p(E ∪ F ) = p(E) + p(F ).

The concept of the algebra of sets enters into the calculation of probabilities
when the probabilities of certein events are known and the probability of others
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are required.
For example, from the knowledge of p(E), p(F ) and p(E ∩F ) we may compute
the probability of p(E ∪ F ). In view of 1.42 we have derive the following law.

Theorem 5.2.2 Let E and F be events, then

p(E ∪ F ) = p(E) + p(F ) − p(E ∩ F ). (5.7)

As an example toss a coin three times and observe the sequence of heads (H)
and tails (T) that appears. The probability space consists of 8 elements. Let
E be the event that two or more heads appear consecutively, and F that all
the tosses are the same, that means:

E = {HHH, HHT, THH},
F = {HHH, TTT}.

Then
E ∩ F = {HHH}

is the event in which only heads appear. The probilities are

p(E) =
3
8
, p(F ) =

1
4
, and p(E ∩ F ) =

1
8
.

This last theorem can be generalized to the following equation, which follows
immediately from 1.5.3.

Theorem 5.2.3 Let E1, . . . , En be a (finite) collection of events. Then

p(
n⋃

i=1

Ei) =
n∑

i=1

p(Ei) −
∑

1≤i<j≤n

p(Ei ∩ Ej)

+
∑

1≤i<j<k≤n

p(Ei ∩ Ej ∩ Ek) ∓ . . . − (−1)np(
n⋂

i=1

Ei). (5.8)

The following facts for events E and F are easily to see:

(a) p(Ec) = 1 − p(E).

(b) p(∅) = 0.
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(c) p(E \ F ) = p(E) − p(E ∩ F ).

(d) If E ⊆ F , then p(E) ≤ p(F ).

Although it is very simple, the following result from our considerations, is
tremendously useful.

Corollary 5.2.4 For any finite or countable infinite collection Eα∈A of events

p(
⋃

α∈A

Eα) ≤
∑
α∈A

p(Eα). (5.9)

5.3 CONDITIONAL PROBABILITY AND
INDEPENDENT EVENTS

Baye’s theorem says that if an event E is actually observed, then the probability
of an hypothesis H must be multiplied by the following ratio:

probability of observing E if H is true
probability of observing E

. (5.10)

In other words, the conditional probability of an hypothesis H given an event
E is equal to the ratio of the unconditional probability of H multiplied by the
conditional probability of E if H is true to the unconditional probability of E
alone. More formally, suppose E is an event in a probability space (S, p) with
p(E) > 0. The probability that an event F occurs once E has occured, called
the conditional probability of F given E, written p(F |E), is defined as follows

p(F |E) =
p(F ∩ E)

p(E)
. (5.11)

Roughly spoken, p(F |E) measures the relative probability of F with respect to
the reduced space E. According to Laplace this is defined by

Conditional Probability =
number of cases in F ∩ E

total number of cases in E
. (5.12)

Multipying both sides of (5.11) by p(E) gives us the following multiplication
theorem for the conditional probability.
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Theorem 5.3.1 Let E, F be events in a probability space (S, p).

p(F ∩ E) = p(F |E) · p(E). (5.13)

The multiplication theorem gives us a formula for the probability that events
E and F both occur. It can easily be extended to more than two events
E1, . . . , En; that is

p(E1∩E2 ∩ . . .∩En) = p(E1) ·p(E2|E1) · · · p(En|E1∩E2 ∩ . . .∩En−1). (5.14)

Events E and F in a probability space (S, p) are said to be independent if the
occurence of one of them does not influence the occurence of the other. More
exactly, F is independent of E if p(F ) is the same as p(F |E). Substituting this
in 5.3.1 yields

Theorem 5.3.2 Two events E and F in a probability space (S, p) are inde-
pendent if

p(F ∩ E) = p(F ) · p(E). (5.15)

Recall our probability space from above; a coin is tossed three times. Consider
the events:

E = {first toss is heads} = {HHH, HHT, HTH, HTT}
F = {second toss is heads} = {HHH, HHT, THH, THT}

G = {exactly two heads consecutively} = {HHT, HHT}.
It is easy to compute that

p(E) · p(F ) =
1
2
· 1
2

=
1
4

= p(E ∩ F ), hence E and F are independent

p(E) · p(G) =
1
2
· 1
4

=
1
8

= p(E ∩ G), hence E and G are independent

p(F ) · p(G) =
1
2
· 1
4

=
1
8
�= p(F ∩ G), hence F and G are dependent

5.4 THE BIRTHDAY PARADOX

Let pn be the probability that any two of n persons picked at random have the
same birthday. It is easier to first compute the probability that no two of the
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n persons have the same birthday. Here we think of a list of the people, and
ask: ”In how many ways is it possible for the birthdays of each in turn to be
different from those above them on the list?” Then

1 − pn =
365 · 364 · 363 · · · (365 − n + 1)

365n
. (5.16)

Consequently,

n pn

2 0.0027
3 0.0082
...

...
20 0.4114
...

...
41 0.9032
...

...
57 0.9901
...

...
80 0.9999
...

...
365 1

The strange behavior of pn is often called the birthday paradox.2

Another way of expressing (5.16) is(
1 − 1

365

)
·
(

1 − 2
365

)
·
(

1 − 3
365

)
· · ·

(
1 − n − 1

365

)
. (5.17)

More generally, if there are m people and n possible birthdays then the prob-
ability that all m have different birthdays is(

1 − 1
n

)
·
(

1 − 2
n

)
·
(

1 − 3
n

)
· · ·

(
1 − m − 1

n

)
= Πm−1

j=1

(
1 − j

n

)
. (5.18)

If j is small compared to n we have

1 − j

n
≈ e−j/n. (5.19)

2This fact is not really a paradox, it seems surprising because we are used to comparing
our particular birthday with others and only rarely finding a perfect match.
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Using this approximation, assuming that m is small compared to n we find

Πm−1
j=1

(
1 − j

n

)
≈ Πm−1

j=1 e−j/n

= e
−
∑

m−1

j=1
j
n

= e−m(m−1)/2n

≈ e−m2/2n.

Consequently, we proved the following theorem.

Theorem 5.4.1 If there are m people and n possible birthdays then the prob-
ability that all m have different birthdays is

Πm−1
j=1

(
1 − j

n

)
≈ e−m2/2n. (5.20)

This paradox is a classic example of so-called coincidence. In a world where
there are great many potential coincidences each with a small probability of
happening, someone, somewhere is going to see one. The fact that there are
countless numbers of noncoincidences and many people who do not see a sig-
nificant coincidence in the same period of time is overlooked. Consequently, we
tend to underestimate the probabilities of coincidences in certain situations.

5.5 RANDOM VARIABLES

When studying a random event, we are often interested in some value associated
with the event rather than in the event itself. More exactly a random variable
X on a probability space (S, p) is a real-valued function on S.

For a random variable X and a real number a, the event [X = a] includes all
the basic events of the space in which X assumes the value a:

[X = a] = {s ∈ S : X(s) = a}. (5.21)

Consequently,
p(X = a) =

∑
s∈S

p(s). (5.22)
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5.5.1 The expectation of a random variable

The expectation of a random variable is a weighted average of the values it
assumes, where each value is weighted by the probability that the variable
assumes that value.

E[X ] =
∑

i

i · p(X = i), (5.23)

where we sum over all values in the range of X .

Remark 5.5.1 For any collection of random variables X1, . . . , Xn and con-
stants c1, . . . , cn,

E

[
n∑

i=1

ciXi

]
=

n∑
i=1

ciE[Xi]. (5.24)

Markov’s inequality, formulated in the next theorem, is a fundamental fact for
random variables.

Theorem 5.5.2 Let X be a random variable that assumes only nonnegative
values. Then for all a > 0

p(X ≥ a) ≤ E[X ]
a

. (5.25)

Proof. Let

Y =
{

1 : X ≥ a
0 : otherwise

Since, X ≥ 0

Y ≤ X

a
. (5.26)

Because Y is a 0/1 random variable we have

E[Y ] = p(Y = 1) = p(X ≥ a).

Taking expectations in (5.26) and using the linearity 5.5.1 thus yields

p(X ≥ a) = E[Y ] ≤ E
[
X

a

]
=

E[X ]
a

.

�
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5.5.2 The variance of a random variable

The variance of a random variable X offer a measure of how far the random
variable is likely to be from its expectation.

V[X ] = E[(X − E[X ])2]. (5.27)

We give another form for the variance.

Observation 5.5.3 The variance of a random variable X equals

V[X ] = E[X2] − E[X ]2. (5.28)

Proof. Keeping in mind that E[X ] is a constant and 5.5.1, we have

V[X ] = E[(X − E[X ])2]
= E[X2 − 2XE[X ] + E[X ]2]
= E[X2] − 2E[XE[X ]] + E[X ]2

= E[X2] − 2E[X ]E[X ] + E[X ]2

= E[X2] − E[X ]2.

�

Using the expectation and the variance of a random variable, one can derive a
strong tail bound, known as Chebyshev’s inequality.

Theorem 5.5.4 Let X be a random variable. Then for all a > 0

p(|X − E[X ]| ≥ a) ≤ V[X ]
a2

. (5.29)

Proof. We first observe that

p(|X − E[X ]| ≥ a) = p((X − E[X ])2 ≥ a2). (5.30)

Since (X −E[X ])2 is a nonnegative random variable, we can apply 5.5.2 to see

p((X − E[X ])2 ≥ a2) ≤ E[(X − E[X ])2]
a2

=
V[X ]

a2
. (5.31)

�
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5.5.3 Bernoulli and Binomial random
variables

Suppose that we run an experiment that succeeds with probability p and (con-
sequently) fails with probability 1 − p.

Y =
{

1 : the experiment succeeds
0 : otherwise

is called a Bernoulli random variable.

Theorem 5.5.5 Let Y be a Bernoulli random variable with probability p. Its
expectation equals

E[Y ] = p. (5.32)

Proof.
E[Y ] = 1 · p + 0 · (1 − p) = p.

�

Consider a sequence of n independent experiments, each of which succeeds with
probability p. If we let X represent the number of successes in the experiments,
then X has a binomial distribution, and can be defined by

p(X = j) =
(

n

j

)
pj(1 − p)n−j . (5.33)

That means X equals j when there are exactly j successes and n − j failures
in n experiments. In view of the binomial theorem we have

n∑
j=0

p(X = j) = 1, (5.34)

As an example consider that a coin is tossed three times; call a heads a succes.
This is a binomial distributed experiment X with n = 3 and p = 0.5. The
probability that exactly two heads occur is

p(X = 2) =
(

3
2

)
· 0.52 · 0.51 = 0.365.
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Theorem 5.5.6 Let X be a binomially distributed random variable with pa-
rameters n and p. Its expectation equals

E[X ] = np. (5.35)

Proof.

E[X ] =
n∑

j=0

j

(
n

j

)
pj(1 − p)n−j

=
n∑

j=0

j
n!

j!(n − j)!
pj(1 − p)n−j

=
n∑

j=1

n!
(j − 1)!(n − j)!

pj(1 − p)n−j

= np

n∑
j=1

(n − 1)!
(j − 1)!((n − 1) − (j − 1))!

pj−1(1 − p)(n−1)−(j−1)

= np

n−1∑
k=0

(n − 1)!
k!((n − 1) − k)!

pk(1 − p)(n−1)−k

= np

n−1∑
k=0

(
n − 1

k

)
pk(1 − p)(n−1)−k

= np,

where 2.2.3 is used to get the last equation.

�

The variance of a binomial random variable can be determined directly by
computing E[X2] and using 5.5.3 (Exercise).

Theorem 5.5.7 Let X be a binomially distributed random variable with pa-
rameters n and p. Its variance equals

V[X ] = np(1 − p). (5.36)
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5.5.4 The law of large numbers

In this section we study an experiment that consits of n independent attempts
and has two possible outcomes with the same probability. For instance:

(a) Tossing a coin.

(b) ”Walking on the integers”; with each step one position to the left or one
position to the right.

In the second example the probability of your position is given by the following
table.

after

step 0 1
step 1 1

2
1
2

step 2 1
4

2
4

1
4

step 3 1
8

3
8

3
8

1
8

step 4 1
16

4
16

6
16

4
16

1
16

step 5 1
32

5
32

10
32

10
32

5
32

1
32

step 6 1
64

6
64

15
64

20
64

15
64

6
64

1
64

...
. . .

The law of large numbers says that if we carry out the experiment many times,
the frequency by which we get a result will be the same for both possible
outcomes:

(a) The number of ”heads” will be about the same as the number of ”tails”.

(b) We are at the first integer.

A more precise formulation is given by the following theorem.

Theorem 5.5.8 Let 0 ≤ t ≤ m. Then the probability that from 2m attempts
of an experiment with two outcomes (with the same probability), the number of
one outcames is less than m − t or larger than m + t is at most e−t2/(m+t).

Proof. For simplicity we call the two outcomes head and tail.
Let Ek denote the event that we get exactly k heads. It is clear that the events



Combinatorial probability 85

Ek are mutually exclusive, and that for every outcome of the experiments,
exactly one of the Ek occurs.
The number of outcomes for which Ek occurs is the number of sequences of
length n consisting of k heads and, consequently n − k tails. This can be
achieved in

(
n
k

)
ways, so that Ek has

(
n
k

)
many elements. Since the total

number of outcomes is 2n, we get

p(Ek) =

(
n
k

)
2n

. (5.37)

Now we calculate the probability that the number of heads is far from the
expected m = n/2. Assume that it is less than m− t or larger than m+ t, with
0 < t ≤ m. The probability that this happens is

1
22m

((
2m

0

)
+ . . . +

(
2m

m − t − 1

)
+
(

2m

m + t + 1

)
+ . . . +

(
2m

2m

))
. (5.38)

Then 2.2.10 proves the theorem.

�

5.5.5 The Poisson random variables

Let X be a binomially distributed random variable with parameter n and p. If
the number n of experiments is large and the number k of successes is small,
then a good approximation is

p(X = k) ≈ (np)k

k!
e−np, (5.39)

assuming that np, the expected number of successes, is a constant. This can
be seen by the following chain of equations.(

n

k

)
pk(1 − p)n−k

=
n(n − 1) · · · (n − k + 1)

k!
λk

nk

(
1 − λ

n

)n−k

substituting p =
λ

n

= 1 ·
(

1 − 1
n

)
· · ·

(
1 − k − 1

n

)
· λk

k!
·
(

1 − λ

n

)n

·
(

1 − λ

n

)−k

→ λk

k!
· e−λ,
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provided that n increases, p approaches 0, and λ = np = const. Consequently,
we proved

Theorem 5.5.9 (Poisson)

lim
n→∞,p→0,np=λ=const

(
n

k

)
pk(1 − p)n−k =

λk

k!
· e−λ. (5.40)

In view of this theorem we introduce the following notation: A random variable
X has the Poisson distribution with parameter λ if

p(X = k) =
λk

k!
e−λ. (5.41)

In other terms,

Observation 5.5.10 Let B(k, n, p) be binomial distributed with the parameters
n and p, then

B(k, n, p) ≈ P (k, λ), (5.42)

where P (k, λ) is Poisson distributed with parameter λ = np.

This observation is very helpful, because, in general, the quantity B(k, n, p) is
hard to compute if n � 1 and p � 1.

The Poisson distribution is often used in modelling situations in biology where
events occur infrequently. Consider the following example [22]: From many
studies, it has become clear that the rate of amino acid substitution varies
between organisms and also between protein classes. We are interested in the
way how amino acid substitution rates are computed.
Let w and w′ be two (homologous) polypeptides of the same length n. nd de-
notes the number of differences between homologous acid sites; the probability
p of an amino acid substituting occuring at a given site of either w or w′ can
be estimated by

p ≈ nd

n
. (5.43)

A second approximation of p can be derived by assuming that the substitution
of amino acids at a given site is a Poisson process. Let X be a random variable
counting the number of mutations over time t at fixed site for an polypeptide
having substitution rate λ per site (and per year). Then

p(X = k) =
(λ · t)k

k!
e−λ·t. (5.44)
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Thus the probability that no substitution occurs at a given site in w is

p(X = 0) = e−λ·t. (5.45)

Hence the probability that no substitution occurs at a given site in w and w′ is

q = e−2·λ·t. (5.46)

Since d = 2 · λ · t is the total number of substitutions occuring at a fixed site,
we get

d = 2 · λ · t = − ln q. (5.47)

Together with (5.43) we find the following approximation

d ≈ − ln
(
1 − nd

n

)
(5.48)

for the protein substitution rate.

Theorem 5.5.11 Let X be a Poisson distribution with parameter λ. Its ex-
pectation equals

E[X ] = λ. (5.49)

Proof. Recall that the kth term in the Taylor expansion of ex is xk/k!, so that

E[X ] =
∞∑

k=0

k
λk

k!
e−λ

= λe−λ d

dλ

∞∑
k=0

λk

k!

= λe−λ d

dλ
eλ

= λe−λeλ

= λ.

�

The variance can be determined by considering the function E[etX ] and its
derivations (Exercise).

Theorem 5.5.12 Let X be a Poisson distribution with parameter λ. Its vari-
ance equals

V[X ] = λ. (5.50)
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5.6 RANDOM GENETIC DRIFT

Natural selection is not the only factor that can cause changes in allele frequen-
cies, it can also occur by chance, in which case the changes are not directional
but random. An important factor in producing random fluctuations in allele
frequencies is the random sampling of gametes in the process of reproduction.
Let us consider a population in which

(a) all individuals have the same fitness;

(b) selection does not operate;

(c) the generations are nonoverlapping; and

(d) the population size does not change from generation to generation.

The population under consideration is diploid and consists of n individuals,
so that at any given locus the population contains 2n genes. Let p be the
frequency of allele A in the population and 1− p be the frequency of the allele
B, respectively. A random variable X is given when 2n gametes are sampled
from the gamete pool, the probability that the sample contains exactly i alleles
of type A is given by

p(X = i) =
(2n)!

i!(2n− i)!
pi(1 − p)2n−i. (5.51)

The process of change in allele frequency due solely to chance effects is called
random genetic drift. Let us follow the dynamics of chance of the frequencies

p0, p1, . . . , pt, . . . , (5.52)

of the allele A in succeeding generations, where the subscripts denote the gen-
eration number.
On average p1 will be equal to p0, and furthermore pi+1 ≈ pi, for all i. In
reality, sampling occurs only once in each generation, namely

(i) p1 is usually different from p0;

(ii) the frequency p2 will no longer depend on p0, but only on p1;

(iii) the frequency p3 will depend on neither p0 nor p1, but only on p2; and so
on.

Thus the most important property of the genetic drift is its cumulative be-
havior. In mathematical terms, we are interested in the expectation and the
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variance of the frequency of allele A in generation t. Without proof we give
these quantities by

Et = p0 (5.53)
Vt ≈ p0(1 − p0)(1 − e−t/2n). (5.54)

Note that although the expectation mean does not change with time, the vari-
ance increases. In other terms, the chance in allele frequencies is not systematic
in its direction.

5.7 WATSON’S PARADOX

Clearly, it is of great interest to understand the evolutionary past of mankind,
to specify the location of the human branch of the tree of life. This is one of
the biggest questions in evolutionary biology.
Darwin claimed that the African apes are mans closest relatives, and suggested
that evolutionary origins of man were to be found in Africa. In other words,
the commonly held view was that humans were phylogenetically distinct from
the great apes (chimpanzees, gorillas and orang-utans), being placed in differ-
ent taxonomic families, and that this split occurred at least 15 Mya. These
conclusions were based on fossils.
Genetic studies of human prehistory started 100 years ago considering blood
groups. By 1964, knowing much more about blood groups and their worldwide
distributions, Cavalli-Sforza and Edwards constructed the first family tree of
human species.
In 1967, Sarich and Wilson [72] measured the extent of immunological cross-
reaction in the protein serum albumin between various primates. The results
were striking: humans, chimpanzees and gorillas were genetically equidistant
and clearly distinct from the orang-utan.3

There are two different models:

The multiregional model posits the evolution of Homo sapiens from a con-
vergence of various distinct hominid lines in different geographic regions.

The Out of Africa model posits the evolution of a lineage of hominids who
left Africa not more than 1 Mya.

3The work of Sarich and Wilson was one of the first examples of molecular systematics,
that is the use of gene and protein sequences to reconstruct the evolutionary history. It
changed the perspective on human origins and opened the ”molecules versus morphology”
debate.
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For more facts about this question compare [6], [7], and [63].
The breakthrough for understanding came with a publication in Nature in 1987
[14] by the late Wilson and two of his students, Cann and Stoneking, entitled
”Mitochondrial DNA and human evolution”. They used mother-only genes,
known technically as mitochondrial DNA. Wilson and his colleagues examined
the mother-only genes in 134 individuals from around the world. They found
remarkable similarities as well as differences in all the samples. The centrepiece
of the article was a diagram which bears a superficial resemblance to a tree. It
contains a hypothetical common female ancestor of all extant humans, called
Eve, or in more scientific terms Mitochondrial Eve (mtEve).
More formally, consider a population of a finite number of individuals who are
reproducing independently by the same probability distribution. The probabil-
ity an individual having r offsprings in the next generation is pr, r = 0, 1, . . . , n,
where n being a chosen maximal number of offsprings. Additionally we assume
for simplicity that the generations are discrete and each individual has the
same life span. The random variable Xi is the number of individuals in the ith
generation, where i = 0, 1, 2, . . ..
The sequence

X0, X1, X2, . . . (5.55)

is called a branching process.
We are interested in the question: What is the probability of a population
dying out?

Theorem 5.7.1 Let κ = E[X ] be the expectation of the number of offspring of
an individual. Then for the population to survive the following holds.

(a) If κ ≤ 1 then the population becomes extinct with probability 1.

(b) If κ > 1 then the population becomes extinct with probability q, where q is
the (unique) root of the polynomial

Φ(x) − x =
n∑

r=0

prx
r − x. (5.56)

For a proof compare [32], [52], [53].

To conclude, it seems most likely that anatomically modern humans evolved in
Africa around 200 kya (kilo years ago) and then spread around the world.4

4As reported in [47], Templeton later obtained several distinct trees, similar to Wilson’s
tree, and most of them support a non-African hypothesis. But the ”Out of Africa” hypothesis
is also supported by several other observations.
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For a informative discussion on this subject see also [5], [13], [17], [18], [61],
and [90].

5.8 THE THEORY OF INFORMATION

In everyday life, we use the word ”information” in many different ways. One
of the most common use is as a measure of novelty or surprise. In a broad
sense, coding theory is concerned with the transfer of information- one with
reliability, the other with security.
Compare [74] for a common description of information and coding theory, and
[15] or [91] for its application in molecular biology.

5.8.1 Bits

Suppose we want to develop a way to represent the letters of the English alpha-
bet by using words over {0, 1}. Since there are 26 letters, we should be able to
encode these letters in terms of sequences of five bits, given that 24 ≤ 26 ≤ 25.
In general we have the following observation.

Observation 5.8.1 For an alphabet of k letters we need at least �log k� bits
and at most �log k� + 1 bits to encode it, where bit means a 0/1-decision.

We create a mathematical theory for measuring information. Because we do
not know in advance what combination of characters might be transmitted, we
can only attach a probability to the transmission of any particular character.
If the a priori probability of a character a is p(a), then the information content
I(a) of a is simply the negative of the logarithm of the probability of that
character being sent:

I(a) = − log p(a). (5.57)

The base used in calculating the logarithm determines the unit of information.
The most common unit used base 2, in which case the information is measured
in binary digits (bits).
Now, we will show that (5.57) holds from obvious assumptions.

Theorem 5.8.2 Let A be an alphabet with k ≥ 2 letters and let a probability
p(a) of each character be given. Assuming that the information content I(a)
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depends only on the probabilities: I(a) = f(p(a)), and the function f satisfies
the following two conditions

(i) f is continuous; and

(ii) f(p · p′) = f(p) + f(p′) for all p, p′.

Then we have
f(p) = c · ln p, (5.58)

where c is a constant.
Normalizing f(1/2) = 1, implies (5.57).

Proof. Consider the function

h = f ◦ exp . (5.59)

Then h is a continuous function with

h(x + y) = f(ex+y) = f(ex · ey) = f(ex) + f(ey) = h(x) + h(y). (5.60)

Under these conditions h must be a linear function: h(x) = c · x.5 This imme-
diately implies the assertion.
The norming procedure gives

1 = f

(
1
2

)
= c · ln 1

2
= c · (− ln 2),

and
f(p) =

− ln p

ln 2
= − log p.

�

5For a proof consider successively
(i) h(0) = 0.

Since h(0) = h(0 + 0) = h(0) + h(0).

(ii) h(−x) = −h(x).
Since 0 = h(x − x) = h(x) + h(−x).

(iii) For positive integers h(n) = nh(1).
Since h(n) = h(1 + . . . + 1) = h(1) + . . . + h(1) = nh(1).

(iv) For positive integers h(1/n) = (1/n)h(1).
Since h(1) = h(n/n) = nh(1/n).

(v) h(n/m) = (n/m)h(1), for integers n and m.
By (iii) and (iv).

(vi) h(r) = rh(1) for real numbers r.
By using that h is continuous.

A noncontinuous function h which satisfies h(x + y) = h(x) + h(y) is very strange, see [78].
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5.8.2 Entropy

Consider the following example: suppose that we have two biased coins. One
comes up heads with probability 3/4, and the other comes up heads with prob-
ability 7/8. Which coin produces more randomness per flip?

A system S = (A, p) with an alphabet A and a probability p is called an
information source. The average information contained in a source is called its
entropy. This is a measure of the uncertainty in a system at a given moment
because the more information there is in a system, the greater the uncertainty is
in specifying exactly what state the system is in. Boltzmann is today credited
with having the notion of entropy as a measure of the disorder present in a
collection of objects.

Consider a word w = a1 . . . an ∈ A�. What is the information within w?
Suppose we receive a character a from A, with k = |A|, where characters are
sent with uniform distribution. In view of (5.57) we have

I(a) = − log
1
k

= log k. (5.61)

Now assume that pi = p(ai), i = 1, . . . , k are the probabilities of outputting
characters ai in a message, where

k∑
i=1

pi = 1 and

pi > 0.

(We omit the case pi = 0, since here ai does not really occur.)
Let ni = npi be the expected number of occurences of ai in the random message
w. Then w belongs with high probability to a set of size

Nn =
n!

n1! · · ·nk!
. (5.62)

The average information should then equal

I =
log Nn

n
. (5.63)

Applying Stirling’s formula yields

ln Nn ≈ n ln n −
k∑

i=1

npi ln(npi)
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= n ln n − ln n

k∑
i=1

npi −
k∑

i=1

npi ln pi

= −n
k∑

i=1

pi ln pi.

Since ln and log are related by a constant, it follows that

log Nn ≈ −n

k∑
i=1

pi log pi, (5.64)

consequently

I =
log Nn

n
= −

k∑
i=1

pi log pi, (5.65)

which leads to the following definition.

Theorem 5.8.3 (Shannon’s formula) The entropy H(S) = H(p1, . . . , pk) of
an information source S = (A, p) is given by

H(p1, . . . , pk) = −
k∑

i=1

pi log pi. (5.66)

About the behavior of the entropy we have the following fact.

Theorem 5.8.4 The entropy-function H(S) = H(p1, . . . , pk) of an informa-
tion source S = (A, p) has its maximum if and only if

p1 = . . . = pk. (5.67)

Proof. We consider the function

H(S) = H(p1, . . . , pk) = −
k∑

i=1

pi log pi = − 1
ln 2

k∑
i=1

pi ln pi (5.68)

with subject to
∑k

i=1 pi = 1, with the help of Lagrange’s multiplier. That
means we consider the function

F (p1, . . . , pk, λ) = − 1
ln 2

k∑
i=1

pi ln pi − λ

(
k∑

i=1

pi − 1

)
. (5.69)
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Then setting the partial derivates to 0, we obtain

∂F

∂pi
= − ln pi

ln 2
− 1

ln 2
− λ = 0, and

∂F

∂λ
=

k∑
i=1

pi − 1 = 0.

These equalities give the assertion.

�

5.8.3 Codes

Let A and B be alphabets. Then an injective mapping

c : A →
k⋃

i=1

Bi (5.70)

is called a coding of A by (words of) B.
The image of c is called a code. It can be extended to a map

c� : A� → B�, (5.71)

which is also called coding, by setting

c�(a1 . . . an) = c(a1) . . . c(an). (5.72)

Although c is injective, this must not be true for c�: Consider A = {x, y, z} and
B = {0, 1} with c(x) = 0, c(y) = 1 and c(z) = 01. Here is c�(xy) = 01 = c�(z).
Consequently, the injectivity of c� must be forced.

If u, v ∈ B� and w = uv, then the word u is called a prefix and the word
v is called a suffix of w. The empty word is prefix and suffix of each word.
Any word is prefix and suffix of itself. We use these notations for codes which
are uniquely decodable. The main examples are the so-called prefix codes. A
collection c(A) of words is called a prefix code if no word in c(A) is the prefix
of any other word in c(A). For each prefix code c� is injective.

A block code is a code having all its words of the same length; this number of
letters is called the length of a code. Of course, a block code is a prefix code.
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One example of a block code is the ASCII (American standard code for infor-
mation interchange), by which computers represent alphanumeric characters.
ASCII provides 128 code words over IB = {0, 1} for 128 characters. Thus, each
such codeword contains seven bits of information. An eighth bit is used for
error-detecting.
The famous genetic code hardwired into every cell in your body is a good ex-
ample for another type of a block code. Because there are four possible nucleic
acids: adenine (a), cytosine (c), guanine (g), and uracil (u), that can appear
at each location in a code word. 20 amino acids: alanine, arginine, . . ., valine,
are coded. Hence, each code word must be of length 3.

u c a g

u phenylalanine serine tyrosine cysteine u
phenylalanine serine tyrosine cysteine c
leucine serine punctuation punctuation a
leucine serine punctuation tryptophan g

c leucine proline histidine arginine u
leucine proline histidine arginine c
leucine proline glutamine arginine a
leucine proline glutamine arginine g

a isoleucine threonine asparagine serine u
isoleucine threonine asparagine serine c
isoleucine threonine lysine arginine a
methionine threonine lysine arginine g

g valine alanine aspartic acid glycine u
valine alanine aspartic acid glycine c
valine alanine glutamic acid glycine a
valine alanine glutamic acid glycine g

5.8.4 Huffman codes

Unique decodability means that there can be only a single interpretation for
each code. Roughly speaking, if a code is uniquely decipherable, it cannot have
very many short code words.

Let c : A → {0, 1}� be a coding.

N(c) = max{|c(a)| : a ∈ A} (5.73)
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is called the maximum code word length. If there is a given probability p : A →
IR, the quantity

N(c) =
∑
a∈A

p(a) · |c(a)| (5.74)

is called the average code word length. Of course, N(c) ≤ N(c).

Theorem 5.8.5 (Shannon’s noiseless coding theorem) Let S = (A, p) be an
information source. Then

(a) It holds
H(S) ≤ N(c), (5.75)

for any prefix code c.

(b) There is a prefix code c such that

N(c) < H(S) + 1. (5.76)

From this we see that there is a code always calls for less that one bit per
symbol more than the entropy.
Furthermore this leads to the obvious question: What is the most efficient
coding scheme, the one with the smallest average code-word length, for a given
information source. This question was answered by Huffman, who discovered an
ingenious scheme, called a Huffman encoding, for creating optimal codes. The
essential idea in Huffman’s procedure is to systematically assign the shortest
code words to the symbols that occur most frequently. More exactly,

1. Find the two smallest probabilities p(a) and p(b);
Draw a line from each of them to their sum a|b with probability

p(a|b) = p(a) + p(b), (5.77)

which is the probability of either the symbol a or the symbol b being
transmitted;

2. Create the new source

S′ = (A ∪ {a|b} \ {a, b}, p′), (5.78)

where p′ is new computed by (5.77);
Repeat the steps until |A| = 1;
We find a collection of paths from each symbol to a common point;
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3. Put a 1 on each upper path and a 0 on each lower path;

4. The Huffman code for a given symbol is then the sequence of bits encoun-
tered in tracing back from the the common point.

Compare [74].

Nature uses a similar approach, namely using ”supersymbols”, for the genetic
code. In the genetic code each codeword has a length of 6 bits, but this is not
necessary, when we additionally use the binary alphabet A′ = {r, y} in which
r codes for a purine (a or g), y codes for a pyrimidine (c or u), each of 1 bit,
and − codes for any one of 0 bit.6

u c a g

u y: phenylalanine -: serine y: tyrosine y: cysteine

r: leucine r: punctuation a: punctuation
g: tryptophan

c -: leucine -: proline y: histidine -: arginine

r: glutamine

a y: isoleucine -: threonine y: asparagine y: serine

a: isoleucine r: lysine r: arginine
g: methionine

g -: valine -: alanine y: aspartic acid -: glycine

r: glutamic acid

Glancing at this structure, it is clear that the genetic code is fault-tolerant, in
the sense that transcription errors in the third codon position frequently do not
influence the amino acid expressed. This is called the wobble-hypothesis.

Consider the amino acid composition7:
6− is a ”dummy” letter.
7given by the Swiss-Prot protein sequence data bank www.expasy.ch
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amino acid scale values (in %) coded (in bit)

alanine 7.8 4
cysteine 1.57 5
aspartic acid 5.3 5
glutamatic acid 6.59 5
phenylalanine 4.02 5
glycine 6.93 4
histidine 2.27 5
isoleucine 5.91 5.5
lysine 5.93 5
leucine 9.62 4.5
methionine 2.37 6
asparagine 4.22 5
proline 4.85 4
glutamine 3.93 5
arginine 5.29 4.5
serine 6.89 4.5
threonine 5.46 4
valine 6.69 4
tryptophan 1.16 6
tyrosine 3.09 5

The entropy is calculated in 4.174 and the average code word length in 4.642.

5.9 THE ORIGIN OF LIFE AND EIGEN’S
PARADOX

Consider the origins of life. Suppose that a polynucleotide molecule is of length
m. We make the following assumptions:

(i) The average number of copies of itself it produces during its lifetime is s.

(ii) Some of the copies may not be exact. For simplicity we assume that all
copies are produced at the end of the lifetime, and that every nucleotide
in the sequence is copied correctly with the same probability p, where
0 < p < 1.
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Each copy is a random variable with probability pm. Copies can be seen as
experiments of which there are s; more exactly as a binomial distribution with

p(exactly k correct copies of the polynucleotide)

=
(

s

k

)
(pm)k(1 − pm)s−k

=
(

s

k

)
(pmk)(1 − pm)s−k.

In view of 5.5.6 the expectation is

spm. (5.79)

This means that the polynucleotide molecule will have spm correct copies by
the time it disintegrates.
In other terms, the ”genotype” of the polynucleotide may survive only if spm >
1, or conversely, the polynucleotide dies with probability 1 if spm ≤ 1. Equiv-
alently,

log(spm) ≤ log 1 = 0,

rewritten by

m ≥ − log s

log p
, (5.80)

paying attention to the fact that log p < 0.
In view of log p ≤ p − 1 we have the following result.

Observation 5.9.1 Under the assumptions listed above a polynucleotide dies
with certainity if

m ≥ log s

1 − p
. (5.81)

Experiments suggest that RNA replication without any enzymes has approx-
imately an error probability of 1 − p = 0.05. If we assume that s = 2 or
s = 3, then 5.9.1 implies a sequence of the length of at most 20. This is far too
short for protein synthesis. With the help of enzymes the probability of error
decreases considerably.

If a RNA molecules are not sufficiently long, enzymes cannot be syn-
thetized and without enzymes RNA cannot reach the length necessary
for enzymes synthetization.
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This antimony is often called the error catastrophe or the information crisis.
A way out of this trap was suggested by Eigen: Called the hypercycle, it is
a mathematically well-founded theory of that which is not unimaginable from
the point of view of ”natural history”. Extremely roughly spoken, this is a loop
formed by nucleotides and catalysts which realized a coevolution that leads to
life. For a complete discussion compare [32].

5.10 SEQUENCE SPACES

5.10.1 The Hamming distance

For a word v ∈ {0, 1}n we define the Hamming weight wt(v) as the number of
times the digit ”1” occurs in v. Clearly, wt(v) ≤ n. Moreover

wt(v + w) ≤ wt(v) + wt(w). (5.82)

which is easily to show.

Let v and w be words of length n. We define the Hamming distance by

ρH(v, w) = wt(v + w) = wt(v − w). (5.83)

Conversely,
wt(v) = ρH(v, o), (5.84)

where o = 0n.
The Hamming distance between v and w is the number of positions in which v
and w disagree. It can be directly generalized to words in An, for an alphabet
A:

ρH((a1, . . . , an), (b1, . . . , bn)) = |{i : ai �= bi for i = 1, . . . , n}|, (5.85)

for ai, bi ∈ A.

Theorem 5.10.1 (An, ρH) is a metric space.

5.10.2 The number of words in sequence
spaces

We count the words in IB4 = {0, 1}4 by its Hamming weights.
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weight 0 1 2 3 4

0000 0001 0011 0111 1111
0010 0101 1011
0100 0110 1101
1000 1011 1110

1101
1110

number 1 4 6 4 1

(
n
k

)
is just the number of ways that an unordered collection of k elements can be

chosen from a set of n elements. Thus
(
n
r

)
is the number of words in (IBn, ρH)

with weight r, 0 ≤ r ≤ n. That means

Lemma 5.10.2 Let v be a word in ({0, 1}n, ρH) and let r be an integer with
0 ≤ r ≤ n. Then the number of words with a distance of at most r from v is
precisely (

n

0

)
+
(

n

1

)
+
(

n

2

)
+ . . . +

(
n

r

)
. (5.86)

For a nonnegative integer r we defined

Br(v) = {x ∈ {0, 1}n : ρH(x, v) ≤ r} (5.87)

as the ball with center v ∈ X and radius r. Then 5.10.2 shows

|Br(v)| =
r∑

k=0

(
n

k

)
. (5.88)

In particular, |Br(v)| is independent from the center of the ball.
For n = 3 and v = 110 we have

B0(v) = {110}
B1(v) = {110, 010, 100, 111}
B2(v) = {110, 010, 100, 111, 000, 101, 011}
B3(v) = IB3.

Using 2.2.9 we get
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Theorem 5.10.3 Let W be a set of words in the hypercube ({0, 1}n, ρH) with
radius r, r ≤ n. Then

|W | ≤
(e · n

r

)r

. (5.89)

Let A be an alphabet. The metric space (An, ρH) has a strange property:

(i) On one hand, it is a ”big” space, since it contains |A|n many points;

(ii) On the other hand, it is a ”small” space, since its diameter equals n:

max{ρH(w, w′) : w, w′ ∈ An} = n. (5.90)

For some deep consequences of this observation for molecular evolution see
Eigen [30].
Similarly to 5.10.2 we have that for a word v in (An, ρH) and an integer r with
0 ≤ r ≤ n, the number of words of distance at most r from v is precisely

r∑
k=0

(
n

k

)
· (|A| − 1)k. (5.91)

Consequently,

Theorem 5.10.4 Let W be a set of words in (An, ρH) with radius r, r ≤ n.
Then

|W | ≤
(

e · n · (|A| − 1)
r

)r

. (5.92)

5.10.3 Measuring the editorial distance

Consider the set A� of all words over the alphabet A. The edit distance ρL,
between two words of not necessarily equal length is the minimal number of
”edit operations” required to change one word into the other, where an edit
operation is a deletion, insertion, or substitution of a single letter in either
word. This distance is also called Levenshtein distance, since it was introduced
by Levenshtein [56] in connection with error correcting codes.
As an example consider the two German words w =APFEL and w′ =PFERD,
where we have ρL(w, w′) = 3.

In molecular biology the Levenshtein distance is used to measure similarity
(homogeneity) of two molecular sequences (say DNA or polypetides).8

8We will discuss this important approach later in its own chapter.
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At first glance, it seems that the sequence spaces are subspaces of the phy-
logenetic space, but this is not true: Consider the two words v = (ab)d and
w = (ba)d; then ρL(v, w) = 2 but ρH(v, w) = 2d.

To extend the Hamming distance to a metric for all words we may proceed in
the following way: Let A be a set of letters. Add a ”dummy” letter ”-” to A.
We define a map

cl : (A ∪ {−})� → A� (5.93)

deleting all dummies in a word from (A ∪ {−})�. Then for two words w and
w′ in A� we define the extended Hamming-distance as

ρ(w, w′) = min{ρH(w, w′) : w, w′ ∈ (A ∪ {−})�, |w| = |w′|,
cl(w) = w, cl(w′) = w′}. (5.94)

Observation 5.10.5 The extended Hamming-distance coincides with the Lev-
enshtein metric.

As exercise determine or estimate the following quantities:

(a) The number of words in a bounded set in (A�, ρL).

(b) The diameter of (A≤n, ρL).
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MARKOV PROCESSES

A Markov chain describes a chance process in which the future state can be
predicted from its present state as accurately as if its entire earlier history was
known.

6.1 TRANSITIONS

Let S be a finite set of states. Without loss of generality we assume

S = {1, 2, . . . , n}. (6.1)

We consider diagrams between states, where the transition from state i to state
j occurs with given probability αij , altogether written in a transition matrix

A = (αij)i,j=1,...,n. (6.2)

Of course, a transition matrix has the following properties:

(i)
αij ≥ 0, (6.3)

for any i, j = 1, . . . , n.

(ii)
n∑

j=1

αij = 1 (6.4)

for any i = 1, . . . , n.
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Under these conditions, such a matrix is sometimes called stochastic.
The pair (S, A) is called a Markov process.

Consider
A2 = (α(2)

ij )i,j=1,...,n. (6.5)

Then

α
(2)
ij =

n∑
k=1

αikαkj

=
n∑

k=1

probability for a transition from state i to state k

� probability for a transition from state k to state j.

Hence α
(2)
ij is the probability for a transition from state i to state j in two

steps. By induction we find that the probability of the tth-step transition of
the Markov process is defined as the conditional probability, given the chain is
currently in state i, that it will be in state j after t additional transitions.

Theorem 6.1.1 (Chapman, Kolmogorov)
Let (S, A) be a Markov process. Let

At = (α(t)
ij )i,j=1,...,n (6.6)

be the tth power of A. Then α
(t)
ij is the probability for a transition from state i

to state j in t steps.

This means, the tth step transition probability matrix may be obtained by
multiplying the matrix A by itself t times.
In view of these facts we are interested in limt→∞ At.

For more information about computational aspects of Markov processes com-
pare [69].

6.2 TWO-STATES PROCESSES

As specific case consider ({1, 2}, A) with

A =
(

1 − p p
q 1 − q

)
, (6.7)
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where 0 ≤ p, q ≤ 1.
For p = q = 0 we have limt→∞ At = E; for p = q = 1 the quantity limt→∞ At

does not exist.
Now we assume 0 < p, q < 1. We have

A = E +
( −p p

q −q

)
= E + B. (6.8)

It is easy to see that
B2 = −(p + q) · B,

such that
Bi = (−1)i−1(p + q)i−1 · B, (6.9)

for all i ≥ 2. Then

At = (E + B)t

=
t∑

i=0

(
t

i

)
Bi by 2.2.4

= E +
t∑

i=1

(
t

i

)
Bi

= E +
t∑

i=1

(
t

i

)
(−1)i−1(p + q)i−1B by (6.9)

= E − 1
p + q

t∑
i=1

(
t

i

)
(−1)i(p + q)iB

= E +
1

p + q
B − 1

p + q

t∑
i=0

(
t

i

)
(−1)i(p + q)iB

= E +
1

p + q
B − (1 − p − q)t

p + q
B by 2.2.4.

Since limt→∞(1 − p − q)t = 0 we get

lim
t→∞At = E +

1
p + q

B. (6.10)

Theorem 6.2.1 Consider a two-state Markov process. Then

lim
t→∞

(
1 − p p

q 1 − q

)t

=
( q

p+q
p

p+q
q

p+q
p

p+q

)
. (6.11)
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6.3 EVOLUTIONARY MODELS

Evolutionary models describe the substitution processes in DNA, RNA and
amino acid sequences through the time. For simplicity, we will concentrate
on DNA sequences, that means the corresponding matrices of the transition
probabilities is given by

P (t) =

⎛
⎜⎜⎝

paa(t) pac(t) pag(t) pat(t)
pca(t) pcc(t) pcg(t) pct(t)
pga(t) pgc(t) pgg(t) pgt(t)
pta(t) ptc(t) ptg(t) ptt(t)

⎞
⎟⎟⎠ , (6.12)

for each time parameter t ≥ 0 the matrix P (t) is a stochastic ones.
Modelling we assume that P (t) gives the probability of all possible states chang-
ing in time t. We get an continuous-time Markov process. Then we have 6.1.1:

Theorem 6.3.1 Let P (t) be the matrix for the transition probabilities.

P (t + t′) = P (t) · P (t′). (6.13)

Now we assume that such continuous-time Markov processes which are differ-
entiable at every t ≥ 0. Then it follows for h > 0:

P (t + h) − P (t)
h

=
P (t)P (h) − P (t)

h
in view of 6.3.1

=
P (t)(P (h) − E)

h

= P (t) · P (h) − P (0)
h

.

When h → 0 this identity implies

P ′(t) = P (t) · P ′(0). (6.14)

This differential equation gives the following solution.

Theorem 6.3.2 Under the assumptions given above the matrix P (t) has the
form

P (t) = etQ, (6.15)

where Q is some (fixed) matrix.
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Recall, that for a square matrix A we define the exponential matrix eA by the
sum of the following series:

eA =
∞∑

n=0

An

n!
.

The matrix Q is called the matrix of instantaneous change or the rate matrix.
It has the following important properties:

(a) It holds the ”inverse” identity

Q = P ′(0). (6.16)

(b) The elements in each row of Q sum up to 0. In particular,

det Q = 0. (6.17)

By varying the matrix Q one obtains several models:

The Jukes-Cantor model is the oldest model and assumes that the probabilities
to find a nucleotide site are equal in any of the four possible states and for all
time t.1 The matrix of instantaneous change is given by setting

Q =
1
4

⎛
⎜⎜⎝

−3α α α α
α −3α α α
α α −3α α
α α α −3α

⎞
⎟⎟⎠ , (6.18)

where α is a positive real number, called the evolutionary rate.

We will calculate the corresponding matrix P (t).
First, by induction, it is easy to see that

Qn = (−α)n−1Q (6.19)

is true for all integers n ≥ 1. Now we find P (t) = exp(tQ) by the following
calculations.

P (t) =
∞∑

n=0

tnQn

n!

= E +
∞∑

n=1

tnQn

n!

1This assumption is not very realistic.
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= E +

( ∞∑
n=1

tn(−α)n−1

n!

)
Q in view of (6.19)

= E − 1
α

( ∞∑
n=1

(−tα)n

n!

)
Q

= E − 1
α

(
e−tα − 1

)
Q.

This implies

Theorem 6.3.3 The transition matrix in the Jukes-Cantor model equals

pij(t) =
{

1
4 + 3

4e−tα : i = j
1
4 − 1

4e−tα : i �= j

(i, j ∈ {a, c, g, t})

The Kimura model models a certain difference between two types of nucleotide
substitutions: Purines into pyrimidines or vice versa; and inside purines or
pyrimidines. It is given by setting

Q =
1
4

⎛
⎜⎜⎝

−(2β + 1)α βα α βα
βα −(2β + 1)α βα α
α βα −(2β + 1)α βα
βα α βα −(2β + 1)α

⎞
⎟⎟⎠ , (6.20)

with two parameters α, β > 0.

As before, we find the following result.

Theorem 6.3.4 The transition matrix in the Kimura model equals

pij(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
4 + 1

4e−tαβ − 1
2e−tα(β+1)/2 : (i, j) = (a, g), (g, a), (c, t) or (t, c)

1
4 − 1

4e−tαβ : (i, j) = (a, c), (c, a), (a, t), (t, a),
: (c, g), (g, c), (g, t) or (t, g)

1
4 + 1

4e−tαβ + 1
2e−tα(β+1)/2 : otherwise

For more information, and other models, compare [46].



7
SIMILARITY OF WORDS

Einstein said: ”God does not play dice.” He was right. God plays
scrabble.

Philip Gold

In the biological context the equality of words makes no sense, since mutations
do not allow identical sequences in reality. On the other hand, in biomolecular
sequences, high sequence similarity usually implies significant functional and
structural similarity.1

Let A be an alphabet. We consider the set A� of all words over A. Our
interest is to define measures on A� which reflect the ”proximity” of two words.
Here, two different approaches are to be distinguished: distance and similarity.
We will introduce both measures in the greatest possible generality. This is
necessary, since evolution, as reflected at the molecular level, proceeds by a
series of insertions, deletions and substitutions of letters, as well as other far
rarer mechanisms which we are ignore here, since we observe not complete
genomes, only genes or other ”smaller” words.

1But note that the converse is, in general, not true. And in reality, for applications
in biology it is sometimes necessary to take into account several other properties of the
macro-molecules to measure their similarity, for instance structure, expression and pathway
similarity, compare [49].
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7.1 DISTANCES BETWEEN WORDS

To find a metric for words over A we consider a cost measure (c, h) for the
letters given by

A function c : A × A → IR≥0, which satisfies the following conditions:

(i) c is non-negative: c(a, b) ≥ 0;

(ii) c(a, a) = 0; and

(iii) c is symmetric: c(a, b) = c(b, a) for any a, b ∈ A.

A positive real number h.

The substitution of a letter b for a letter a costs c(b, a) = c(a, b). The insertion
or deletion of a letter effectively transforms a non-gap letter in one word to a
gap in the other. Since we do not know the direction of the change through
time, it is useful to group both operations under the term indel. Each indel
costs h.
The distance ρ(w, w′), between two sequences w, w′ ∈ A� according to a cost
measure is the minimum of the costs running over all series of operations trans-
forming w into w′.

Observation 7.1.1 The function ρ is a pseudo-metric. If, moreover, the func-
tion c satisfies the non-degeneracy property, i.e. that c(a, b) = 0 holds if and
only if a = b, then ρ is a metric.

Note, that we do not assume that c satiesfies the triangle inequality, but we can
assume this. The reason for this assumption is that even if we start with a cost
measure (c, h) that does not satisfy it, we can always define a new pair (c′, h)
that does satisfy it and produces the same metric. Namely, if three letters a1, a2

and a3 are such that c(a1, a2) > c(a1, a3) + c(a3, a2), then every time we need
to replace a1 by a2 we will not do it directly but rather replace a1 by a3 and
later a3 by a2, producing the same effect at a lower cost. Moreover, using the
the same reasoning, the restriction of the metric ρ to the alphabet itself need
not be c. This is only true if the function c satisfies the triangle inequality.

An example: For the cost measure (c, h) defined by
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a c g t
a 0 2 1 2
c 0 2 1
g 0 2
t 0

and h = 4, we find ρ(agc, a3c) = 5, ρ(acg, a3c) = 7 and

ρ((ag)d, (ga)d) =
{

2d if d = 1, 2, 3
8 if d ≥ 4

7.2 SIMILARITY OF WORDS

Another approach uses similarity. The procedure used to find such quantity
is called sequence alignment and depends on a scoring system. The elongated
sequences in an alignment should be as similar as possible according to some
predefined scoring system.

7.2.1 Alignments

Sequence alignment is the identification of residue-residue correspondences. It
is the basic tool of bioinformatics.
Any assignment of correspondences that preserves the order of the residues
within sequences is an alignment; gaps may be introduced: Given two sequences
w and w′ over the same alphabet, an alignment of w and w′ is a matrix with
the following properties:

(i) There are two rows, each row for the elongated sequence for w and w′,
which preserves the left-to-right ordering of the letters, but uses dummy
symbols;

(ii) The elongated sequences are of the same length;

(iii) There is no column for which the elongated sequences both have a dummy.

For instance consider the two words w = gt2a2c2 and w′ = gatc. The following
arrays are all alignments for w and w′:
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g t t a a c c
g a t c - - -

g t t a a c c - - - -
- - - - - - - g a t c

and

g t t a a c c
g - - a t c -

where ”-” denotes a ”dummy” symbol.

The conditions for a pairwise alignment implies

max{|w|, |w′|} ≤ l ≤ |w| + |w′|, (7.1)

where l denotes the common length of the elongated sequences. Consequently,
there are a finite number of alignments for a given pair of sequences. More
exactly, there are (

n + m

n

)
=
(

n + m

m

)
(7.2)

alignments of two sequences with n and m letters, respectively. For a proof see
[88].

7.2.2 Multiple alignments

In the context of molecular biology, multiple sequence comparison is the most
critical cutting-edge tool for extracting and showing biologically important fac-
tors that a set of sequences has in common. It plays an essential role in two
related areas:

Finding highly conserved subregions among a collection of sequences; and

Inferring the evolutionary history of some species from their associated
sequences.
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One central technique for multiple sequence comparison involves multiple align-
ment. Here, a (global) multiple alignment of n > 2 sequences w1, . . . , wn is a
natural generalization of the alignment of two sequences. That means that we
insert dummies into, or at either end of, each of the sequences to produce a
new collection of elongated sequences that obeys these rules:

(i) All elongated sequences have the same length, l;

(ii) There is no position at which all the elongated sequences have a dummy.

Then the sequences are arrayed in a matrix of n rows and l columns, where

max
i=1,...,n

|wi| ≤ l ≤
n∑

i=1

|wi|. (7.3)

Consequently, there are a finite number of multiple alignments for a collection
of sequences.

In any case, the alignment array can be summarized in a single sequence called a
consensus sequence, which is frequently added at the end of the alignment. It is
common in computational molecular biology to compute a multiple alignment
for a set of sequences, and then represent those sequences by the consensus
sequence derived from the alignment.
The consensus sequence consists of letters that summarizes the letters of the
alignment in each column. A simple way to calculate a consensus sequence
is to use the so-called majority rule (MR), which chooses the most frequently
occuring letter in each column. We distinguish between two rules:

The normal rule uses the alphabet A ∪ {−}.
The restricted rule uses only the alphabet A.

An example compares the word for SCHOOL in different languages:

Language

German - S C H U - L E
English - S C H O O L -
French E - C - O - L E
Italian - S C - U O L A

Consensus, MR - S C H or - O or U O or - L E
Consensus, restricted MR E S C H O or U O L E
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7.2.3 Scoring systems

Given an alignment between two sequences, we assign a score to it as follows:
Each column of the alignment will receive a certain value depending on its
contents and the total score for the alignment will be the sum of the values
assigned to its columns.
Let an alignment between two sequences be given. We use the following abbre-
viations:

(a) If a column has two identical symbols we will call it a match;

(b) A column with two different symbols is called a mismatch; and

(c) A column with a dummy in one row is called a gap.

We use a scoring system (p, g), which is given by

A symmetric function p : A × A → IR, and

A non-positive real number g.

The array of p is called the (substitution) score matrix. The value p(a, b)
scores pairs of aligned letters a and b. The penalty g is used to penalize gaps.
In general, we assume that p(a, a) > 0, for a ∈ A, and g < 0.2 Clearly,
the selection of an appropriate score matrix is crucial for achieving ”good”
alignments.
A scoring system assigns a value, called the score, to each possible alignment
by adding the values for each column.
The similarity sim(w, w′), between two sequences w, w′ ∈ A� according to a
scoring system is the maximum of the scores running over all alignments of w
and w′.

As an example use the following score matrix:

a c g t
a 4 1 2 1
c 4 1 2
g 4 1
t 4

2And unlikely substitutions are penalized with a negative score.
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and gap-penalty 0 for our alignments above:

g t t a a c c
g a t c - - -
4 +1 +4 +1 +0 +0 +0 =10

g t t a a c c - - - -
- - - - - - - g a t c
0 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0 = 0

and

g t t a a c c
g - - a t c -
4 +0 +0 +4 +1 +4 +0 =13

There are different manners in which a (substitution) score matrix can be de-
rived. In general, in a biological context a scoring matrix p is a table of values
that describe the probability of a residue (amino acid or base) pair occuring
in an alignment. The approach is good, if the score matrix produces good
alignments.

Substitution matrices for amino acids are complicated because they reflect the
chemical nature and the frequency of occurrence of the amino acids, see [4].
The PAM (Point Accepted Mutation) series of score matrices are frequently
used for protein alignments [2] and [27]. Each entry in a PAM matrix gives the
logarithm of the ratio of the frequency at which a pair of residues is observed
in pairwise comparisons of homologous proteins to the frequency expected due
to chance alone. Amino acids that regularly replace each other have a positive
score, while amino acids that rarely replace each other have a negative score.

Substitution matrices for bases in DNA or RNA sequences are simpler: in
most cases, it is reasonable to assume that a:t and g:c occur in roughly equal
proportions.
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7.3 THE INTERRELATION BETWEEN
DISTANCE AND SIMILARITY

The concepts of distance and of similarity are essentially dual. We will describe
what this mean.

Algorithm 7.3.1 Given a cost measure (c, h) and a constant K, we can define
a scoring system (p, g) as follows:

p(a, b) = K − c(a, b),

g = −h +
K

2
,

under the constraint
K ≤ 2h. (7.4)

And conversely, given a scoring system (p, g) with the property that p(a, a) = K
for all a ∈ A, we can define a cost measure (c, h) as follows:

c(a, b) = K − p(a, b),

h = −g +
K

2
,

under the constraints

K ≥ max{p(a, b) : a, b ∈ A}, and
K > 2g.

In other words, we have the following interrelation between a cost measure
(c, h) and a scoring system (p, g):

p(a, b) − 2g = 2h − c(a, b) (7.5)

for all a, b ∈ A, which obviously reflects the duality. Roughly speaking, ”large
distance” is ”small similarity” and vice versa. Moreover, distance computation
can be reduced to similarity computation:

Theorem 7.3.2 (Smith, Waterman, Fitch [77], Setubal, Meidanis [76], Wa-
terman [87]) A cost measure and the corresponding scoring system as in 7.3.1
are given for a certain value K. Let w and w′ be sequences (words) over A.
Then

ρ(w, w′) + sim(w, w′) =
K

2
· (|w| + |w′|). (7.6)
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Both the cost measure and the corresponding scoring system yield the same
optimal alignments.3

Sketch of the proof. Let w and w′ be sequences of length m and n respectively,
and let α be an alignment between w and w′. We define a series σ of opera-
tions transforming w into w′ by dividing α into columns corresponding to the
operations in a natural way:

matches and mismatches in the alignment correspond to substitutions in
the transformation;

gaps in the alignment corresponds to indels in the transformation.

We shall now compute the score of α and the cost of σ. Suppose there are
exactly l letters which are matched or mismatched in α, occupying positions
wi in w and w′

i in w′, 1 ≤ i ≤ l. Suppose further that there are exactly r gaps
in α. Then

score(α) =
l∑

i=1

p(wi, w
′
i) + rg. (7.7)

On the other hand, the cost of σ is

cost(σ) =
l∑

i=1

c(wi, w
′
i) + rh. (7.8)

Memberwise addition of (7.7) and (7.8) in conjunction with 7.3.1 give

score(α) + cost(σ) = lK + r
K

2
. (7.9)

Moreover the values of l and r are not independent: each match and mismatch
uses two letters and each gap uses one. Therefore, the total number of letters
must be

m + n = 2l + r. (7.10)

Then (7.9) can be written as

score(α) + cost(σ) =
K

2
· (m + n). (7.11)

Since this is true for any alignment, we have one half of the assertion.
The other half follows similarly.

3Although with different scores. But using the formula given in 7.3.1 the distance is the
same.
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�

All these considerations imply that, from the mathematical standpoint, an
alignment and an edit transformation are equivalent ways to describe a rela-
tionship between two sequences. But we should note what Gusfield [41] wrote:

Although an alignment and an edit transcript are mathematically
equivalent, from a modeling standpoint, an edit transcript is quite
different from an alignment. An edit transcript emphasizes the pu-
tative mutational events (point mutations in the model so far) that
transform one string to another, whereas an alignment only displays
a relationship between two strings. The distinction is one of pro-
cess versus product. Different evolutionary models are formalized via
different permitted string operations, and yet these can result in the
same alignment. So an alignment alone blurs the mathematical model.
This is often a pedantic point but proves helpful in some discussions
of evolutionary modeling.

The similarity-based approach is more general than that of distance, since

The distance-based approach is restricted to global comparisons only, it is
not suitable for local ones. For an algorithm and derivations of our basic
technique compare [76].

With similarities we can penalize gaps depending on their lengths. This
cannot be done with metrics. This is an important observation, since if
two aligned sequences are for functional protein coding genes, then any
gaps would be expected to have lengths that were multiples of three, to
preserve the reading frame of the gene; and for ribosomal genes there may
be aspects of the secondary structure that can be used to evaluate the
plausibility of the various gaps introduced in an alignment.

In any case we assume that for a cost measure (c, h) the equality c(a, a) = 0
holds for all letters a. On the other hand, there are scoring systems (p, g)
conceivable in which for different letters a and b we have p(a, a) �= p(b, b).4

For a generalized scoring system, derived dissimilarity need not satisfy the
triangle inequality.

4Particularly, the PAM matrices.
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7.4 SPECIFIC CASES

A simplified scoring system, called a match-mismatch-gap system, is given if all
matches have the same value M = p(a, a) and likewise all mismatches have the
same value m = p(a, b), a �= b. Of course, we assume that M ≥ 0 and g ≤ 0.
Additionally, a substitution (a, b) must be ”cheaper” than two indels (a−,−b).
Hence, we have

Corollary 7.4.1 Let (M, m, g) be a scoring system with only values for mat-
ches, mismatches and gaps. Then a cost measure (c, h) having c(a, a) = 0 and
c(a, b) = c > 0 is given by

c = M − m,

h =
M

2
− g,

provided that
M ≥ m ≥ 2g, (7.12)

in which at least one inequality is strict, M ≥ 0, and g ≤ 0.

As examples we consider several standard systems:

(i) The Levenshtein distance, that is c = 1 and h = 1. We may choose match
score M = 2, mismatch score m = 1 and gap score g = 0.

(ii) If we wish to measure the distance by

ρ(w, w′) = # substitutions + h · # indels, (7.13)

for h ≥ 1 (i.e. that gaps are h times as costly as substitutions), we may
choose M = 2, m = 1 and g = 1 − h.

(iii) A ”normed” match-mismatch-gap system with one free parameter is given
by (1, m, 0) where 1 ≥ m ≥ 0. Equivalently, we have a cost measure with
c = 1 − m and h = 1/2. In particular, we consider

The problem of longest common subsequence
Given: A set of sequences over the same alphabet.
Find: A longest sequence contained in each of the given sequences.

The search for a pair of words uses the match-mismatch-gap system (1,0,0)
which implies c = 1 and h = 1/2.
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7.5 THE ALGORITHM

How can we find the similarity of or the distance between two words? Clearly,
the consideration of all possible alignments does not make sense, since there
are too many; see (7.2). Observe that we cannot change the order of the
letters in the words. This fact suggests that a dynamic programming approach
will be useful, which finds the solution by first breaking the original problem
into smaller subproblems and then solving all these subproblems, storing each
intermediate solution in a table along with a score, and finally choosing the
sequence of solutions that yields the highest score.
Let w and w′ be two sequences over A with length m and n, respectively. The
algorithms use a (m + 1) × (n + 1) matrix, and determine the values of this
matrix in the following way:

Algorithm 7.5.1 Let w = a[1]a[2] . . . a[m] and w′ = b[1]b[2] . . . b[n] be two
sequences in A�, equipped with a scoring system (p, q). Then, we find the sim-
ilarity sim(w, w′) =sim[m, n] by the following procedure.

1. for i := 0 to m do
sim[i, 0] := i · g;

2. for j := 0 to n do
sim[0, j] := j · g;

3. for i := 1 to m do
for j := 1 to n do
sim[i, j] := max{sim[i− 1, j] + g, sim[i− 1, j − 1] + p[i, j], sim[i, j − 1] + g}

As example we consider the similarity between NAME and MEAN under the
match-mismatch-gap system (4, 1, 0).

N A M E

0 0 0 0 0

M 0 1 1 4 4

E 0 1 2 4 8

A 0 1 5 5 8

N 0 4 5 6 8
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Hence sim(NAME, MEAN) = 8. By the equivalent cost measure c = 3 and
h = 2 there is ρ(NAME, MEAN) = 8.

An alignment of two words w and w′ is called an optimal alignment if its score
equals sim(w, w′). The algorithm, as stated above, only computes the simi-
larity of the words. For the explicit construction of an optimal alignment, the
algorithm has to be supplemented by a backtracking procedure. This alignment
corresponding to the similarity may well not be unique; but all such alignments
can be found ”backtracking” from the cell sim[m, n] to the cell sim[0, 0] in all
possible ways.

In our example above we have

N A M E - -
- - M E A N

Note that this method to determine the similarity of two sequences is rela-
tively fast but still too slow for most practical work, where the length of the
sequences and the number of sequences to be compared are very large. This
comes from the following often used question: You already have a particular
protein or nucleic acid sequence that you are interested in and you need to find
other sequences that are related to it.5

There are heuristic methods which are more efficiently for ”similarity-searching”
an entry in a collection of sequences, namely the well-known BLAST method,
compare [76].

7.6 OPTIMAL MULTIPLE ALIGNMENTS

Although the notation of a multiple alignment is easily extended from two
to many sequences, the score or the cost of a multiple alignment is not easily
generalized. There is no function that has been universally accepted for multiple
alignment as distance or similarity has been for pairwise alignment.

Recall that a cost measure (c, h) for an alphabet A to compare two sequences
can be also written as a function f : (A∪{−})2 → IR, where − is the ”dummy”

5By ”related” we mean that another sequence is sufficiently similar to the sequence of
interest that we belive the two sequences share a common ancestor.
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symbol, − /∈ A, and

f(a, b) = c(a, b), (7.14)
f(a,−) = f(−, b) = h. (7.15)

(f(−,−) is not defined.) A ∪ {−} is called the extended alphabet, and such
a function f , extended to n ≥ 2 values, is called a generalized cost measure.
More precisely: A generalized cost measure is a function f : (A∪{−})n → IR≥0,
which satisfies the following conditions:

(i) f is non-negative: f(a1, . . . , an) ≥ 0;

(ii) f(a, . . . , a) = 0, for each a ∈ A;
f(−, . . . ,−) is not defined;

(iii) f(a1, . . . , an) > 0 if ai = − holds for at least one index i;

(iv) f is symmetric:

f(aπ(1), . . . , aπ(n)) = f(a1, . . . , an) (7.16)

holds true for any permutation π.

With this in mind, we have several methods to find the generalized similarity,
see [22], [88] and [85].



8
GRAPHS AND TREES

We have to introduce several knowledge of graphs and networks. Graphs are
among the most basic of all mathematical structures. Correspondingly, they
have many different versions, representations and incarnations.

8.1 GRAPHS

A graph G is defined to be a pair (V, E) where

V is any finite set of elements, called vertices, and

E is a finite family of elements which are unordered pairs of vertices, called
edges.

The notation e = uv means that the edge e joins the vertices u and v. In this
case, we say that the vertices u and v are incident to this edge and that u and v
are the endvertices of e. Two vertices u and v are called adjacent in the graph
G if uv is an edge of G.1

N(v) = NG(v) denotes the set of all vertices adjacent to the vertex v and is
called the set of all neighbors of v in G.
For a vertex v of a graph G the degree gG(v) is defined as the number of edges
which are incident to v. If G has no parallel edges then the cardinality of
N(v) = NG(v) is the degree of the vertex:

g(v) = gG(v) = |NG(v)|. (8.1)
1In any case, we assume that u �= v, that means we do not admit loops.
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If we sum up all the vertex degrees in a graph, we count each edge exactly
twice, once from each of its endvertices. Thus,

Observation 8.1.1 In any graph G = (V, E) the equality∑
v∈V

gG(v) = 2 · |E| (8.2)

holds. Particularly, in every graph the number of vertices with odd degree is
even.

A graph G is said to be a complete graph if any two vertices are adjacent. A
complete graph with n vertices has exactly(

n

2

)
=

n(n − 1)
2

(8.3)

edges.

Let G = (V, E) be a graph. Then G′ = (V ′, E′) is called a subgraph of G if V ′

is a subset of V and E′ is a subset of E such that any edge in E′ joins vertices
from V ′. In other terms,

V ′ ⊆ V (8.4)

and

E′ ⊆ E ∩
(

V ′

2

)
. (8.5)

A chain is a sequence v1, e1, v2, e2, v3, ..., vm, em, vm+1 of edges and vertices of
G such that the edge ei is incident to the vertices vi and vi+1 for any index
i = 1, ..., m. A chain in which each vertex appears at most once is called a
path; more exactly, the path interconnecting the vertices v1 and vm+1. Then
the number m denotes the length of the path. A single vertex is a path of
length 0.
A cycle is a chain with at least one edge and with the following properties: No
edge appears twice in the sequence and the two endvertices of the chain are the
same. A graph which does not contain a cycle is called acyclic.

A key notion in graph theory is that of a connected graph.2 It is intuitively
clear what this should mean, and it is also easy to formulate this property: A

2In a natural sense, graph theory is the study of connectivity.
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graph G = (V, E) is called a connected graph if for any two vertices there is
a path (or, equivalently, a chain) interconnecting them. Let G = (V, E) be a
graph and let v and v′ be two vertices of G. Clearly,

Observation 8.1.2 The relation ”There is a path in G connecting v and v′”
is an equivalence relation on V × V .

The equivalence classes of this relation divide V into subsets, which create
connected subgraphs of G. These classes are called the connected components,
or briefly the components of the graph G. A component is a maximal subgraph
that is connected. A connected graph has exactly one component.

8.2 THE METRIC CLOSURE OF A
NETWORK

We consider networks. These are (connected) graphs G = (V, E) equipped with
a length function f : E → IR. This function on the edges of G is constrained
to take only strictly positive values.3

The simplest question, which will be of great importance in further consid-
erations, is to look for the interconnecting chains of shortest length between
vertices in the network:

The Shortest Path Problem
Given: A network G = (V, E, f) and two vertices v and v′ of G.
Find: A path connecting v and v′ with minimal length.

A solution is called a shortest path (between the vertices v and v′ in G).

Observation 8.2.1 Let G = (V, E, f) be a network. Define the function ρ on
V × V so that

ρ(v, v′) = the length of a shortest path between the vertices v and v′ in G,
(8.6)

for two vertices v and v′. Then (V, ρ) is a metric space.
3Nevertheless saying it explicitely, sometimes we will use a length function which has the

value 0 for several edges.



128 Chapter 8

The space (V, ρ) is called the metric closure Gf of the network G = (V, E, f).
We can also define Gf as the complete graph on V such that the length of an
edge vv′ in Gf is the length of a shortest path between v and v′ in G. Note
that G is a subgraph of Gf , but the restriction of ρ on G must not be f .

The problem of finding shortest paths in a network is easy to solve by the
dynamic programming technique. More precisely, we use the following obser-
vation, called Bellman’s principle of optimality:

Observation 8.2.2 (Bellman [8]) Let G = (V, E, f) be a network, and let v
and v′ be two vertices of G. If e = wv′ is the final edge of some shortest path
v, . . . , w, v′ from v to v′, then v, . . . , w (that is the path without the edge e) is
a shortest path from v to w.

Roughly speaking: An optimal strategy contains only optimal substrategies.
The observation gives immediately

Algorithm 8.2.3 (Dijkstra [28]) Let G = (V, E, f) be a network. A shortest
path between the vertices v and v′ can be found by the following procedure:

1. Start with the vertex v;
Label v with 0: L(v) := 0; all other vertices are unlabelled;

2. Determine min{L(v1)+ f(v1v2)} where v1 and v2 are adjacent vertices, v1

labelled and v2 not;
Choose ṽ1 and ṽ2 which attain the minimum;
Label ṽ2 by L(ṽ2) = L(ṽ1) + f(ṽ1ṽ2);

3. Repeat the second step until v′ is labelled.

For all labelled vertices w the quantity L(w) is the length of a shortest path
connecting v and w:

ρ(v, w) = L(w).

Now it is easy to construct the metric closure Gf : it is sufficient to apply 8.2.3
|V | times.
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8.3 TREES

A tree is defined to be a connected graph without cycles. A forest is defined
as a graph whose connected components are trees. That means a forest is a
acyclic graph.

A vertex with degree one is called a leaf. It is easy to see that each tree with
more than one vertex has at least two leaves. A vertex in a tree that is not a
leaf is called an internal vertex.

Observation 8.3.1 Let G = (V, E) be a graph with n vertices, where n > 1.4

Then the following properties are pairwise equivalent (and each characterizes a
tree):

1. G is connected and has no cycles.

2. G is connected and contains exactly n − 1 edges.

3. G has exactly n − 1 edges and has no cycles.

4. G is maximally acyclic; that means G has no cycles, and if a new edge is
added to G, exactly one cycle is created.

5. G is minimally connected; that means G is connected, and if any edge is
removed, the remaining graph is not connected.

6. Each pair of vertices of G is connected by exactly one path.

The proof is intuitively clear.

As a consequence of our considerations, we consider a tree T = (V, E) with n
vertices. Let ni be the number of vertices of degree i and ∆ = ∆(T ) is the
maximum degree in the tree T . Then, of course,

n1 + n2 + . . . + n∆ = n. (8.7)

In view of 8.1.1 and 8.3.1, we have

n1 + 2 · n2 + . . . + ∆ · n∆ = 2|E| = 2n − 2. (8.8)

When we subtract this equation from twice of (8.7) we get
4By definition a graph with one vertex and without edges is also a tree.
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Observation 8.3.2 It holds

n1 = 2 +
∆(T )∑
i=3

(i − 2) · ni, (8.9)

for any tree, whereby ni denotes the number of vertices of degree i and ∆(T ) is
the maximum degree in the tree.

8.4 MINIMUM SPANNING TREES

Let G = (V, E) be a graph. A subgraph G′ = (V, E′) is called a spanning tree of
G if G′ is a tree. If G′ is a spanning tree of G, then G itself must be connected.
Conversely, if G = (V, E) is a connected graph, then G contains a subgraph
G′ = (V, E′) minimal with respect to the property that G′ is connected. The
graph G′ is a spanning tree of G. Hence,

Observation 8.4.1 A graph is connected if and only if it contains a spanning
tree.

Additionally, we assume that a function f : E → IR is given for the edges of
the graph G; we consider a network G = (V, E, f). Then we define the length
of a subgraph G′ = (V, E′) of the graph G as

L(G′) :=
∑
e∈E′

f(e). (8.10)

The Minimum spanning tree problem
Given: A network G = (V, E, f).
Find: A spanning tree T = (V, E′), E′ ⊆ E, which minimizes the length
L(T ).

A solution is called a minimum spanning tree for the network G.

The most recently discovered of the classical algorithms is that of Kruskal,
created:
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Algorithm 8.4.2 (Kruskal [55]) Given a connected graph G = (V, E) with a
length-function f : E → IR, a minimum spanning tree T for G can be found by
the following procedure:

1. Start with the forest T = (V, ∅);
2. Sequentially choose the shortest edge that does not form a cycle with edges

already chosen;

3. Stop when all vertices are connected, that is when |V | − 1 edges have been
chosen.

8.5 LABELLED AND SEMI-LABELLED
TREES

We have to distinguish between labelled an unlabelled trees. A tree T = (V, E)
with n vertices is called labelled if a bijective mapping from V onto the set
{1, . . . , n} of integers is given.5 On the other hand, in the case of unlabelled
trees the word ”different” means non-isomorphic, and each set of isomorphic
trees is counted as one.

In phylogenetics we search for a tree interconnecting a set N of ”living entities”
(species, genes, sequences, words - roughly speaking: names). Such a partially
labelled tree (semi-labelled tree) is usually called an N -tree, which means:

The tree has exactly |N | leaves, each labelled by a different element of N ;

All internal vertices are unlabelled;

The degree of each internal vertex is at least 3.

Sometimes we accept an exception, namely that exactly one internal vertex
is marked, and is permitted to have degree 2. Then this vertex is called
the root of the tree, and such a tree is called a rooted N -tree.

5Or onto another set of n distinguished names.
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8.5.1 Counting labelled trees

It is not the purpose of this chapter to provide a complete survey of counting
methods for trees. We will focus on the counting of specific classes of trees,
which are important in investigations about phylogeny.

We start counting with the number of different labelled trees and we will de-
scribe this number in terms of the vertex degrees.
Let T = (V, E) be a tree with n vertices v1, ..., vn, and let gi = g(vi) be the
degree of each vertex vi. Then, obviously, each of the numbers gi is a positive
integer, and, in view of 8.1.1 and 8.3.1,

n∑
i=1

gi = 2n − 2. (8.11)

Conversely, we find that this equality is also sufficient:

Lemma 8.5.1 Let g1, . . . , gn be a sequence of positive integers satisfying (8.11).
Then there exists a tree on n vertices with these predetermined degrees.

Proof. Let g1, . . . , gn+1 be a sequence with

n+1∑
i=1

gi = 2(n + 1) − 2 = 2n. (8.12)

Not all of the gi can be equal 1, since otherwise

n+1∑
i=1

gi =
n+1∑
i=1

1 = n + 1 < 2n.

Not all of the gi can be greater than 1, since otherwise

2n =
n+1∑
i=1

gi ≥
n+1∑
i=1

2 = 2(n + 1).

Hence, without loss of generality, we may assume that gn+1 = 1 and gn > 1.
Define g′1, . . . , g′n by

g′i = gi (8.13)

for i = 1, . . . , n − 1, and
g′n = gn − 1. (8.14)
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For this sequence it holds

n∑
i=1

g′i =
n−1∑
i=1

gi + (gn − 1) + (gn+1 − 1)

=
n+1∑
i=1

gi − 2

= 2n − 2.

By the induction assumption there is a tree T ′ = (V ′ = {v1, . . . , vn}, E′) such
that g(vi) = g′i. Then the tree T = (V ′ ∪ {vn+1}, E′ ∪ {vnvn+1}) fulfills the
assertion.

�

Hence, the number of different trees increases exponentially, but not faster:

Theorem 8.5.2 Let g1, ..., gn be a sequence of positive integers and denote by
t(n, g1, ..., gn) the number of different labelled trees T = ({v1, ..., vn}, E) of n
vertices with the degree sequence

gT (vi) = gi (8.15)

for i = 1, ..., n. Then

t(n, g1, ..., gn) =
(n − 2)!∏n

i=1(gi − 1)!
(8.16)

if (8.11) holds, and
t(n, g1, ..., gn) = 0 (8.17)

otherwise.

Proof.([9], following the idea of 8.5.1)
In view of 8.5.1 we know that t(n, g1, ..., gn) > 0 if and only if (8.11) holds.
Without loss of generality, we may assume that

g1 ≥ g2 ≥ . . . ≥ gn.

Then vn must be a leaf.
Let Ci be the collection of all trees T with vertices v1, . . . , vn and degrees
gj = gT (vj), such that the leaf vn is adjacent to vi. Assuming gi ≥ 2 we have

|Ci| = t(n − 1, g1, . . . , gi−1, gi − 1, gi+1, . . . , gn−1).
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Since the collection of all trees is the union of the sets Ci for gi ≥ 2 we obtain,
by the addition principle,

t(n, g1, ..., gn) =
∑
gi≥2

t(n − 1, g1, . . . , gi−1, gi − 1, gi+1, . . . , gn−1). (8.18)

Now, we use induction. The theorem is true for n = 2. Assume that n ≥ 3 and
that the theorem is true for n − 1. Then

t(n, g1, ..., gn)

=
∑
gi≥2

t(n − 1, g1, . . . , gi−1, gi − 1, gi+1, . . . , gn−1)

=
∑
gi≥2

(n − 3)!
(g1 − 1)! · · · (gi−1 − 1)!(gi − 2)!(gi+1 − 1)! · · · (gn−1 − 1)!

=
(n − 2)!

(g1 − 1)! · · · (gn−1 − 1)!

=
(n − 2)!

(g1 − 1)! · · · (gn − 1)!
,

where we use 2.2.12.

�

Summing up over all degree sequences satisfying (8.11),

# labelled trees =
∑

(8.11)

t(n, g1, ..., gn)

=
∑

(8.11)

(n − 2)!∏n
i=1(gi − 1)!

= nn−2,

by 1.6.2 or 2.2.12, and we have one of the most beautiful formulas in enumer-
ative combinatorics:

Theorem 8.5.3 (Cayley’s tree formula, [21]) The number of different labelled
trees with n vertices equals nn−2.
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8.5.2 The Prüfer code

Prüfer [66] established a bijection between trees and sequences of n − 2 inte-
gers between 1 and n, providing a constructive proof of Cayley’s result. This
bijection can then be exploited to give algorithms for systematically generating
labelled trees. More precisely: The strategy of the proof is to establish a one-
to-one correspondence between the labelled tree and the Prüfer code, which is
a sequence of length n − 2 of integers between 1 and n, with repetitions al-
lowed; in other words, a member of {1, . . . , n}n−2. Algorithmically this coding
is described by

Algorithm 8.5.4 Let T = (V = {v1, . . . , vn}, E) be a labelled tree. Then the
Prüfer code for T can be constructed by performing the following steps:

1. Initialize T to be the given tree;

2. For i = 1 to n − 2 do
Let v be the leaf with the smallest label;
Let si be the label of the only neighbour of v;
T := T [V \ {v}];

3. The code is (s1, . . . , sn−2).

We will now use the correspondence between Prüfer codes and labelled trees
to generate trees. We first note that the following decoding procedure maps a
given Prüfer code to a labelled tree:

Algorithm 8.5.5 A Prüfer code P is given. Then a labelled tree T = (V, E)
can be constructed by performing the following steps:

1. Initialize the list P as the input;

2. Initialize the list V as 1, . . . , n;

3. Initialize T as the forest of isolated vertices on V ;

4. For i = 1 to n − 2 do
Let k be the the smallest number in list V that is not in list P ;
Let j be the first number in list P ;
Add an edge joining the vertices labelled k and j;
Remove k from list V ;
Remove the first occurrence of j from list P ;



136 Chapter 8

5. Add an edge joining the vertices labelled with the two remaining numbers
in the list V .

It is not hard to see that the decoding procedure 8.5.5 is the inverse of the
encoding procedure 8.5.4. Altogether this establishes again 8.5.3.
Combining all these considerations gives the following:

Algorithm 8.5.6 Let n be an integer with n ≥ 2. Then the following algorithm
generates all trees with n labelled vertices:

1. Generate, by simple counting, all Prüfer codes in {1, . . . , n}n−2;

2. For each code apply 8.5.5.

8.6 UNLABELLED TREES

Let t(n) be the number of non-isomorphic (unlabelled) trees with n vertices.
By considering all n! labellings, we have n! · t(n) ≥ nn−2. Hence,

t(n) ≥ nn−2

n!
≥ en

en3
. (8.19)

On the other hand, we will describe a (nonoptimal) technique, involving draw-
ing a tree in the plane: Let n > 1 be an integer. Remember that a tree code w
(with respect to n− 1) is a sequence in IB2(n−1) with the following properties:

(i) In each prefix of w the number of 1s is at least the number of 0s;
In particular, the first letter in w must be 1;

(ii) The number of 1s in w equals the number of 0s;
In particular, the last letter in w must be 0.

Algorithm 8.6.1 Let w be a tree code with respect to n− 1. Then draw a tree
by the following algorithm:

1. Put a vertex as the origin;
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2. Read w letter by letter and
if you see a 1 then draw a new edge to a new vertex;
if you see a 0 then move back by one edge toward the origin.

Thus the tree is described by its tree code. Hence, after generating all tree
codes, we can generate all unlabelled trees with n vertices.
Note that the tree code is far from optimal; every unlabelled tree has many
different codes. For instance all the codes 11010010, 10110100, 11101000,
10101100, 11011000 and 11100100 generate the same tree.

According to a difficult result of Pólya, compare [43], the number of unlabelled
trees is asymptotic completely determined:

t(n) ≈ c · an

n5/2
, (8.20)

where a = 2.9557 . . . and c = 0.5349 . . ..

Otter [62] finds the following values for the number of trees.

Number n of vertices Number t(n) of trees

1 1
2 1
3 1
4 2
5 3
6 6
7 11
8 23
9 47

10 108
...

24 39299897

For these numbers and other facts about counting of trees see [45].
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8.7 BINARY TREES

A tree in which each vertex has degree one or three is called a binary tree.
Binary trees play an important role in the theory of evolution, since it is as-
sumed that a phylogenetic tree is a ”bifurcation” tree. This follows from the
assumption that evolution is driven by bifurcation events.6

Observation 8.7.1 A binary tree for n leaves has an even number of vertices,
namely 2n− 2.

With this in mind we have the following consequences of 8.5.2, showing that
the number of possible phylogenetic trees increases rather dramatically as the
number of taxa increases.

Theorem 8.7.2 (a) The number of binary trees with n labelled leaves and
n − 2 labelled internal vertices is

(2n − 4)!
2n−2

. (8.21)

(b) (Cavalli-Sforza, Edwards [19]) The number of binary trees with n labelled
leaves and n − 2 unlabelled internal vertices is

(2n − 5)!! = 1 · 3 · 5 · · · (2n − 5) = Ω

((
2n

3

)n−2
)

. (8.22)

The following table, the result is applied to phylogenetic trees:

Number of taxa Number of binary trees Comment

4 3
10 10395
22 ≈ 3 · 1023 Almost a mole of trees
50 ≈ 3 · 1074 More trees than the number

of atoms in the universe
100 ≈ 2 · 10182 out of any range

6In practice phylogenetic trees are allowed to be multifurcating when the bifurcations are
sufficiently close together.
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A helpful description of binary trees with labelled leaves is given by the following
procedure: Let T = (V, E) be a binary N -tree for N = {v1, . . . , vn}.

1. If n = 2, then write T as (v1v2); otherwise,

2. Let vi and vj be two leaves of T which are adjacent to the same vertex v.
Then

(i) Delete the leaves vi and vj , and its incident edges;
(ii) Replace the vertex v by (vivj), which is now a leaf;
(iii) Consider the new tree with n − 1 leaves and repeat the procedure.

Clearly, this procedure gives a simple written description of the tree, called the
”bracket” or Newick format. But note that it is not unique, for example for
the one N -tree for n = 3 we have the descriptions ((v1v2)v3) and (v1(v2v3))
and ((v1v3)v2).

8.8 ROOTED TREES

The most important point in a phylogenetic tree is its root. In a rooted tree
exactly one distinguished vertex is marked as the root.

For each of the labelled trees we have n rooted trees, because any of the n
vertices can be made a root. Hence, as a consequence of Cayley’s tree formula
we find:

Corollary 8.8.1 The number of different rooted labelled trees with n vertices
equals nn−1.

A unique path leads from the root to any other vertex of the tree. Let w be
the root and v be an arbitrary vertex in a rooted tree T = (V, E). The length
of the path7 from w to v is called the level of v:

level(v) = ρ(w, v). (8.23)

The depth of the tree itself is defined by

depth(T ) = max{level(v) : v ∈ V }. (8.24)
7Remember that in this case the length is the number of edges in the path.
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If T is a rooted tree, then it is customary to draw T with root w at the top, at
level 0. The vertices adjacent to w are placed one level 1. Any vertex adjacent
to a vertex of level 1 is at level 2, and so on. In general, every vertex at level
i > 0 is adjacent to exactly one vertex at level i − 1.

We may consider a rooted tree T = (V, E) as a digraph if we direct the edges
vv′ ∈ E from v to v′ if and only if level(v′) = level(v) + 1, where w is the root
of T . Then gin(w) = 0 characterizes the root, and gout(v) = 0 characterizes
the leaves of T .
In this sense we have an ancestor/successor-relation for the vertices of a rooted
tree. In particular, the root is the common ancestor of all vertices of the tree.
In other words, a rooted tree has a vertex identified as the root from which
ultimately all other vertices descend.

For a rooted tree T = (V, E) a natural partial order ≤T on the set V of vertices
is obtained by setting v ≤T v′ if
- The path from the root of T to v′ includes v or, equivalently,
- v′ is the successor of v, and v is the ancestor of v′.
Obviously, v ≤T v′ implies level(v) ≤ level(v′) (but not vice versa).
Let T = (V, E) be a rooted N -tree and let N ′ be a subset of N . We will refer
to the unique vertex v of T that is the greatest lower bound of N ′ under the
order ≤T as the last universal common ancestor of N ′ in T . That means
- v is an ancestor for each vertex in N ′, and
- level(v) = max{level(v′) : v′ ancestor for each member in N ′}.

A tree T is called a rooted binary tree if for its vertices

gT (v) =

⎧⎨
⎩

1 : if v is a leaf
2 : if v is the root
3 : otherwise

holds. In other words, we create a rooted binary tree from a binary tree by
choosing an edge and place the root there. This procedure is called rooting a
tree.

Rooted trees are representations for evolutionary relationships. For a rooted N -
tree T we view the edges as being directed away from the root, and then regard
T as describing the evolution of the set N of given ”names” from a common
(hypothetical) ancestral name; the other internal vertices of T correspond to
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further ancestral names.8,9

Hence, the most important point in a phylogenetic tree is its root. The root is
placed at this position to indicate that,

(i) it corresponds to the (theoretical) last universal common ancestor of ev-
erything in the tree;

(ii) gives directionality to evolution within the tree; and

(iii) it identifies which groups of vertices are ”true”, given if the root does not
lie within a group.

The question is: On which edge should the root be placed? There are three
popular ways to find this position:

1. On the longest edge10.

2. In the middle of the longest path between two leaves.

3. An ”outgroup” can be added to the set of given points. Then the root is
placed at the bifurcation between the outgroup and the main group.

Next, we will discuss the relationship between the number of leaves in a rooted
binary tree and its depth. It is not hard to see that

Observation 8.8.2 Let T be a rooted binary tree of depth d. Then T has at
least d + 1 and at most 2d leaves.

Conversely, the depth of such a tree with n leaves lies approximately between
Ω(log n) and O(n).

Now we count rooted trees. Together with 8.7.2 we have
8Unrooted phylogenetic trees are also biologically relevant since they are typically what

tree reconstruction methods generate.
9Rooting a tree has a strong relationship to the molecular clock; but especially, proteins

evolve at different rates, making it difficult to relate the (evolutionary) distance to the his-
torical time.

10This approach of course requires that there is a length-function for the graph.
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Theorem 8.8.3 The number of rooted binary trees with n labelled leaves and
unlabelled internal vertices (i.e. rooted binary N -trees having |N | = n) is

(2n − 3)!! = 1 · 3 · 5 · · · (2n − 3) = Ω

((
2n

3

)n−1
)

. (8.25)



9
TRAVELLING ROUND A GRAPH

9.1 EULERIAN CYCLES

If we allow more than one edge in E to join two vertices in V , meaning that
there are parallel edges in the graph, we shall call the pair (V, E) a multigraph.
In this sense, any graph is a also a multigraph.

Let G be a graph. A Eulerian chain of G (Eulerian cycle of G, respectively) is
defined as a chain (cycle, respectively) that uses each edge of G exactly once.1

A graph which contains a Eulerian cycle is called a Eulerian graph.
One of the oldest combinatorial problems, accredited to Euler and written in the
teminology of graph theory, can be stated as follows: When does a multigraph
have a Eulerian chain or a Eulerian cycle? The answer is:

Theorem 9.1.1 (Euler) A multigraph has an Eulerian cycle if and only if it
is connected and all vertices have even degree.

Proof. Suppose that the graph G is Eulerian with the Eulerian cycle C. Then,
of course, G must be connected; and the chain C enters and leaves any vertex
the same number of times without repeating any edge, hence with an even
degree.

The converse of 9.1.1 is given by an algorithm for finding such a cycle effectively:
Start with a cycle through the multigraph and add a ”detour” cycle until all
edges are in the tour.

1Note that an Eulerian cycle is not a cycle in the usual sense, since it can contain a vertex
more than once.
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�

Algorithm 9.1.2 (Hierholzer, compare [48], [54]) Let G = (V, E) be a Eu-
lerian (multi-) graph. Choose a vertex v1 arbitrarily and apply the following
recursive procedure Euler(G, v1) to find a Eulerian cycle:

1. Set C := v1; v := v1;

2. If gG(v) = 0 then goto 4.
else let w ∈ NG(v), choose one edge e = vw;

3. Set C := C, e, w and v := w;
Set E := E \ {e};
goto 2.;

4. Let C = v1, e1, v2, e2, . . . , vk, ek, vk+1;
For i := 1 to k do Ci := Euler(G, vi);

5. Set C = C1, e1, C2, e2, . . . , Ck, ek, vk+1.

Theorem 9.1.1 also has several consequences:

(i) A multigraph has an (open) Eulerian chain if and only if it is connected
and has exactly two vertices of odd degree.

(ii) Any connected graph contains a chain that uses each edge exactly twice.

(iii) A (multi-)digraph G has an Eulerian cycle if and only if G is connected
and for every vertex the indegree equals the outdegree.

For applications of Eulerian graphs in breaking polynecleotides compare [67].

9.2 HAMILTONIAN GRAPHS AND
K-ORDERS

A question similar to the problem of Euler was raised by Hamilton. Let G be
a graph. A Hamiltonian cycle is a cycle that contains all vertices of G. The
problem is to decide whether or not G has a Hamilton cycle; if so then G is
called a Hamiltonian graph.
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Hamilton’s problem sounds quite similar to Euler’s, but this is not the case, as
there is an essential difference:

An Eulerian cycle traverses every edge exactly once, but may repeat ver-
tices, while Hamiltonian cycle visits each vertex exactly once.

An Eulerian cycle contains also all vertices of the graph, but a Hamiltonian
cycle need not contain all edges.

Although it is clear that only connected graphs can be Hamiltonian, there is
no simple criterion to tell us whether or not a graph is Hamiltonian as there is
for Eulerian graphs. And indeed, no efficient algorithmic method is known to
check whether a given graph has a Hamiltonian cycle. Karp [50] showed that
the problem whether or not a graph is Hamiltonian is very difficult to solve in
the sense of computational complexity.

Theorem 9.2.1 Qn is Hamiltonian.

The proof uses induction, compare [36].

There is an important application of 9.2.1 in coding theory. A Gray code is a
cyclic arrangement of binary sequences such that any pair of adjacent sequences
differ in only one position. Example: 000 → 010 → 110 → 100 → 101 → 111 →
011 → 001 →. This sequence corresponds to a Hamilton cycle in Q3.

A weaker question as Hamilton’s is the following. Let G = (V, E) be a connected
graph with n vertices. ρ(v, v′) denotes the length of a shortest path between
the vertices v and v′.2

Let k be a positive integer. A k-order for G is a permutation π of {1, . . . , n}
such that

ρ(vπ(i), vπ(i+1)) ≤ k (9.1)

for i = 1, . . . , n − 1, and
ρ(vπ(n), vπ(1)) ≤ k. (9.2)

A 1-order is a Hamilton cycle.
We will prove the surprising result that each connected graph has a 3-order,
and start with a stronger statement.

2This function is defined by the metric closure of G with the length-function f ≡ 1.
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Lemma 9.2.2 (Karaganis) Let T = (V, E) be a tree with n vertices, and let
v, v′ be two vertices. Then there is a order v = v1, v2, . . . , vn−1, vn = v′ such
that

ρ(vi, vi+1) ≤ 3 (9.3)

for i = 1, . . . , n − 1.

Proof. We use induction over n.
The lemma is true for n = 2, 3. Now we assume that it is true for all trees with
less than n vertices.
Let v = v1, v2, . . . , vr−1, vr = v′ be the path interconnecting v with v′.

G1 = G − v1v2,

Gi = G − vi−1vi − vivi+1, for i = 2, . . . , r − 1
Gr = G − vr−1vr

is a forest, where the tree Gi contains the vertex vi. In view of the induction
hypothesis for each i = 1, . . . , r there is a order vi = vi

1, v
i
2, . . . , v

i
ni

in Gi such
that

ρ(vi
j , v

i
j+1) ≤ 3 for j = 1, . . . , ni − 1 (9.4)

ρ(vi, v
i
ni

) = 1, (9.5)

where ni denotes the number of vertices in Gi.
Then we construct the desired order by

v = v1 = v1
1 , . . . , v

1
n1

, v2 = v2
1 , . . . , v

2
n2

, . . . , vr−1 = vr−1
1 , . . . , vr−1

nr−1
,

vr
nr

, vr
nr−1, . . . , v

r
1 = vr = v′. (9.6)

�

Theorem 9.2.3 (Sekanina) Each connected graph has a 3-order.

Proof. First use a spanning tree of the graph, then apply 9.2.2 for two adjacent
vertices.

�



Travelling round a graph 147

9.3 THE SHORTEST SUPERSTRING
PROBLEM

Remember the longest common subsequence problem, which we solved by a
dynamic programming approach. The converse of this problem is

The problem of shortest common supersequence
Given: A set of sequences over the same alphabet.
Find: A shortest sequence that contains each of the given sequences as a
subsequence.

This (in short:SCS) problem plays a favourite role in DNA sequencing. In fact,
DNA sequencing is routinely done by sequencing large numbers of relatively
short fragments and then finding a short common supersequence.

Let S = {w1, . . . , wn} ⊆ A� be a set of strings (words) over the alphabet A.

Throughout the discussion of superstrings, we assume that no string in S is
a substring of any other string in S. Any such substring can be efficiently
detected (How?) and consequently removed. After that the problem has the
same solution as before, which means that a SCS for the remaining strings is
also a SCS of the original set.

For two strings w, w′ ∈ A� we define the string

Merge(w, w′) = xyz, (9.7)

where

(i) y is a suffix of w;

(ii) y is a prefix of w′; and

(iii) |y| is maximal.

y is called the overlap of w and w′, and written by y = overlap(w, w′).
prefix(w, w′) is the prefix of w ending at the start of the overlap. Of course,

|prefix(w, w′)| = |w| − |overlap(w, w′)| (9.8)
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Observation 9.3.1 The function |prefix(., .)| satisfies the triangle inequality.3

Let π be a permutation of {1, . . . , n}, then consider the following string:

w[π] = prefix(wπ(1), wπ(2))prefix(wπ(2), wπ(3)) . . . prefix(wπ(n−1), wπ(n))wπ(n).
(9.9)

w[π] is the concatenation of the nonoverlapping prefixes of the pairs of adjacent
strings, followed by the full string of the last index.

Theorem 9.3.2 For a set S = {w1, . . . , wn} ⊆ A� of strings and the permu-
tation π the string w[π] is a superstring of S with length

|w[π]| =
n−1∑
i=1

|prefix(wπ(i−1), wπ(i))| + |wπ(n)|. (9.10)

Consequently, looking for a SCS is the search of a permutation π such that
|w[π]|| = min.

For S we define the distance-graph G = (V, E) by the following definitions:

(a) V = S;

(b) E = V × V , that means, really G is a digraph including loops;

(c) There is a length-function c : E → IN with

c(w, w′) =
{ |prefix(w, w′)| : w �= w′

|w| : w = w′

Then, looking for a SCS is the search of minimal travel through the distance
graph.

The shortest superstring problem is very hard in the sense of computational
complexity, compare [84], and the approach above need a great amount of
time. In view of this fact we are interested in an approximation strategy for
the shortest superstring problem.

For S we define the overlap-graph G = (V, E) by the following definitions:

3But is not a metric, since the symmetry fails.
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(a) V = S;

(b) E = V × V \ {(w, w) : w ∈ V }, that means, really G is a digraph;

(c) There is a length-function c : E → IN with

c(w, w′) = |overlap(w, w′)|
for w �= w′.

In view of (9.8) we can the overlap-graph derive from the distance-graph.

Algorithm 9.3.3 Let S = {w1, . . . , wn} ⊆ A� be a set of strings. Then a
superstring can be found by the following strategy.
While |S| > 1 do

1. Find wi, wj ∈ S such that

|overlap(wi, wj)| = max{|overlap(w, w′)| : w, w′ ∈ S}
for i �= j;

2. w = Merge(wi, wj);

3. S := S \ {wi, wj} ∪ {w}.

The remaining string is the searched superstring.

In other terms, we sequentially choose the longest edge that does not form a
cycle with already chosen edges.

As example consider the three-string set

S = {c(ab)m, (ba)m, (ab)mc} ⊆ {a, b, c}�,

with a given positive integer m.
After the first run of 9.3.3 we found the two-string set

Snew = {c(ab)mc, (ba)m}.
Consequently, the output of 9.3.3 is the string

c(ab)mc(ba)m or (ba)mc(ab)mc



150 Chapter 9

each of length 4m + 2. On the other hand, a SCS for the original set is (obvi-
ously)

ca(ba)mbc

of length 2m + 4.
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CLASSIFICATIONS

Naming is classifying.

Brian Everitt

In the widest sense, a classification scheme may represent simply a convenient
method for organizing a large set of data so that the retrieval of information
may be made more efficiently. In this sense, classification is the begin of all
science.

One of the most basic abilities of living creatures is the grouping of similar
objects to produce a classification. This has been a preoccupation since the
very first biological investigations. The classification of animals and plants
has clearly played an important role in the fields of biology as a basis for
Darwin’s theory of evolution. The theory and practice of classifying organisms
is generally known as taxonomy. In 1737 Linnaeus published his work Genera
Plantarum; he wrote:

All the real knowledge which we possess, depends on methods by which
we distinguish the similar from the dissimilar. The greater number
of natural distinctions this method comprehends the clearer becomes
our idea of things. The more numerous the objects which employ our
attention the more difficult it becomes to form such a method and the
more necessary.
. . .
For we must not join in the same genus the horse and the swine, though
both species had been one hoof’d nor separate in different genera the
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goat, the reindeer and the elk, tho’ they differ in the form of their
horns. We ought therefore by attentive and diligent observation to
determine the limits of the genera, since they cannot be determined
a priori. This is the great work, the important labour, for should the
genera be confused, all would be confusion.

In other words, taxonomy is necessary, but must be done carefully.1 A rough
classification of the world of organisms is

organisms = {{prokaryota} = {archea} ∪ {bacteria},
{eukaryota} = {protista} ∪ {plantae} ∪ {fungi} ∪
{animalia}}.

Classification has played a central role in other fields too. In particular, the
classification of the elements in the periodic table, given by Mendeleyev 150
years ago, has had a profund impact on the understanding of the structure of
atoms. More examples are given in [31].2

As example in linguistics we give a very partial representation of branches of
Indo-European language family.

Indo-European Germanic German
English
Danish

Slavic Russian
Polish

Indo-Iranian Persian
Hindi

For a classification of languages see [23].

The Problem of Classification
Given: A collection of objects, each of which is described by a set of char-
acters or variables.
Derive: A useful (whatever that means) division into a hierarchy of
classes.

1Linnaeus’ purpose was not evolutionary, but rather to provide a set of universal names.
However it turned out that the hierarchical nature of his system has considerable similarity
with the modern phylogenetic view.

2To radically simplify, in the cases, human beings and behaviour may be classified into
classes named by low, medium and high.
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Numerical techniques for devising classification must be objective and stable,
which means

Objective in the sense that the analysis of the same set of objects (individ-
uals) by the same family of methods will produce the same classification.

Stable in the sense that classifications remains the same under a wide
varity of additions of individuals.

10.1 CLASSIFICATION AND EVOLUTION

Evolution implies that many different species have a common ancestor and that
all forms of life probably stem from the same remote beginnings. Once these
relationships are understood, they are summarized by grouping species into
collections of related organisms. We will describe the structures underlying
these relationships.

Let N be the set of of extant species (genes) and let N+ be the set of all
past and present species (genes). Then we consider the binary operation � :
N+ × N+ → N+ defined by

v � v′ = most recent common ancestor of v and v′, (10.1)

for v, v′ ∈ N+, whereby v � v = v.
Moreover, define for v ∈ N+ the set N(v) as the set of extant species (genes)
descented from v. Then, we have to assume that for two species (genes) v and
v′, either the two sets N(v) and N(v′) are disjoint or one is contained in the
other.

Observation 10.1.1 Defining the sets as above, the conditions

(i) N(v) ∩ N(v′) �= ∅, and

(ii) N(v) ⊆ N(v′) or N(v′) ⊆ N(v),

are equivalent.

The theory of evolution is concerned with the extraordinary diversity of life
on Earth. The diversity of the living world is staggering: more than 2 million
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existing species of plants and animals have been named and described; and
many more remain to be discovered - until up to 10 times this number according
to some estimates. What is impressive is not just the numbers but also the
incredible heterogeneity. These virtually infinite variations of life are the fruit
of the evolutionary process.
Taxonomy is the classification of organisms for the first aspect in any view of
the life. The classification of animals and plants played an important role as a
basis for Darwin’s theory of evolution.
Taxonomy is necessary to describe the diversity of living organisms, whereby
the diversity of genomes is twofold:

The presence of numerous species on Earth; and

The polymorphism within each species.

There are many reasons why knowledge of the biodiversity is necessary, compare
[37], and [57].3 There are several subquestions:

(i) How many species are there?

(ii) How many go extinct? In both the past and in the present. How many
are lost every year?

(iii) How long did species typically survive?

(iv) How many are newly created?

(v) How much of evolutionary history is knowable?

For using evolutionary history for describing the biodiversity see [73].

10.2 CLASSIFICATIONS AND TREES

A classification is the formal naming of a group of individuals. In the sense
of set theory a classification C of a (finite) set N of individuals is given by a
collection of subsets of N satisfying

(i) ∅ /∈ C;

3In particular, there no successful vaccine to prevent or halt HIV infection. In part, this
is because of the high genetic diversity of HIV, see [29].
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(ii) N ∈ C;

(iii) {v} ∈ C for any v ∈ N ; and

(iv) For any two members N ′ and N” of C it holds that

N ′ ∩ N” ∈ {N ′, N”, ∅}. (10.2)

In other words, any two sets in C are disjoint or one is contained in the
other (see 10.1.1).

A member of a classification is called a class or a cluster of N .

Let T be an N -tree rooted by the vertex w. Then we create a collection C of
classes for the set N in the following way:

1. For each leaf v of T put {v} in C;
Label the vertex v;

2. Let v �= w be an unlabelled vertex adjacent to exactly one other unlabelled
vertex. All other neighbors v1, . . . , vk of v are labelled and belong to classes
N1, . . . , Nk in C, respectively. Then
- Put

⋃k
i=1 Ni in C, and

- Label v;

3. Label w;
Put N in C.

Conversely, if we have a collection C of classes of the set N with the properties
that {v} ∈ C for each element v ∈ N and N ∈ C, we can form a tree T by:

1. Each class of C is a vertex of T ;

2. Two vertices N1 and N2 are adjacent if and only if
- N1 ∩ N2 ∈ {N1, N2}, and
- there is no class N ′ such that Nj ∩ N ′ ∈ {Nj, N

′} for j = 1, 2.
(That means, N1 must be the maximal proper subset of N2 or vice versa.)

Summing up all these observations, we have the following fundamental equiv-
alence between classifications and rooted trees.
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Observation 10.2.1 There is a one-to-one correspondence between the collec-
tion of classifications for a set N and the collection of rooted N -trees.

In other words, classifications for a set N and rooted N -trees contain essentially
the same information.4 The following proposition describes the equivalence
between a classification and a desired collection of splits. The proof is an
application of 10.2.1.
A pair {N1, N2} and {M1, M2} of splits for N is called compatible if at least
one of the sets N1 ∩ M1, N1 ∩ M2, N2 ∩ M1 and N2 ∩ M2 is the empty set.

Observation 10.2.2 (Semple and Steel [75]) Let N be finite set. C is a clas-
sification for N if and only if the collection

S = {{N1, N2} : N1 ∈ C \ {N}, N2 = N \ N1} (10.3)

is a set of pairwise compatible splits on N ; and vice versa.

For instance, consider the set N = {a, b, c, d, e}. Coming from the (binary)
N -tree (((ab)c)(de)) we have the split system

S = {{a, bcde}, {b, acde}, {c, abde}, {d, abce}, {e, abcd},
{ab, cde}, {abc, de}}. (10.4)

Using each of the three internal vertices as a root gives the following classifica-
tions:

C1 = {a, b, c, d, e, ed, ced} ∪ {N} (10.5)
C2 = {a, b, c, d, e, ab, ed} ∪ {N} (10.6)
C3 = {a, b, c, d, e, ab, abc} ∪ {N}. (10.7)

With 10.2.1 in mind, we have several considerations.

Firstly we determine the maximal number of sets in a classification. Let T =
(V, E) be a rooted N -tree with |N | = n, that k internal vertices each of degree
greater than 2, and a root w. Then 8.3.2 says that k ≤ n − 2. Consequently,

4In view of this observation, each evolutionary tree implies a classification of the given
names, but of course not vice versa. We saw in 8.8.2 that such a classification is not applicable
in practice, since the depth of the tree lies between Ω(log n) and O(n) for n = |N |, and is
obviously too big. Taxonomists are interested in trees with a constant depth. In particular
Linnaeus’ system has depth 8. Hence, in such systems the trees are not binary.
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Observation 10.2.3 Let C be a classification for a set with n elements. Then,

n + 1 ≤ |C| ≤ 2n− 1. (10.8)

Secondly, we find a metric for rooted trees. This measure ρC can be calculated
easily, and the fact that it counts the different classes in the corresponding
classifications is an indication of its biological relevance; see [45] and [68].
Recall that a rooted tree T can be directed so that each edge is directed away
from the root. Then for each edge e of T = (V, E) let C(e) be the set of the
marks of the vertices below e in the tree. C(e) is called the content of e, and

C(T ) = {C(e) : e ∈ E} ∪ {N}. (10.9)

In view of 1.7.1 we have

Observation 10.2.4

ρC(T1, T2) = |C(T1)�C(T2)| (10.10)

is a distance between the two rooted N -trees T1 and T2.

Third, a rooted N -tree T generates a hierarchy: Let d be the depth, and let k
be an integer between 0 and d. For any two leaves v and v′ of T we define the
relation v ∼k v′ if there is a path from v to v′ in T containing only vertices of
a level k or higher. It is easy to see that ∼k is an equivalence relation for any
number k. N (k) denotes the family of the equivalence classes. Then we have
a series N (0),N (1), . . . ,N (d) of partitions of N with

(i) {N} = N (0) and N (d) = {{v} : v ∈ N}.
(ii) For k = 0, . . . , d − 1 the class N (k + 1) is finer than N (k).5

The first set N (0) consists of a group of ancestors, the last N (d) consists of
individual leaves. Overall, we separate the ”individuals” of N into successively
finer groupings.6

Observation 10.2.5 The following statements are pairwise equivalent.
5The inclusion is strict, since all internal vertices of T are of degree at least three.
6A nice illustration of this point of view is given in [38]:
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C is a classification for N .

C represents a rooted N -tree.

C consists of a series of partitions for N which become finer and finer.

In this sense a classification is a hierarchy of partitions.

10.3 PAIR GROUPING

To create a classification of individuals from similarity values algorithmic ap-
proaches are popular. We create a proceeding of successive fusions of n = |N |
individuals into groups. These methods are well-known in cluster analysis. The
related rooted trees are usually called dendrograms, compare [31]. The general
idea of the algorithm is to repeatedly merge pairs of sets,7 and so the technique
is called a pair group method (PGM).

Algorithm 10.3.1 Let N = {v1, . . . , vn} be a set of individuals.
Firstly create a family N1 = {v1}, . . . , Nn = {vn} of sets each containing a
single element. Then creates a classification C by doing the following steps

1. N1 = {v1}, . . . , Nn = {vn} ∈ C,R;

2. Find the nearest pair of distinct sets in R, say Ni and Nj;

3. Merge Ni and Nj to form N ′;
C := C ∪ {N ′};
R := R∪ {N ′} \ {Ni, Nj};
Compute a new distance, or similarity from N ′ to each of the other sets
in R;

Biological Postal

Domain Old/New World
Kingdom Country
Phylum State/Province
Class City
Order Street
Family Number
Genus Last name
Species First name

7Only pairs are considerd in view of the bifurcation assumption of evolutionary processes.
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4. If |R| = 1 then STOP, else go to 1.

Obviously, this is a very general approach, and we have to specify several facts
more precisely: What does ”nearest” mean? How we can compute the new
distance?

We start with the distance matrix D = D(N, ρ) = (dij)i,j=1,...,n for N =
{v1, . . . , vn}.8 After each step of the procedure we compute a new matrix
whose entries are inter-point and -class distances; in other words we convert
the distance to a cluster-distance, that is a function d : N ×N → IR≥0, where
N denotes a classification of N . The specifics of these computations distinguish
the methods.
Note that we start with a distance matrix with n(n − 1)/2 parameters. Since
a tree is defined by n− 1 parameters, we cut the number of parameters by the
factor n/2. Thus we may lose some information.

The following is an input for which the algorithm fails: Let N = {v1, . . . , v4}
and let ((v1v2)(v3v4)) be a N -tree with the length-function equal to 3 for the
edges adjacent to v1 and v4 and equal to 1 otherwise. Then the distance matrix
is given by:

v1 v2 v3 v4

v1 0 4 5 7
v2 0 3 5
v3 0 4
v4 0

Algorithm 10.3.1 amalgamates v2 and v3, in violation of the fact that these
vertices are separated in the original tree.

Our basic strategy will be linking the least distant pairs of taxa, say Ni and Nj;
followed by successively more distant taxa or classes of taxa. When two taxa
are linked, they lose their individual identities and are subsequently referred
to as a single class: N ′ = Ni ∪ Nj ; R := R \ {Ni, Nj} ∪ {N ′}. The process
is complete when the last two classes are merged into a single class containing
all of the original taxa. There are several PGM distinguished by the kind of

8Maybe derived from a metric ρ:

dij = ρ(vi, vj). (10.11)
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computation of the new distance matrix. More exactly, a new distance function
(and matrix) is found by recalculating with N ′ replacing Ni and Nj as follows:
For all sets K ∈ R \ {N ′} define

Simple joining:

d(K, N ′) :=
d(K, Ni) + d(K, Nj) − d(Ni, Nj)

2
; (10.12)

UPGMA (unweighted pair group method with arithmetic mean):

d(K, N ′) :=
d(K, Ni) + d(K, Nj)

2
. (10.13)

WPGMA (weighted pair group method with arithmetic mean):

d(K, N ′) :=
|Ni| · d(K, Ni) + |Nj | · d(K, Nj)

|Ni| + |Nj | . (10.14)

Note that if the sets which are paired are of similar size, then WPGMA is
essentially UPGMA.9

As an example consider N = {v1, . . . , v5} and the (ultrametric) distance matrix
given by

v1 v2 v3 v4 v5

v1 0 8 4 6 8
v2 0 8 8 4
v3 0 6 8
v4 0 8
v5 0

UPGMA creates the classification

C = {{v1}, {v2}, {v3}, {v4}, {v5}, {v1, v3}, {v1, v3, v4}, {v2, v5}, N}. (10.15)

The related unrooted N -tree is

T = (((v1v3)v4)(v2v5)), (10.16)

which is the correct tree and of length 15.
9Strangely, sometimes in referenced works, our method UPGMA is called WPGMA and

vice versa.



11
THE PHYLOGENY

Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky

As it became accepted that evolution was to be understood in terms of Mendel-
ian genetics and Darwinian natural selection, so too it became clear that this
understanding could not be sought only at a qualitative level. A fundamental
problem is the reconstruction of species’ evolutionary past, which is called the
phylogeny of those species. Here, trees are widely used to represent these
relationships.

11.1 PHYLOGENETIC TREES

The holy grail of phylogenetics is the reconstruction of the one true
tree of life.

J.T.Thorley and R.D.M.Page

The underlying principle of phylogeny is to try to group ”living entities” ac-
cording to their level of similarity.
In biology for example, such trees (”phylogenies”) typically represent the evo-
lutionary history of a collection of extant species or the line of descent of some
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gene. No two members of a species are exactly the same - each has slight mod-
ifications from their parents. As environmental conditions change, nature will
favour that branch of a species with some particular modification; as time goes
on another mutation of the basic stock will become dominant. In this way, all
species are continually evolving. This evolution occurs in a number of ways at
the same time: some species die out and some become new species in their own
right. This was already seen by Darwin [25]:

The affinities of all the beings of the same class have sometimes been
represented by a great tree. I believe this simile largely speaks the
truth. The green and budding twigs may represent existing species;
and those produced during each former year may represent the long
succession of extinct species... The limbs divided into great branches,
and these into lesser and lesser branches, were themselves once, when
the tree was small, budding twigs; and this connexion of the former
and present buds by ramifying branches may well represent the clas-
sification of all extinct and living species in groups subordinate to
groups... From the first growth of the tree, many a limb and branch
has decayed and dropped off, and these lost branches of various sizes
may represent those whole orders, families, and genera which have
now no living representatives, and which are known to us only from
having been found in a fossil state... As buds give rise by growth to
fresh buds, and these, if vigorous, branch out and overtop on all a
feebler branch, so by generation I belive it has been with the great
Tree of Life, which fills with its dead and broken branches the crust of
the earth, and covers the surface with its ever branching and beautiful
ramifications.

Historically, this was a new idea: The concept of species having a continuity
through time was only developed in the late 17th century; higher life forms
were no longer thought to transmute into different kinds during the lifetime
of an individual. It took over 150 years from the development of this concept
before a rooted tree was proposed by Darwin.1

The phylogenetic tree can therefore be thought of as a central metaphor for
evolution, providing a natural and meaningful way to order data, and with an
enormous amount of evolutionary information contained within its branches.

1Note that in Darwin’s fundamental book The origin of species [25] there is exactly one
figure, and this shows the description of the evolutionary history by a tree.
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Clearly, this idea is attractive, but how are we to find the tree? Note that there
are several difficulties, even in the definition of the problem:

What is the tree of life? A tree which is given by a classification or the
evolutionary tree?

What is the mechanism of evolution? Darwin provided mutation and nat-
ural selection, which suggested a scientific model for the relation of species.

Darwin’s evolutionary tree is neither obvious, nor easy to find.

There must be some criterion for deciding which of the many phylogenies
that may be drawn most closely resembles the actual evolutionary changes.

Darwin saw another difficulty in the underlying problems. In a letter to
Huxley he wrote: ”The time will come, I believe, though I shall not live
to see it, when we shall have fairly true genealogical trees of each great
kingdom of Nature.”
Hence, it seems impossible to describe the ”Great Darwin Tree” since the
diversity of the living world is staggering: more than two million existing
species of plants and animals have been named and described; many more
- both existing and past - remain to be discovered.

Considering the origin of life: Was there just one, or more than one ”start-
ing point”? What does we know about the last universal common ancestor,
if it exists?

It has been argued that the ”Tree of Life” is perhaps really a ”Web of
Life”, as mechanisms such as hybridization, recombination and swapping
of genes probably play a role in evolution.

A nice representation of this subject has been given in [26], [64], and [86]. A
survey about What Evolution is was given by Mayr [59]. For the history of
Darwin’s theory compare [10] and [89].

Each species can be described in terms of a sequence of specific values, called
characters. These characters were originally morphological, that is derived
from an analysis of an organism’s form and structure, but how are these values
measurable?
In biology, ”characters” describe attributes of the species under consideration
and are the data that biologists typically use to reconstruct phylogenetic trees.
We wish to consider characters for species in a morphological sense. To do this
we assume that there is given a (finite or infinite) state space C of characters.
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We also assume that there is a metric in C. Discrete character data are those
for which a function f assigns a character state fij to each taxon i for each
character j.

As sequence data became readily available it was predicted an end to this con-
flict. Now, the biological units are written in words constructed from the letters
corresponding either to amino acids, which generate proteins, or to nucleotides
forming DNA or RNA molecules. By comparing such words one can construct
evolutionary (phylogenetic) trees showing how closeness of the words in the
tree corresponds to the closeness of the unit. In other words,

The Phylogenetic Tree Problem
Given: A set of sequences, each representing a taxon.
Find: Their phylogenetic tree, representing its evolutionary history.

The set of leaves represent the given taxa, the internal vertices are the an-
cestors, and the root of the tree represents the common ancestor of all. The
phylogenetic tree of life shows when groups of organisms arose and gives the
basic relationships between them.

First, molecular sequence data was used by Fitch and Margoliash in their land-
mark paper [33] dealing with cytochrome c sequences. The basic idea in that
field is that species (given by their sequences) which appear to be closely re-
lated should have diverged more recently than species which appear to be less
closely related.
This task is more complicated than it seems at first glance; Gould [38] wrote:

When systematists, also known as taxonomists, set out to reconstruct
the phylogeny (evolutionary history) of a group of species that they
think are related, they have before them the species living today and
the fossil record. To reconstruct a phylogenetic history as closely
as possible, they must make inferences based on observational and
experimental data. The difficulty is that what can be measured is
similarity, whereas the goal is to determine relatedness.

Note that the definition of similarity cannot be the problem of the mathemat-
ical analysis. This is, in any case, the task of the biological sciences. But
mathematics can help to check if the choice was not false.
Overviews of tree making algorithms are given in [22], [42], [51], [65], and [83]
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11.2 THE PERFECT PHYLOGENY
PROBLEM

We introduce a character-based approach to reconstructing evolutionary his-
tory. The input is a set of attributes called characters that objects may pos-
sess. The most important problem in morphological phylogenetics is selecting
the characters. Here opposing side picking out is the favourite method. On
the other hand, characters must be coded if there are more than two distinct
possibilities. The basic assumptions regarding characters are:

The characters being considered are ”meaningful” in the context of phylo-
genetic tree reconstruction.

The characters can be inherited independently from one another.

All observed states for a given character should have evolved from one
”original state” of a common ancestor of the objects.2

Note that character in this context does not refer to a member of an alphabet;
for simplicity we will use natural numbers for character states.

A taxon v over a set C of m characters is a vector v ∈ INm. c(v) is the state of
v on character c or the state of c for v. Ac is the set of allowed states for c(v),
assuming that Ac = {0, . . . , rc − 1} for some integer rc ≥ 2.
Let N = {v1, . . . , vn} be a set of n taxa, represented by an n × m character-
state matrix M = (fij), where fij is the state of taxon vi on character j.
A N -tree T = (V, E) should represent the phylogeny for N , with internal
vertices (which may also be labelled) representing hypothetical ancestors to
the given taxa, where

(i) Each of the taxa labels exactly one leaf of T , and vice versa;

(ii) Each of the characters labels exactly one edge of T , but not necessarily
vice versa; and

(iii) For any taxon v, the characters that label the edges along the unique path
from the root to v describe the character states of V .

A character c is called convex in a N -tree if for every f ∈ Ac, the set of vertices
{v ∈ V : c(v) = f} induces a subtree of T . An N -tree T is called a perfect

2Characters that obey this assumption are called homologous.
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phylogeny if every c ∈ C is convex in T .
The interpretation of such a tree for M is that it gives an estimate of the
evolutionary history of the taxa, based on the following biological assumptions:

(i) The root of the tree represents an ancestral taxon that has none of the
present m characters.

(ii) Each of the characters change from one state to another state exactly once
and never changes back to the zero state.3

The Perfect Phylogeny Problem
Given: A set of taxa on a set of characters, represented by a character-
state matrix.
Determine: Whether a perfect phylogeny exists.

Steel [79] showed that the perfect phylogeny problem is very hard in the sense
of computational complexity.

We will now restrict ourselve to the binary case, that is we allow a character
to take exactly two states: M is a 0 − 1-matrix. Here, we will see that the
problem can solved efficiently.
For any column k of M , let Ok be the set of taxa with a 1 in column k- that
is the taxa that have character k. The major fact and the basis for an efficient
solution of the (binary) perfect phylogeny problem is

Theorem 11.2.1 The matrix M has a phylogenetic tree if and only if for every
pair of columns i and j, either Oi and Oj are disjoint or one contains the other.

This theorem is intuitively clear, and a complete proof is given in [41] and
[76]. To make this technique clearer, Gusfield [41] furnishes the following small
example: Let M1 be the matrix

1 2 3 4 5
v1 1 1 0 0 0
v2 0 0 1 0 0
v3 1 1 0 0 1
v4 0 0 1 1 0
v5 0 1 0 0 0

3Hence any taxon below that edge definitely have that character.
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and let M2 be

1 2 3 4 5
v1 1 1 0 0 0
v2 0 0 1 0 1
v3 1 1 0 0 1
v4 0 0 1 1 0
v5 0 1 0 0 1

M1 has a phylogenetic tree, namely (((v1v3)v5)(v2v4)), but matrix M2 not.

11.3 DISTANCE METHODS

The phylogenetic analysis of a family of (related) nucleic acid or protein se-
quences is the determination of how the family might have been derived during
evolution. Evolutionary relationships among the sequences are depicted by
placing the sequences on the leaves of a tree. The branching relationships
on the internal vertices of the tree then reflect which sequences are related.
Starting with a set of known present-day objects a phylogenetic tree may be
constructed by first assigning each object a leaf of the tree and then assigning
ancestral and unknown objects to the internal nodes. Roughly speaking, we
have the following relationship:

Level

In taxonomy OTU = operational HTU = hypothetical
taxonomic unit taxonomic unit

Species/genes extant extinct
Placement in time existing unit ancestor

Classification individuals class
Vertex in the tree leaf internal vertex

The general idea is the following: Let N = {v1, . . . , vn} be a set of individuals
(OTU’s). We assume that N is embedded in a metric space (X, ρ), such that
we represent the distances between the members of N by a symmetric distance
matrix

D = (dij) = (ρ(vi, vj)), (11.1)
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where i, j = 1, . . . , n = |N |.
We would like to build a phylogenetic tree for N . If we fix a N -tree T = (V, E)
we obtain a tree-metric ρT .4 The broad aim of distance methods is to determine
a (or all) tree(s) T for which ρT is as close as possible to ρ.

Consider the following example. For n = 3 we have only one N -tree T with one
internal vertex w. Searching the edge-lengths li = ρT (v1, w) such that ρ = ρT

is solving the following system

l1 + l2 = d12

l1 + l3 = d13

l2 + l3 = d23,

which is given by

l1 =
1
2
(d12 + d13 − d23)

l2 =
1
2
(d12 + d23 − d13)

l3 =
1
2
(d13 + d23 − d12).

(Note that the values on the right-hand side are non-negative due to the triangle
inequality.) Hence, we have a unique tree which reflects the phylogeny with
respect to given distances.

A collection of distances D = (dij) = (ρ(vi, vj)) for i, j = 1, . . . , n = |N | is
called additive if there is a N -tree T such that

dij = ρT (vi, vj). (11.2)

We saw that for n each distances are additive. In general, this is not true for
n ≥ 4. We characterize additve distances by the following theorem.

Theorem 11.3.1 (The four-point condition)
(dij)i,j=1,...,n is additive if and only if for every set of four distinct numbers
1 ≤ i, j, k, l ≤ n two of the three5 sums dij +dkl, dik +djl and dil +djk coincide
and are greater than or equal to the third one.

4Remember that this is the length of a shortest path.
5compare 3.4.



The Phylogeny 169

The proof is constructive and given by the so-called neighbor-joining algorithm
which is well known from our pair group methods, but with a slight modifica-
tion: the choice of the pair of taxa is to unite is not directly derived from the
distances; it is modified the a value which estimates the length of the internal
edges. More exactly:

Algorithm 11.3.2 Let N = {v1, . . . , vn} be a set of individuals (OTU’s) with
given distances (dij)i,j=1,...,n.

1. For i = 1 until n do

ri =
1

n − 2

n∑
k=1

dik;

2. Pick up a pair i, j for which

dij − (ri + rj)

is minimal;

3. Group together vi and vj to form vn+1;
(the OTU vn+1 represents an internal vertex of the future tree)
Compute a new distance from vn+1 to each of the other vk by

dn+1k =
dik + djk − dij

2
;

4. Repeat the procedure until there is only one OTU.

11.4 THE MAXIMUM PARSIMONY
METHOD

The maximum parsimony method is a popular technique for reconstructing
phylogenetic trees from sequences or states of characters.
The principle of Maximum Parsimony involves the identification of a combi-
natorial structure that requires the smallest number of evolutionary changes.
This is an application of Ockham’s razor, according to which the best hypoth-
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esis is the one requiring the smallest number of assumptions.6,7 It means that
among all possible structures we seek one which satisfies only one, namely the
condition of length minimization.
While the validity of parsimony has been debated, it can be justified on bio-
logical grounds, see [63]. But note several problems with this point of view:

The amount of change recovered by parsimony is, by definition, the small-
est possible amount that is consistent with the data. The actual amount
of evolutionary change may have been somewhat larger.

We may find more than one minimal-length tree interconnecting the given
entities.

Parsimony is widely used in practice, as attested by the popularity of software
such as PAUP, which stands for ”Phylogenetic analysis using parsimony”; see
[42] and [82].

Algorithm 11.4.1 (Fitch [34]) Let N be a set of n sequences in a sequence
space (Ad, ρH): N = {vk = vk,1, . . . , vk,d : k = 1, . . . , n}, and let a binary
N -tree T = (V, E) be given. Then do:

1. For each position i = 1, . . . , d do
1. Label each leaf vk with {vk,i};

6Or in other words:
(a) It is futile to do with more what can be done with fewer.

(b) More precisely in Latin: Entia non sunt multiplicanda praeter necessitatem.

(c) More roughly spoken: Keep it simple.
This is true, but not in a simple sense. Cavalli-Sforza [20]:

... it does not necessarily follow that a method of tree reconstruction minimizing
the number of mutations is the best or uses all the information contained in the
sequences. The minimization of the number of mutations is intuitively attractive
because we know that mutations are rare. There may be some confusion, how-
ever, between the advantage of minimizing the number of mutations and sometimes
invoked parallel of Ockham’s razor ..., which was developed in the context of me-
dieval theology. The extrapolation of Ockham’s razor to the number of mutations
in an evolutionary tree is hardly convincing.

Note that in this case minimizing the number of assumptions does not mean minimizing the
number of mutations, or the steps of an evolution, it means that among all possible network
structures we seek one which satisfies only few conditions. With the ”razor”, Ockham cuts
out all superfluous, redundant explanations.

7For a broader philosophical discussion of Ockham’s razor see [12] and [70], [71].
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Li := 0;
2. Until all vertices are marked do
Find an unlabelled vertex which is adjacent to two marked vertices with the
marks N1 and N2;
Mark the unmarked vertices with
(a) N1 ∩ N2 if N1 ∩ N2 �= ∅; otherwise
(b) N1 ∪ N2 and Li := Li + 1;

2. L(T ) :=
∑d

i=1 Li.

The correctness of Fitch’s algorithm is proven in [44]. In particular, it is shown
that the final answer is independent of the vertices chosen when moving through
the tree.
The algorithm easily computes the length of the tree. On the other hand, there
are exponentially many binary trees. Hence, the Fitch algorithm 11.4.1 uses a
great amount of time.

After applying 11.4.1 we have marks for all the internal vertices in the tree.
However, some marks have more than one letter and hence are ambiguous.
There are several methods for choosing which one of the possible states yields
the most parsimonious reconstruction; the simplest one is Farris’ method: go
back up the tree assigning to any internal vertex that is ambiguous the inter-
section of its mark with that of its immediate ancestor.

11.5 CONSENSUS TREES

A consensus tree summarises information common to two or more trees. In
other words:

A phylogenetic tree summarizes phylogenetic information;

A consensus tree summarizes the information in a set of trees.
Here, we have two additional observations:
(a) We can combine heterogeneous data, and
(b) We can find hidden phylogenetic information.

For instance, Cavalli-Sforza [16] compares the species tree and the tree of lan-
guages for human populations. This gives many hints for the prehistoric devel-
opment of mankind.
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Consensus trees are helpful to taxonomists: When they had completed a classi-
fication, it may that with data from another source the classification is different,
or that by using a different clustering method a new classification results. The
taxonomist may wish to form an overall classification which takes account of
the information shared in each classification, however it is obtained.

The Consensus Tree Problem
Given: A collection Ti of N -trees, i = 1, . . . , m.
Find: An N -tree summarizing the phylogenetic information of all Ti.

There are many ways to combine N -trees into a single tree; see [75].8 The
methods differ in what aspect of tree information they use, and how frequently
that information must be shared among the trees to be included in the consen-
sus. The most commonly used are the strict consensus and the majority-rule
consensus trees.

Suppose that T1, . . . , Tm are N -trees. Each of the trees has the same leaves,
namely the members of N . We are interested in an N -tree T described by one
of the following methods.

The strict consensus tree includes only those splits that occur in all the trees.
That means

S(T ) =
m⋂

i=1

S(Ti). (11.3)

We can relax the requirement that a split of T occur in all trees, and instead
retain those splits occuring in a majority of the trees.

Algorithm 11.5.1 For each of the N -trees T1, . . . , Tm, mark the vertices in-
ductively as follows:

1. Mark the leaf v with {v};
2. If the vertices v1, . . . , vr have been marked with N1, . . . , Nr and v is the

common ancestor of v1, . . . , vr, then mark v with N1 ∪ . . . ∪ Nr.

The consensus tree T consists of exactly those vertices whose mark occurs in
more than half of the Ti.

8For simple but fundamental limitations on consensus tree methods compare [80].
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Asymptotic behavior, 29
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Baye’s theorem, 76
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Bell number, 56
Bellman’s principle, 128
Bernoulli’s inequality, 36
Bernoulli random variable, 82
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Binary tree, 138
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Binomial distribution, 82
Binomial theorem, 35
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Birthday paradox, 78
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Branching process, 90
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Characteristic equation, 61, 63
Chebyshev’s inequality, 81
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average, 97
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Complement, 2
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Conditional probability, 76
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Cross-product, 5
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De Morgan’s law, 3
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Depth of the tree, 139
Diameter, 18
Dijkstra’s algorithm, 128
Diploid, 41
Disjoint, 1
Dissimilarity, 17
Distance, 16
Distance matrix, 159, 167
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Edit distance, 103
Edit operation, 103
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Equilibrium, 43
Equivalence class, 10
Equivalence relation, 9
Error catastrophe, 101
Euclidean metric, 17
Euclidean plane, 17
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Eulerian cycle, 143
Eulerian graph, 143
Event, 74
Evolutionary rate, 109
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Farris’ method, 171
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Probability space, 73
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