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Structure of the Course

I Part I. Introduction to Algorithms (Chapter 2)

I Part II. Fundamental Techniques (Chapters 4 - 6)

algorithms: exhaustive search, greedy, dynamic programming

problems: motif finding, sequence alignment, gene finding

I Part III Advanced Algorithms (Chapters 7 - 10)

algorithms: graph-, string-, and tree-algorithms

problems: DNA sequencing, pattern finding, phylogeny

I Part IV Probabilistic Methods (Chapters 11 - 12)

algorithms: HMM, stochastic grammars, Markov networks

problems: decoding, learning, inference algorithms
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Part I. Introduction to Algorithms

Chapter 2. Algorithms and Complexity

Algorithm: a well-defined procedure that takes an input and
produces an output.

Input(x)⇒ Body ⇒ Output(y)

Example: Algorithm MAX;
Input: List x = {a1, · · · , an};

Body (a finite series of instructions);
Output: y, the maximum of a1, · · · , an.

An algorithm: a finite process to compute a function or a relation.
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Chapter 2. Algorithms and Complexity

Notation conventions for algorithm writing (pseudo-code)

Memory: variables, arrays, arguments, parameters
Array Access: ai: the ith location of array a
Assignment: a← b
Arithmetic: a+ b, a− b, a ∗ b, a/b, ab
Conditional: if condition is true

body 1
else

body 2

For Loop: for i← low to high
body

While Loop: while condition is true
body
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Chapter 2. Algorithms and Complexity

Example: an iterative algorithm computing the nth number in the
Fibonacci series 1, 1, 2, 3, 5, 8, 13, 21, . . . .

Fibonacci (n)
1. F1 ← 1
2. F2 ← 1
3. for i← 3 to n
4. Fi ← Fi−1 + Fi−2
5. return (Fn)

How is the algorithm executed?
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Chapter 2. Algorithms and Complexity

Recursive algorithms

Rec-Fibonacci(n)
1. if n = 1 OR n = 2, return (1)
2. else
3. T1 = Rec-Fibonacci(n− 1);
4. T2 = Rec-Fibonacci(n− 2);
5. return (T1 + T2);

How is the algorithm executed?
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Chapter 2. Algorithms and Complexity

Advantages with recursive algorithms

Example: recursive StringCopy

Key ingredients for admitting recursive algorithms

More examples
Sum(n), linear search,
summation over numbers in a ’triangle’, etc.
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Chapter 2. Algorithms and Complexity

A more complex example: Towers of Hanoi

TowersOfHanoi(First, Second, Third, n)
1. if n = 1, MoveOne(First, Third)
2. else

TowersOfHanoi(First, Third, Second, n-1)
MoveOne(First, Third)
TowersOfHanoi(Second, First,Third, n-1)
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Chapter 2. Algorithms and Complexity

Disadvantages with recursive algorithms

May be inefficient!

(1) overhead: use of stacks: push/pop
(2) possible re-computation:

e.g., RecFib(5) may be computed several times
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Chapter 2. Algorithms and Complexity

Algorithm Efficiency: how is it defined?

Counting the number of basic operations used

Example

SelectionSort(a, n)
1 for i← 1 to n− 1
2. j ← i {starting of inner loop, assume ai to be

the smallest elements in ai, . . . , an
j memorizes the index of the smallest element }

3. for k ← i+ 1 to n {search for the smallest element}
4. if ak < aj
5. j ← k
6. Swap ai and aj
7 return array a
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Chapter 2. Algorithms and Complexity

Algorithm Efficiency (cont’)

SelectionSort(a, n)
1 for i← 1 to n− 1
2. j ← i
3. for k ← i+ 1 to n
4. if ak < aj
5. j ← k
6. Swap ai and aj
7 return array a

Count the total number of basic operations needed:

= c1 × n+ c2 × (n− 1) + c3 ×
n−1∑
i=1

(n− i) + c4,5 ×
n−1∑
i=1

(n− i− 1) + c6 × (n− 1) + c7

= an2 + bn + c for some constant a > 0, b, c
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Chapter 2. Algorithms and Complexity

How to count basic operations in recursive algorithms ?

RecFib(n)
1. if n = 1 OR n = 2 return (1)
2. else

return (RecFib(n− 1) + RecFib(n− 2))

Deriving and solving recurrences!

- Let t(n) be the time needed for computing RecFib(n)
- then

t(n) = c+ t(n− 1) + t(n− 2)

t(n) = 1, when n = 1, 2

- solve it exactly, or

- estimate lower and upper bounds.
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Chapter 2. Algorithms and Complexity

t(n) = c+ t(n− 1) + t(n− 2)

where t(n) = 1, when n = 1, 2

• Estimate the lower and upper bounds of t(n),
based on the recursive tree structure:

lower bound: t(n) ≥ 2
n
2 =
√
2
n
> 1.414n

upper bound: t(n) ≤ 2n

So 1.414n < t(n) < 2n

• Solve it exactly: assume t(n) = αn, we have

αn = c+ αn−1 + αn−2

α2 = α+ 1 i.e., α2 − α− 1 = 0
α = (1 +

√
5)/2 ≈ 1.618

So t(n) ≈ 1.618n
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Chapter 2. Algorithms and Complexity

Analysis of recursive algorithms (cont’)

Another example: Search a sorted list (of indexes i, . . . , j) for a key

BinarySearch (L, i, j, key)
1. if i > j return (0) {base case, list is empty, not found}
2. else
3. let m← d i+j

2
e {get mid point index }

4. if key = Lm return(m) { found }
5. else
6. if key < Lm BinarySearch (L, i,m− 1, key) { search the left half list}
7. else { key > Lm }
8. BinarySearch (L,m+ 1, j, key) { search the right half list}

Can you write an iterative algorithm for binary search?
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Chapter 2. Algorithms and Complexity

Assume t(n) to be total time to for BinarySearch (L, i, j, key)
where n = j − i+ 1, the length of the list to be searched.

t(n) = c+ t(bn
2
c), with base case t(0) = c′

then

t(n) = c+ t(bn2 c)
t(n) = c+ c+ t(b n

22
c)

t(n) = c+ c+ c+ t(b n
23
c)

. . .
t(n) = c+ c+ c+ · · ·+ c+ t(b n

2k
c) where n

2k
= 1

t(n) = c+ c+ c+ · · ·+ c+ c+ t(0) = k × c+ c,
where k = log2 n.

So t(n) = c(log2 n+ 1)
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Chapter 2. Algorithms and Complexity

Big-O notation for complexity

O(n) includes n, 3n+ 15, 1000n, 0.001n, etc.
O(n) also includes

√
n, log2 n, etc.

O(n) does not include n2, n log2 n, etc.
O(n2) includes n2, 3n2, etc.
O(n2) also include n,

√
n, etc.

O(n100) does not include 2n, nn, n!, etc.

polynomial time vs exponential time.

ı.e, tractable problems vs intractable problems
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Algorithm design techniques (included in this class)

exhaustive search (including branch-and-bound)
greed algorithms
dynamic programming
divide-and-conquer
based on combinatorics, graph theory, etc.
machine learning
randomized algorithms
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Part II. Fundamental Techniques

Chapter 4. Exhaustive Search

motif finding, median string problems

Chapter 5. Greedy Algorithms

genome rearrangement

Chapter 6. Dynamic Programming

sequence alignment, multiple alignment, gene finding



Chapter 4. Exhaustive Search

4.4 Regulatory motifs in DNA sequences

Sequence motifs regulate (turn on/off) gene expression

Example:

transcriptional binding sites TCGGGGATTCC

transcriptional factor: protein that binds to the site
allows RNA polymerase to transcribe downstream genes
called l-mers



Chapter 4. Exhaustive Search

Upstream sequences of genes

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA

GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG

AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC

CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC

TACATGATCTTTTGATGCAACTTGGATGATGAGGGAATGC motifs are underscored.

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA

GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG

AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC

CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC

TACATGATCTTTTGATGCAACTTGGATGATGAGGGAATGC underlines are removed.

All motifs are the same ATGCAACT.
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two mutations in every motif.

CGGGGCTATcCAgCTGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAggGCAACTCCAAAGCGGACAAA

GGATGgAtCTGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGAaGCAACcCCAGGAGCGCCTTTGCTGGTTCTACCTG

AATTTTCTAAAAAGATTATAATGTCGGTCCtTGgAACTTC

CTGCTGTACAACTGAGATCATGCTGCATGCAatTTTCAAC

TACATGATCTTTTGATGgcACTTGGATGATGAGGGAATGC

CGGGGCTATCCAGCTGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAGGGCAACTCCAAAGCGGACAAA

GGATGGATCTGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGAAGCAACCCCAGGAGCGCCTTTGCTGGTTCTACCTG

AATTTTCTAAAAAGATTATAATGTCGGTCCTTGGAACTTC

CTGCTGTACAACTGAGATCATGCTGCATGCAATTTTCAAC

TACATGATCTTTTGATGGCACTTGGATGATGAGGGAATGC underscores are removed.

How do identify these motifs?
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4.5 Profiles for motifs

CGGGGCTatccagctGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAgggcaactCCAAAGCGGACAAA

GGatggatctGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGaagcaaccCCAGGAGCGCCTTTGCTGGTTCTACCTG

CTAAAAGATTATAATGTCGGTCCttggaactTC

CTGTACATCATGCTGCatgccattTTCAAC

TACATGATCTTTTGatggcactTGGATGATGAGGGAATGC

————
motifs are in lower case; they are aligned to build a profile.

Let s = {8, 19, 3, 5, 24, 17, 15} be set of starting positions in sample sequences.
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Then profile P (s)

CGGGGCTatccagctGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAgggcaactCCAAAGCGGACAAA

GGatggatctGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGaagcaaccCCAGGAGCGCCTTTGCTGGTTCTACCTG

CTAAAAGATTATAATGTCGGTCCttggaactTC

CTGTACATCATGCTGCatgccattTTCAAC

TACATGATCTTTTGatggcactTGGATGATGAGGGAATGC

————

Consensus of 7 motifs (of length 8)

nucleotide/position 1 2 3 4 5 6 7 8

A 5 1 0 0 5 5 0 0
C 0 0 1 4 2 0 6 1
G 1 1 6 3 0 1 0 0
T 1 5 0 0 0 1 1 6

Consensus A T G C A A C T
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4.6 The motif finding problem

Given profile P (s)

nucleotide/position 1 2 3 4 5 6 7 8

A 5 1 0 0 5 5 0 0
C 0 0 1 4 2 0 6 1
G 1 1 6 3 0 1 0 0
T 1 5 0 0 0 1 1 6

Consensus A T G C A A C T

Let MP (s)(j) be the largest count in column j, e.g., MP (s)(1) = 5

Then consensus score Score(s,DNA) = Σl
j=1MP (s)(j).

e.g. Score(s,DNA) = 5 + 5 + 6 + 4 + 5 + 5 + 6 + 6 = 42

If the motif has length l and there are t sequences, then
The best possible alignment has score: l × t
The worst possible alignment score is lt

4
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Motif Finding Problem: Given a set of DNA sequences, find a set
of l-mers, one from each sequence, that maximizes the consensus score.

Input: A t× n matrix of DNA sequences and l, length of the pattern
Output: An array of t starting positions s = (s1, s2, . . . , st)

to maximize Score(s,DNA).

A related problem is finding a median string.
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Output: An array of t starting positions s = (s1, s2, . . . , st)
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Given two l-mers v and w, we can compute the Hamming distance
between v and w:

dH(v, w) as the number of positions that differ in v and w.

e.g., dH(ATTGTC, ACTCTC) = 2

By abusing the notation a little, let dH(v, si) be the Hamming
distance between v and the l-mer starting at position si in the ith
sequence.

And define

dH(v, s) =

t∑
i=1

dH(v, si)

where s = {s1, s2, . . . , st}.
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Define
TotalDistance(v,DNA) = min

all s
(dH(v, s))

where the minimization is taken over all s’s.

A string v is a median string among the set of DNA sequences if
TotalDistance(v,DNA) achieves the minimum.

Median String Problem: Given a set of DNA sequences, find a
median string

Input: A t× n matrix DNA sequences and length l
Output: A string v of length l that minimizes

TotalDistance(v,DNA) over all strings of length l.
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Median String Problem and Motif Finding Problem are
computationally equivalent!

Let s be the starting positions with consensus score Score(s,DNA)
Let w be the consensus string of the corresponding profile. Then

dH(w, s) = lt− Score(s,DNA)

e.g., w =ATGCAACT, s = {8, 19, 3, 5, 24, 17, 15}, l = 8, t = 7,
Score(s,DNA) = 42. Indeed,

dH(w, s) = 2× 7 = 14 = 7× 8− 42

But why?
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The consensus string w minimizes dH(v, s) over all choices of v
and it maximizes score Score(s,DNA):

dH(w, s) = min
all v

dH(v, s) = lt− Score(s,DNA)

min
all s

min
all v

dH(v, s) = lt−max
all s

Score(s,DNA)

Left is the goal of Median Finding Problem; and
right is the goal of Motif Finding Problem.
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The two problems can also be solved using the same technique!

Exhaustive search for Motif Finding Problem: By considering
all (n− l + 1)t positions s.

Exhaustive search for Median String Problem: By considering
all 4l l-mers.

The two searches are similar if we consider the 4 nucleotides to be
numbers.

The main general issue is to consider all kL L-mers for k-letter alphabet.

How to enumerate them?
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4.7 Search trees

NextLeaf(a, L, k)
1. for i← L to 1
2. if ai < k
3. ai ← ai + 1
4. return a
5. ai ← 1
6. return a

where
a is an L-mer, an array of length L (indexed 1 to L);

for i, 1 ≤ i ≤ L, element ai has value ranging from 1 to k;

What does the function NextLeaf do?
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NextLeaf(a, L, k) { with comments }
1. for i← L to 1 { from low to high digits }
2. if ai < k
3. ai ← ai + 1 {increment the first digit not yet reaching k}
4. return a
5. ai ← 1 {set the digit back to 1 if having reached k,

carried to the next higher digit}
6. return a

Search tree:

- each node can have k children;
- there are L levels of nodes;
- leaves are L-mers;
- NextLeaf is used to navigate from one leaf to the next one;
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3. ai ← ai + 1 {increment the first digit not yet reaching k}
4. return a
5. ai ← 1 {set the digit back to 1 if having reached k,

carried to the next higher digit}
6. return a

Search tree:

- each node can have k children;
- there are L levels of nodes;
- leaves are L-mers;
- NextLeaf is used to navigate from one leaf to the next one;
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Enumerate all L-mers for a k-letter alphabet

AllLeaves(L, k)
1. a← (1, . . . , 1)
2. continue← TRUE
3. while continue
4. print a
5. NextLeaf(a, L, k)
6. if a = (1,. . . , 1)
7. continue← FALSE
8. return

Only go through all leaves, not internal nodes.
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How big is such a search tree?

- Number of leaves is kL for a k-letter alphabet.

- Number of internal nodes is (kL − 1)/(k − 1).

- Total number of nodes is (kL+1 − 1)/(k − 1).
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An alternative search program (going through internal nodes):

NextVertex(a, i, L, k)
1. if i < L { not yet at the bottom level, go one level }
2. ai+1 ← 1 { deeper, follow the leftmost branch }
3. return (a, i+ 1)
4. else { do as NextLeaf }
5. for j ← L to 1 { when this starts, j = L, bottom level }
6. if aj < k { when j 6= L, it is not at bottom level}
7. aj ← aj + 1 { but an internal node}
8. return(a, j)
9. return (a, 0)

Why going through internal nodes?

For the purpose of pruning tree branches
(avoiding unnecessary enumerations) to save time!
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The method of branch-and-bound:

While traversing a search tree, it is possible to skip a whole subtree
rooted at certain vertex.

How?

At each vertex, we calculate a bound – the most optimistic score of any
leaves within its subtree (which will be discussed later).

And using the following function to skip:

ByPass(a, i, L, k)
1. for j ← i to 1
2. if aj < k
3. aj ← aj + 1
4. return(a, j)
5. return (a, 0)
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4.8 Algorithms for Finding Motifs

First brute force algorithm for motif finding:

BruteForceMotifSearch(DNA, t, n, l)
1. bestScore← 0
2. for each s = (s1, ..., st) from (1, ..., 1) to (n− l + 1, ..., n− l + 1)
3. if Score(s,DNA) > bestScore
4. bestScore← Score(s,DNA)
5. bestMotif ← s
6. return bestMotif

Line 2 enumerates of all tuples (1, . . . , 1) to (n− l + 1, ..., n− l + 1);
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Using subroutine NextLeaf to enumerate tuples;

BruteForceMotifSearchAgain(DNA, t, n, l)
1. s← (1, ..., 1)
2. bestScore← Score(s,DNA)
3. while forever
4. s← NextLeaf(s, t, n− l + 1)
5. if Score(s,DNA) > bestScore
6. bestScore← Score(s,DNA)
7. bestMotif ← (s1, ..., st)
8. if s = (1, ..., 1)
9. return bestMotif

There are (n− l + 1)t such tuples;

Computing Score(s,DNA) takes O(l × t) steps;

So the complexity is O(lt(n− l + 1)t);
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Using subroutine NextVertex:

SimpleMotifSearch(DNA, t, n, l)
1. s← (1, ..., 1)
2. bestScore← 0
3. i← 1
4. while i > 0
5. if i < t
6. (s, i)← NextVertex (s, i, t, n− l + 1)
7. else
8. if Score(s,DNA) > bestScore
9. bestScore← Score(s,DNA)
10. bestMotif ← s
11. (s, i)← NextVertex(s, i, t, n− l + 1)
12. return bestMotif

Still without branch-and-bound heuristics
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With a branch-and-bound heuristics:

BranchAndBoundMotifSearch(DNA, t, n, l)
1. s← (1, ..., 1)
2. bestScore← 0
3. i← 1
4. while i > 0
5. if i < t
6. optimisticScore← Score(s, i,DNA) + (t− i) · l
7. if optimisticScore < bestScore
8. (s, i)← ByPass(s, i, t, n− l + 1)
9. else
10. (s, i)← NextVertex (s, i, t, n− l + 1)
11. else
12. if Score(s,DNA) > bestScore
13. bestScore← Score(s,DNA)
14. bestMotif ← s
15. (s, i)← NextVertex(s, i, t, n− l + 1)
16. return bestMotif
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With a branch-and-bound heuristics:

BranchAndBoundMotifSearch(DNA, t, n, l)
1. s← (1, ..., 1)
2. bestScore← 0
3. i← 1
4. while i > 0
5. if i < t
6. optimisticScore← Score(s, i,DNA) + (t− i) · l
7. if optimisticScore < bestScore
8. (s, i)← ByPass(s, i, t, n− l + 1)
9. else
10. (s, i)← NextVertex (s, i, t, n− l + 1)
11. else
12. if Score(s,DNA) > bestScore
13. bestScore← Score(s,DNA)
14. bestMotif ← s
15. (s, i)← NextVertex(s, i, t, n− l + 1)
16. return bestMotif
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4.9 Finding a median string

BruteForceMedianSearch(DNA, t, n, l)
1. bestWord← AAA...AAA
2. bestDistance←∞
3. for each l-mer word← AAA...AAA to TTT...TTT
4. if TotalDistance(word,DNA) < bestDistance
5. bestDistance← TotalDistance(word,DNA)
6. bestWord← word
7. return bestWord
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Using subroutine NextVertex:

SimpleMedianSearch(DNA, t, n, l)
1. s← (1, ...1)
2. bestDistance←∞
3. i← 1
4. while i > 0
5. if i < l
6. (s, i)← NextVertex (s, i, l, 4)
7. else
8. word← nucleotide string from (s1, ..., sl)
9. if TotalDistance (word,DNA) < bestDistance
10. bestDistance← TotalDistance (word,DNA)
11. bestWord← word
12. (s, i)← NextVertex (s, i, l, 4)
13. return bestWord.



Chapter 4. Exhaustive Search

Using subroutine NextVertex:

SimpleMedianSearch(DNA, t, n, l)
1. s← (1, ...1)
2. bestDistance←∞
3. i← 1
4. while i > 0
5. if i < l
6. (s, i)← NextVertex (s, i, l, 4)
7. else
8. word← nucleotide string from (s1, ..., sl)
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13. return bestWord.
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With a branch-and-bound strategy:

BranchAndBoundMedianSearch(DNA, t, n, l)
1. s← (1, ...1)
2. bestDistance←∞
3. i← 1
4. while i > 0
5. if i < l
6. prefix← nucleotide string from (s1, ...si)
7. optimisticDistance← TotalDistance(prefix,DNA)
8. if optimisticDistance > bestDistance
9. (s, i)←ByPass(s, i, l, 4)
10. else
11. (s, i)← NextVertex (s, i, l, 4)
12. else
13. word← nucleotide string from (s1, ..., sl)
14. if TotalDistance (word,DNA) < bestDistance
15. bestDistance← TotalDistance (word,DNA)
16. bestWord← word
17. (s, i)← NextVertex (s, i, l, 4)
18. return bestWord.
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How much time does it need to compute

TotalDistance(word,DNA) ?

and

TotalDistance(prefix,DNA) ?
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4.91
2 Profile-based Motif Search

Extending the motif finding question:

Once a motif profile is established, how to find a motif from
a new DNA sequence which fits the profile “well” ?

I.e., consider the following problem:
INPUT: a DNA sequence D, and motif profile P ;
OUTPUT: some position s in D such that Score(s, P )

achieves the optimal.

where Score(s, P ) is computed with the motif starting at position s
against the profile P .
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Two components are needed for the profile-based motif search:

(1) scanning algorithm

enumerating all positions on the DNA sequence

(2) scoring method

computing score Score(sP ), how ?
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nucleotide/position 1 2 3 4 5 6 7 8

A 5 1 0 0 5 5 0 0
C 0 0 1 4 2 0 6 1
G 1 1 6 3 0 1 0 0
T 1 5 0 0 0 1 1 6

Consensus A T G C A A C T

motif at position s: G T G G A A C T

* + + * + + + +

One method is to use Hamming distance,

Score(s, P ) = 2

disadvantage?
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(2) Statistical method

The profile gives probability pi(x) in the ith column, for
x ∈ {A,C,G, T},

and i = 1, 2, . . . , 8.

Score(s, P ) = p1(G)× p2(T )× · · · × p8(T )

But one question remains:

how high a probability is for a motif to be considered acceptable?
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