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I Part II. Fundamental Techniques (Chapters 4 - 6)

I Part III Advanced Algorithms (Chapters 7 - 10)

I Part IV Probabilistic Methods (Chapters 11 - 12)
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6.2 The change problem

Given amount of money M , find a way to change M into the
smallest number of coins from denominations c = {c1, c2, . . . , cd}.

For example, c = {1, 5, 10, 25} for the US money.
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Chapter 6. Dynamic Programming

Dynamic programming seeks solutions that can be computed from
solutions to subproblems;

Step 1: analysis of problem (top-down)

Assume S contains minimum number of coins for M = 77 cents. Then
there are at most 4 following scenarios to consider:

(1) At least one penny coin is included in S; then S should also contain
minimum number of coins for 77− 1 = 76 cents;

(2) At least one nickel coin is included in S; then S should also contain
minimum number of coins for 77− 5 = 72 cents;

(3) At least one dime coin is included in S;....

(4) If one quarter coin is included in ....
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But we do not known which one is the best option.

But we can try all possible options. So the best solution on M = 77
is the best out (1), (2), (3), and (4).

But it is difficult to represent ’solutions’.

Step 2: define objective function
and formulate recurrences (top-down)

Instead, we define a single numerical value on solution:
the smallest number of coins used:

smallestNumCoins(M) = min


smallestNumCoins(M − 1) + 1,
smallestNumCoins(M − 5) + 1,
smallestNumCoins(M − 10) + 1,
smallestNumCoins(M − 25) + 1

a recurrence to the numerical answer.
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Step 3: computing smallestNumCoins with an algorithm

A straightforward top-down recursive algorithm:

StraightForwardRecursiveChanges(M, c)
1. if M = 0
2. return (0)
3. else
4. vmin ←M
5. for i← 1 to |c|
6. if M − ci ≥ 0
7. vi ← StraightForwardRecursiveChanges(M − ci, c) +1
8. if vi < vmin

9. vmin ← vi
10. return (vmin)

Apparently there are a lot of re-computations.
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A less naive, top-down recursive algorithm by keeping a table T1,...,M

Initially, Tk = −1, for all k = 1, 2, . . . ,M .

LessNaiveRecursiveChanges(M, c)
1. if M = 0
2. return 0
3. else
4. vmin ←M
5. for i← 1 to |c|
6. if M − ci ≥ 0
7. if TM−ci = −1
8 TM−ci ← LessNaiveRecursiveChanges(M − ci, c)
9. if TM−ci + 1 < vmin

10. vmin ← TM−ci + 1
11. TM ← vmin

12. return

Note: T is global, as a ”communication media”.
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A bottom-up, iterative algorithm

DPChanges(n, c, T )
1. T0 = 0
2. for n← 1 to M
3. vmin ← n
4. for i← 1 to |c|
5. if n− ci ≥ 0
6. if Tn−ci + 1 ≤ vmin
7. vmin ← Tn−ci + 1
8. Tn ← vmin
9 return
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Step 4: Compute a solution, not just the numerical solution

We keep another array coinFrom to record how and from which amount
of money a coin was generated (the underlined parts).

DPChanges(M, c, T, coinFrom)
1. T0 = 0; coinFrom0 = 0;
2. for n← 1 to M
3. vmin ← n
4. for i← 1 to |c|
5. if n− ci ≥ 0
6. if Tn−ci + 1 ≤ vmin
7. vmin ← Tn−ci + 1; from← n− ci
8. Tn ← vmin; coinFromn ← from
9 return
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Example:

M = 7, c = {1, 2, 4}, c1 = 1, c2 = 2, c3 = 4

the result of running algorithm DPChanges:

n (cents) 0 1 2 3 4 5 6 7
T (minimum number of coins) 0 1 1 2 1 2 2 3

coinFrom (other than the last coin) 0 0 0 2 0 1 2 3
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different from Hamming distance

edit operations: substitution, insertion, and deletion



Chapter 6. Dynamic Programming

6.4 Edit distance and alignments

edit distance: allowing the alignment of two sequences of different lengths

different from Hamming distance

edit operations: substitution, insertion, and deletion



Chapter 6. Dynamic Programming

6.4 Edit distance and alignments

edit distance: allowing the alignment of two sequences of different lengths

different from Hamming distance

edit operations: substitution, insertion, and deletion



Chapter 6. Dynamic Programming

example:

TGCATAT by deleting last T
TGCATA by deleting last A
TGCAT by insering A in the front
ATGCAT by substituting C for G in the third position
ATCCAT by inserting G before the last A
ATCCGAT

and another series of operations:

TGCATAT by inserting A at the front
ATGCATAT by deleting the second A

ATGCTAT by substituting C for G
ATCCTAT by substituting G for the second T

ATCCGAT

These two series of operations correspond to the alignments:

-TGC-ATAT -TGCATAT

ATCCGAT-- ATCC-GAT



Chapter 6. Dynamic Programming

example:

TGCATAT by deleting last T
TGCATA by deleting last A
TGCAT by insering A in the front
ATGCAT by substituting C for G in the third position
ATCCAT by inserting G before the last A
ATCCGAT

and another series of operations:

TGCATAT by inserting A at the front
ATGCATAT by deleting the second A

ATGCTAT by substituting C for G
ATCCTAT by substituting G for the second T

ATCCGAT

These two series of operations correspond to the alignments:

-TGC-ATAT -TGCATAT

ATCCGAT-- ATCC-GAT



Chapter 6. Dynamic Programming

example:

TGCATAT by deleting last T
TGCATA by deleting last A
TGCAT by insering A in the front
ATGCAT by substituting C for G in the third position
ATCCAT by inserting G before the last A
ATCCGAT

and another series of operations:

TGCATAT by inserting A at the front
ATGCATAT by deleting the second A

ATGCTAT by substituting C for G
ATCCTAT by substituting G for the second T

ATCCGAT

These two series of operations correspond to the alignments:

-TGC-ATAT -TGCATAT

ATCCGAT-- ATCC-GAT



Chapter 6. Dynamic Programming

example:

TGCATAT by deleting last T
TGCATA by deleting last A
TGCAT by insering A in the front
ATGCAT by substituting C for G in the third position
ATCCAT by inserting G before the last A
ATCCGAT

and another series of operations:

TGCATAT by inserting A at the front
ATGCATAT by deleting the second A

ATGCTAT by substituting C for G
ATCCTAT by substituting G for the second T

ATCCGAT

These two series of operations correspond to the alignments:

-TGC-ATAT -TGCATAT

ATCCGAT-- ATCC-GAT



Chapter 6. Dynamic Programming

Given an alignment, we can present it as a path in a grid:

AT-GTTAT-

ATCGT-A-C

(0, 0)→ (1, 1)→ (2, 2)→ (2, 3)→ (3, 4)→ (4, 5)→ (5, 5)→ (6, 6)→ (7, 6)→ (7, 7)

Given two sequences,

(1) there are more than one possible alignments;
(2) each alignment has a score (to be defined);
(3) each alignment corresponds to a path on a grid;
(4) the goal is to find a path (i.e., an alignment) with a highest score.



Chapter 6. Dynamic Programming

Given an alignment, we can present it as a path in a grid:

AT-GTTAT-

ATCGT-A-C

(0, 0)→ (1, 1)→ (2, 2)→ (2, 3)→ (3, 4)→ (4, 5)→ (5, 5)→ (6, 6)→ (7, 6)→ (7, 7)

Given two sequences,

(1) there are more than one possible alignments;
(2) each alignment has a score (to be defined);
(3) each alignment corresponds to a path on a grid;
(4) the goal is to find a path (i.e., an alignment) with a highest score.



Chapter 6. Dynamic Programming

Given an alignment, we can present it as a path in a grid:

AT-GTTAT-

ATCGT-A-C

(0, 0)→ (1, 1)→ (2, 2)→ (2, 3)→ (3, 4)→ (4, 5)→ (5, 5)→ (6, 6)→ (7, 6)→ (7, 7)

Given two sequences,

(1) there are more than one possible alignments;
(2) each alignment has a score (to be defined);
(3) each alignment corresponds to a path on a grid;
(4) the goal is to find a path (i.e., an alignment) with a highest score.



Chapter 6. Dynamic Programming

6.5 Longest common subsequences

A simplified scenario:

subsequence:
if s =ATTGCTA, the both AGC and ATTA are subsequences of s.

common subsequence:
TCTA is a common subsequence of two sequences ATCTGAT and TGCATA

Finding a common subsequence is a simple case for alignment:

AT-C-TGAT

-TGCAT-A-

which only count the number of matches and not penalizing insertions or
deletions or mismatches.
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Longest Common Subsequence problem:

Find the longest subsequence common to two strings.

Input: two strings, v = v1 . . . vn and w = w1 . . . wm;
Output: The longest common subsequence (LCS) of v and w.

In the coin changing problem, we analyzed one coin at time. We looked
at the last coin added.

Here we analyze one character at a time. But since this problem concerns
two sequences, we may analyze two characters (one on each sequence) at
a time. We will look at the last characters on the sequences.
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We define a numerical value to pursue, instead of pursuing directly the
common subsequence:

Define: si,j be the length of an LCS between prefix string v1v2 . . . vi
and prefix string w1w2 . . . wj .

There are only three possibilities that would happen to vi and wj during
an alignement, we have the recurrence for si,j :

si,j = max

 si−1,j−1 + 1, if vi = wj
si−1,j + 0,
si,j−1 + 0,

s0,j = si,0 = 0 for all 0 ≤ i ≤ n and 0 ≤ j ≤ m.

Again, we do not want to directly implement the recurrence using the
top-down recursive approaches.
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LCS(v, w)
1. for i← 0 to n
2. si,0 ← 0
3. for j ← 0 to m
4. s0,j ← 0
5. for i← 1 to n
6. for j ← 1 to m
7. if vi = wj

8. a← 1
9. else
10. a← −∞
11. if si−1,j−1 + a > max{si,j−1, si−1,j}
12. si,j ← si−1,j−1 + 1; bi,j ←′↖′
14. else
15. if si,j−1 > max{si−1,j−1 + a, si−1,j}
16. si,j ← si,j−1; bi,j ←′←′
18. else
19. si,j ← si−1,j ; bi,j ←′↑′
10. return
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Figure 6.14 on page 173 (left table for LCS).

table 0 1 2 3 4 5 6
T T G C A T A

0 0 0 0 0 0 0 0
1 A 0 0 ↑ 0 ↑ 0 ↑ 1 ↖ 1 ← 1 ←
2 T 0 1 ↖ 1 ← 1 ← 1 ↑ 2 ↖ 2 ←
3 C 0 1 ↑ 1 ↑ 2 ↖ 2 ← 2 ↑ 2 ↑
4 T 0 1 ↖ 1 ↑ 2 ↑ 2 ↑ 3 ↖ 3 ←
5 G 0 1 ↑ 2 ↖ 2 ↑ 2 ↑ 3 ↑ 3 ↑
6 A 0 1 ↑ 2 ↑ 2 ↑ 3 ↖ 3 ↑ 4 ↖
7 T 0 1 ↖ 2 ↑ 2 ↑ 3 ↑ 4 ↖ 4 ↑

In notation of alignment:

A T - C - T G A T

- T G C A T - A -

↑ ↖← ↖←↖↑ ↖ ↑

The LCS is between the two sequences is TCTA
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Retrieve the corresponding LCS from table bi,j .

The following recursive function prints the found LCS between v1v2 . . . vi
and string w1w2 . . . wj :

PrintLCS(b, v, i, j)
1. if i = 0 or j = 0
2. return
3. if bi,j =′↖′
4. PrintLCS(b, v, i− 1, j − 1)
5. print vi
6. else
7. if bi,j =′↑′
8. PrintLCS(b, v, i− 1, j)
9. else
10. PrintLCS(b, v, i, j − 1)
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The LCS computes the similarity between two sequences, thus to
maximize the length.

On the other hand, edit distance is to measure the similarity between the
two using distance, thus to minimize the score.

di,j = min

 di−1,j−1, if vi = wj
di−1,j + 1,
di,j−1 + 1,

For alignment, usually we are looking for higher scores.
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6.6 Global pairwise sequence alignment

We need scores for matches, substitutions, deletions and insertions.

(1) Scoring matrices δ, 4× 4 for nucleic acids and 20× 20 for proteins,
which include scores for matches and substitutions.

(2) For insertion and deletion (indel, ′−′), a penalty is applied.

(3) If the penalty is uniform for every gap, thus linear, then it can be built
into the scoring matrices, resulting in 5× 5 and 21× 21 matrices.

(4) But often the gap penalty is not uniform. For example, affine gap
penalty is defined as o+ e(l − 1) for l consecutive gaps, where o is the gap
opening penalty and e is the gap extension penalty.
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Global Alignment Problem

Find the best alignment between two strings under a give scoring matrix.

Input: String v, w and a scoring matrix δ.
Output: An alignment of v and w whose score (as defined by the

matrix δ) is the maximum among possible alignments of v and w.

Define: si,j to be the maximum score to align v1 . . . vi and w1 . . . wj ,
given scoring matrix δ.

Like LCS, we do not know which of the three scenarios is the best, so

si,j = max

 si−1,j−1 + δ(vi, wj)
si−1,j + δ(vi,−)
si,j−1 + δ(−, wj)

where δ(vi,−) is the gap penalty for aligning vi to a gap, etc..
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GlobalPairwiseAlignment(v, w)
0. s0,0 = 0
1. for i← 1 to n initializing the first column

2. si,0 ←
i∑

k=1

δ(vk,−)

3. for j ← 1 to m initializing the first row

4. s0,j ←
j∑

k=1

δ(−, wk)

5. for i← 1 to n
6. for j ← 1 to m filling entries for the matrix
7. if si−1,j−1 + δ(vi, wj) > max{si,j−1 + δ(−, wj), si−1,j + δ(vi,−)}
8. si,j ← si−1,j−1 + δ(vi, wj); bi,j ←′↖′
9. else
10. if si,j−1 + δ(−, wj) > max{si−1,j−1 + δ(vi, wj), si−1,j + δ(vi,−)}
11. si,j ← si,j−1 + δ(−, wj) ; bi,j ←′←′
12. else
13. si,j ← si−1,j + δ(vi,−); bi,j ←′↑′
14. return
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6.9 Alignment with affine gap penalty

So far, we have adopted the gap penalties that are
“column-independent”, such as δ(x,−).

When δ(x,−) is a constant −γ, where γ > 0 fixed regardless of x, we can
replace the recurrence for global alignment

si,j = max


si−1,j−1 + δ(vi, wj)
si−1,j + δ(vi,−)
si,j−1 + δ(−, wj)

with

si,j = max


si−1,j−1 + δ(vi, wj)
si−1,j − γ
si,j−1 − γ
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Now if gap penalty for a gap of length l (i.e., number of single gaps) is
defined as

ρ+ (l − 1)σ

where ρ > 0 is a gap opening penalty and σ > 0 is gap extension penalty.

We cannot simply replace −γ with −ρ− (l − 1)σ because γ is for just one
single gap.
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Solution-1: we consider all possible gap situations

si,j = max


si−1,j−1 + δ(vi, wj)
max
1≤l≤j

{si,j−l − ρ− (l − 1)σ}

max
1≤l≤i

{si−l,j − ρ− (l − 1)σ}

Does it work?

Yes.

But how much time would it take to build the DP table?

O(n2) time is needed for GlobalPairwiseAlignment.

The above recurrence would required O(n3) time.
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Solution-2: actually gap opening and gap extension penalties can be
handled separately. For this, we need multiple recurrence-based DP
techniques.

si,j = max

 si−1,j−1 + δ(vi, wj)
Ii,j
Di,j

where Ii,j is the score of optimal alignment between v1 . . . vi and
w1 . . . wj for which wj is inserted, and

Di,j the score of optimal alignment between v1 . . . vi and w1 . . . wj for
which vi is for which vi is deleted.
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Thus,

Ii,j = max

{
Ii,j−1 − σ extending the gap
si,j−1 − ρ closing the gap

Di,j = max

{
Di−1,j − σ extending the gap
si−1,j − ρ closing the gap

We would need to computed three tables, one for each of si,j , Ii,j and
Di,j .

Each table can be computed in time O(n2).
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6.7 Scoring alignment

Consider alignment

ATTGTTAT-

ATCGT-A-C

with a simple model. Assume p(T, C) to be probability that T aligns to C,

then the score of (column 3) aligning T with C can be defined as the ratio:

p(T, C)

q(T)q(C)

the denominator is the probability for T and C to occur independently.

If the score for column 3 is greater than 1, it means T and C are
evolutionarily related; otherwise unrelated.
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Alignment probability is
r∏

k=1

p(v̄k,w̄k)
q(v̄k)q(w̄k) , i.e., product over r columns.

Taken the logarithm, the score becomes either positive or negative, and
the product becomes summation,

which the sum of column scores!
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Examine closely related protein sequences for mutation rates.
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One PAM: the amount of time in which an “average” protein mutates
1% of its amino acids.

Let f(i, j) be the frequency that amino acids i and j are aligned.

Let f(i) be the frequency of amino acid i. Then f(i,j)
f(i)f(j)

is to
measure i and j are aligned as oppose to they occur independently.

Let f(i, j) = f(i)f(j|i), by considering f as a probability.

Let g(i, j) = f(j|i) is the probability of mutating to j given amino acid i.

So the measure is f(i,j)
f(i)f(j)

= f(j|i)
f(j)

= g(i,j)
f(j)

Taken logarithm, the measure becomes

log
g(i, j)

f(j)
= log

observed frequency

expected frequency
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f(j)
= log

observed frequency

expected frequency
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PAM 1 matrix

The (i, j) entry in the PAM 1 matrix is log g(i,j)
f(j) .

Define G to be the matrix containing entries g(i, j). Then

PAM 1 matrix = log(G/f(j)), where f(j) is applied to the jth column.

Define Gn to be the matrix obtained from G by multiplying itself n times.

PAM n matrix is log(Gn/f(j)), where f(j) is applied to jth column.

But what does Gn mean and what does PAM n mean?
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Assume G

G X Y Z

X a b c
Y d e f
Z g h i

g(X,Y ) = b

Consider G2

G2 X Y Z

X ... (ab+ be+ ch) ...
Y ... ... ...
Z ... ... ...

where

ab = g(X,X)g(X,Y )
be = g(X,Y )g(Y, Y )
ch = g(X,Z)g(Z, Y )

These are probabilities of two step mutations from X to Y . So n is a multiple
of the time unit.

http://www.bioinformatics.nl/tools/pam.html
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BLOSUM (blocks of amino acid substitution) matrices

Scores within a BLOSUM are log-odds scores that measure, in an
alignment, the logarithm for the ratio of the likelihood of two amino
acids appearing with a biological sense and the likelihood of the same
amino acids appearing by chance.

The matrices are based on the minimum percentage identity of the
aligned protein sequence used in calculating them.

Every possible identity or substitution is assigned a score based on its
observed frequences in the alignment of related proteins
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6.8 Local sequence alignment

To find conserved regions between two sequences that not necessarily
similar overall.

A situation that global alignment is not appropriate.

..........xxxxxxxxxx

xxxxxxxxx...........

where xxxxxxxxx is a conserved motif.

Also see Figure 6.16
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A local alignment between two sequences

v = v1 . . . vn and w = w1 . . . wm

is a global alignment between two substrings

va . . . vb and wc . . . wd, of v and w respectively,

that achieves the best alignment score among all such indexes a, b, c, d,
1 ≤ a ≤ b ≤ n and 1 ≤ c ≤ d ≤ m.
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Local sequence alignment

Find the best local alignment between two strings.

Input: Strings v and w and a scoring matrix δ,
Output: Substrings of v and w whose global alignment, as

defined by δ, is the maximum among all global alignments of all
substrings of v and w.
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How to solve this ’seemingly the same problem’ as global alignment?

(1) The global alignment algorithm actually computes all
“semi-global alignments”.

That is, it computes all best alignment scores for prefix substrings
v1 . . . vi and w1 . . . wj for all indexes i, j.
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(2) For local alignment, we would also like to drop any alignment
’head’

that has been penalized.

v1.....vh.........vk.....vi

w1.....wp.........wq.....wj

->| neg |<--

score

which can be achieved by following recurrence:

si,j = max


si−1,j−1 + δ(vi, wj)
si−1,j + δ(vi,−)
si,j−1 + δ(−, wj)
0
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(3) For local alignment, we would like to drop any alignment ’tail’
that has a negative score.

v1............vk....vi

w1............wq....wj

->| neg |<--

score

This can be accomplished by tracing the DP table from the
highest value cell.
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6.10 Multiple alignment

To compare more than two sequences.

How to score an alignment (a column) involving k sequences ?

Option-1: assume a k-dimensional scoring matrix. (unrealistic)

Option-2: Sum-of-Pair (SP) scoring scheme:
the score of a multiple alignment is computed as the
sum of the scores between every pair of the aligned sequences.

Option-3: entropy approach:
the score of a multiple alignment is computed as the
sum of entropies of all aligned columns.

The entropy for a column i is computed as∑
x∈{A,C,G,T}

f ix log f ix

where f ix is the frequency of residue x in column i.
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A dynamic programming solution for multiple alignment.

Assume we have 3 sequences u, v, w to align.
Consider aligning prefixes:

u1 . . . ui
v1 . . . vj
w1 . . . wk

si,j,k = max



si−1,j−1,k−1 + δ(ui, vj , wk)
si,j−1,k−1 + δ(−, vj , wk)
si−1,j,k−1 + δ(ui,−, wk)
si−1,j−1,k + δ(ui, vj ,−)
si,j,k−1 + δ(−,−, wk)
si,j−1,k + δ(−, vj ,−)
si−1,j,k + δ(ui,−,−)

Inefficient: 7× n3 time. In general,

O(nm2m−1) time and O(nm) size table for m sequences of length n.
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Heuristic algorithms for multiple alignment

Typically progressive approaches:

- Note that use a collection of pairwise alignments may not work

- Find a small set of ‘core’ sequences and align other to them

E.g., center-star algorithm
E.g., CLUSTAL

the “once gap, forever gap” strategy
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6.10 1
2 HMM and Dynamic Programming Solutions

A Markov Model characterizes stochastic processes that assume
following Markov property.

The “oblivious” property, i.e, the conditional probability distribution
of future states of a stochastic process depends only upon the present
state, not on the sequence of events that preceded it.
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A Markov Model over alphabet Σ consists of a set S of states and
transitions T between states, such that

(1) With a probability distribution, each state can emit symbols in Σ;

for every s ∈ S,
∑
x∈Σ

p(s, x) = 1

(2) With a probability distribution, there are transitions from each
state to all other states in the model;

for every s ∈ S,
∑
t∈S

q(s, t) = 1
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Definitions:

Let M be a Markov model over alphabet Σ.
Let X = x1 . . . xn be a sequence over Σ, i.e., xi ∈ Σ.

Let π = s1 . . . sn be a sequence of states taken from S, i.e., si ∈ S
(π is called a path).

Then the probability for M to generate symbol sequence X with the
path π is

p(X,π|M)

= p(s1, x1)q(s1, s2)p(s2, x2) . . . p(sn−1, xn−1)q(sn−1, sn)p(sn, xn)

=

n−1∏
k=1

p(sk, xk)q(sk, sk+1)× p(sn, xn)
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Uses of HMMs

1. Modeling specific classes of sequences

e.g., profile HMM for motifs

2. Modeling general classes of sequences

typically for prediction
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Fundamental algorithms with HMMs

1. decoding (for prediction, discrimination)

2. computing likelihood (for model fitness)

3. learning (for building models)
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HMM Decoding Problem:

Given a Markov model M and a sequence X over the alpha Σ, find the
path π∗ such that

p(X,π∗|M) achieves the maximum.

That is to find an optimal path π∗ such that

π∗ = arg max
π
{p(X,π|M)}
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Dynamic programming to compute π∗ such that

p(X,π∗|M) achieves the maximum.

If we consider the model M to be a “generic” sequence
then the task is to find the “best alignment” between X and M

That is: to “align” xi on X with state sj

The “score” is p(sj , xi) for this “column”.
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Consider a more general algorithm Viterbi Algorithm:

Computing the maximum probability for M to
generate prefix x1x2 . . . xi

such that symbol xi is emitted by state sj .

We define such probability to be Vi,j

Then we have the following recurrence:

Vi,j = max
sk∈S
{Vi−1,k × q(sk, sj)× p(sj , xi)}

If stochastic processes always begin from state sb, then:

V1,b = 1× p(sb, x1)

V1,a = 0 for every a 6= b
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consisting 4 steps:

1. problem analysis
2. objective function and recurrence formulation
3. iterative algorithm implementation
4. tracing back the solution (path)
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Use an HMM to construct a sequence profile

called a profile-HMM

example:

CGGGGCTatccagctGGGTCGTCACATTCCCCTTTCGATA

TTTGAGGGTGCCCAATAAgggcaactCCAAAGCGGACAAA

GGatggatctGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGaagcaaccCCAGGAGCGCCTTTGCTGGTTCTACCTG

CTAAAAGATTATAATGTCGGTCCttggaactTC

CTGTACATCATGCTGCatgccattTTCAAC

TACATGATCTTTTGatggcactTGGATGATGAGGGAATGC

————
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8 columns for match

What about insertions and deletions?

Profile-HMM definition:

A profile-HMM consists of the following states:
- begin and end states
- match states Mj , j = 1, 2, . . . ,m
- insert states Ij , j = 1, 2, . . . ,m
- delete states Dj , j = 1, 2, . . . ,m
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Viterbi algorithm is still usable for computing π∗

but needs to be revised a little.

Define:

VMi,j is the optimal probability the HMM produces
prefix x1 . . . xi ending at state Mj .

V Ii,j is the optimal probability the HMM produces
prefix x1 . . . xi ending at state Ij .

DI
i,j is the optimal probability the HMM produces

prefix x1 . . . xi ending at state Dj .
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Recurrences for VMi,j :

VMi,j = max{
VMi−1,j−1q(Mj−1,Mj)p(Mj , xi),

V Ii−1,j−1q(Ij−1,Mj)p(Mj , xi),

V Di−1,j−1q(Dj−1,Mj)p(Mj , xi)

}

Base cases?

And recurrences for V I , V D?
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To set up a profile-HMM:

- obtain a multiple alignment of training data;
- determine the number of match states;
- compute emission prob distribution for every match state;
- determine the number insert states;
- compute emission prob distribution for every insert state;
- determine the number of delete states;
- determine the transition probability distributions;

Resolve the over fitting issue with pseudo-counts
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Example of profile-HMM:

atccag-ct

gggcaa-ct

atggat-ct

a-gcaatcc

ttggaa-ct

atgcca-tt

atggca-ct

1. how to determine match columns and
insert columns (for consensus)

2. deletion is w.r.t. match
3. when there is no pseudo counts
4. to avoid over fiting
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Using a profile HMM (of a family of sequences) to search for new
members on genomes/databases:

- construct a profile-HMM
- develop Viterbi algorithm
- choose a scanning window size
- post-process results
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6.11 Gene Prediction

Identification of protein coding genes in genome sequences.

Statistical approaches

based on statistical features surrounding genes

Similarity-based approaches

based on similarities of genes across different species
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