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Probabilistic models
e Characterization of data observable from a system
e Expression of uncertainty of data with probability theory
e Automatic learning of the system from data

e Computational inference/prediction of unknown
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1. Parameter Re-estimation for HMMs

e HMM (and profile HMM) (introduced)
topology G: states and transitions
parameter 6: probability distributions for emissions and transitions

e parameter estimation (given G, and data D)

0" = arg max P(0|D)

e with structured data (e.g., a multiple alignment from D)
0* can be computed (with prior P(6)) by Bayes's

P(DI0)P(0)
P(D)
with maximum likelihood method

P(D|6) is maximized when 6 is the frequencies obtained from D.

P(0|D) = so P(0|D) ~ P(D|0)P(0)
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e without structural data (e.g., with incomplete data), 6 can still be
estimated.

P(D|0,14): probability of data D given the parameter 0,4
P(D,elb,4): probability of D with event e given the parameter 0,4
P(D, e|001d)

P(elbnew) = fle, D, 001a) = P(D|9 ld)

e How to compute P(D,e|0,4) and P(D|0y1q) ?
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e Let sequence x € D, and 7 represents any path in HMM, then

$|901d ZP x W‘aold

the right-hand-side can be computed with DP similar to one used in
the Viterbi's that compute maxP(x, 7|0o14)
™

P(D|foia) = Y P(|0o1a)
z€D

The algorithm to compute Y P(z,7|0,1q4) is Forward Algorithm.
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e To compute P(D,e¢|004), note that, for € D,

P(z,e|001d) = Z P(x,m,e|004)
= contains e
for HMMs, path 7 containing event e can be expressed as

T = aefl

where « is a prefix path of 7 and [ is the corresponding suffix path
of . Then

P(z, e|foia) = ZP x, ae|0o1a)

P(ZL‘7O(6 {‘eold) = ZP(w[luj],O(‘Qold)P((i'eold)P(.l"/ 1..n]» ‘1“(‘)4,;,/)

where position j partitions the sequence x into two segments
T[1..5] and Tlj4+1..n]-
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To compute

P(z,0ef|0,q) = ZP(iE[l..j]vUé|90ld)P(@‘00ld)I)(J'[‘j r1..n)> BlOota)

n
Jj=0



Part IV Probabilistic Models and Learning

To compute
P(z,0ef|0,q) = ZP(QL’[l..j]-,CYWOZ(I)P(e‘aold)/)(vl'\‘/ 1..n]» Bl0ota)
§=0
o P(xp ], @|0,4) is already a part of the Forward Algorithm
to compute P(z|0014);
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To compute

P(z,0ef100a) = Y P(xp. 5, l00a)P(e]0oa)
=0

o P(xp. ], @|0,4) is already a part of the Forward Algorithm
to compute P(x|0,14);

e P(e|0,1q) is known;

° is a part of the so-called Backward Algorithm
that computes P(x|6514)-

Backward Algorithm computes for suffixes instead of prefixes.
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Examples of event e in a profile HMM (with begin and end states B and E);

o if ¢ is transition M; — M;41,
then prefix path a is B ~~ M; and suffix path 8 is M;+1 ~ E.

e if ¢ is transition I; — D11,
then prefix path a is B ~~ I; and suffix path 8 is D;+1 ~ E.

o if e is emission that M; emits letter A,
then prefix path « is B ~» M; and suffix path g is M; ~ E.

e etc..
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Summary of parameter re-estimation for HMMs from given data D

e Assume 0,4 to be the existing parameter set for an HMM;
e For every event e in the HMM, compute

P(D, 6|0c.ld)

P(elOnew) = P(D0ora)

where P(D|0oia) = > P(x|001q4) that can be computed with Forward
zeD

and P(D,el0o1a) = >, P(z,€elf01q) that can be computed with
zeD
both Forward and Backward.

e iterate the above steps until |P(D‘9’}f(“glglj;)me"’d)l < A.
for a given constant A.

Called Forward-backward algorithm.
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2. Stochastic context-free grammar

e an extension of HMM;
e with a capability to model correlation and coevolution;
e correlation patterns are limited.
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a profile hidden Markov model

We can use a different notation for the HMM.

e Begin — aMy, Begin — cM;, Begin — gMy, Begin — tM;
Begin — aly, Begin — cly, Begin — gly, Begin — tlj
Begin — Dy

o M, — eMi+1
M; — el;
M; — Di+1
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a profile hidden Markov model Seq uence acggt

e Begin — aM, ...

° Mi — aMi+1, Mi — aL-, Ii — aM7;+1
M; — CM»;Jrl, M; —cl;, I; — CM»;Jrl
M; — tMH_l, M; — inv I, — gMi+1
Mi — tMi+1, Mi — t[i, I»; — tM7;+1, for i = 1,2,3.
My — End
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a profile hidden Markov model

e Begin — aM, ...

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

sequence acggt

Ii — aM7;+1
I, — CM»;Jrl
I, — gMi+1
I = tMiyq,

fori=1,2,3.
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e Begin — aM, ...

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

Begin

sequence acggt

Ii — aM7;+1
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I = tMiyq,
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a profile hidden Markov model

e Begin — aM, ...

sequence acggt

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

Begin = aM;

Ii — aM7;+1
I, — CM»;Jrl
I, — gMi+1
I = tMiyq,

fori=1,2,3.



Part IV Probabilistic Models and Learning

@ @' m
s LR GRERER

i

a profile hidden Markov model

e Begin — aM, ...

sequence acggt

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

Begin = aMi = acM>

Ii — aM7;+1
I, — CM»;Jrl
I, — gMi+1
I = tMiyq,

fori=1,2,3.
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a profile hidden Markov model

e Begin — aM, ...

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

sequence acggt

Ii — aM7;+1
I, — CM»;Jrl
I, — gMi+1
I = tMiyq,

Begin = aMi = acMs = acgls

fori=1,2,3.
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a profile hidden Markov model

e Begin — aM, ...

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

sequence acggt

Ii — aM7;+1
I, — CM»;Jrl
I, — gMi+1
I = tMiyq,

fori=1,2,3.

Begin = aMi = acM2 = acgla = acggMs
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a profile hidden Markov model

e Begin — aM, ...

° Mi — aMi+1,
M; = cMiqq,
M; — tM;q1,
M; = tMiqq,

My — End

Mi — aL-,
M; — cl;,
Mi —>g[z‘,

Mi — t[i,

we use rules to produce acggt:

sequence acggt

Ii — aM7;+1
I, — CM»;Jrl
I, — gMi+1
I = tMiyq,

fori=1,2,3.

Begin = aMi = acM2 = acgla = acggMs = acggtMy



Part IV Probabilistic Models and Learning

(01 )= (02)
AT

sl
ity

a profile hidden Markov model Seq uence acggt

e Begin — aM, ...

° Mi — aMi+1, Mi — aL-, Ii — aM7;+1
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M; — tMi+1, M; — inv I, — gMi+1
Mi — tMi+1, Mi — t[i, I»; — tM7;+1, for i = 1,2,3.
My — End

we use rules to produce acggt:

Begin = aMi = acMsz = acgla = acggMs = acggtMs = acggtEnd



Part IV Probabilistic Models and Learning

(01 )= (02)
AT

sl
ity

a profile hidden Markov model Seq uence acggt

e Begin — aM, ...

° Mi — aMi+1, Mi — aL-, Ii — G,M7;+1
M; — CM»;Jrl, M; —cl;, I; — CM»;Jrl
M; — tMi+1, M; — inv I, — gMi+1
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a profile hidden Markov model Seq uence acggt

e Begin — aM, ...

° Mi — aMi+1, Mi — aL;, Ii — G,M7;+1
M; — CM»;Jrl, M; —cl;, I; — CM»;Jrl
M; — tMi+1, M; — inv I, — gMi+1
Mi — tMi+1, Mi — t[i, I»; — tM7;+1, for i = 1,2,3.
My — End

we use rules to produce acggt:
Begin = aMi = acMsz = acgla = acggMs = acggtMs = acggtEnd

Called a derivation <= a path in HMM.
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Notes on the rules:

e Rules are grammar rules (also called rewriting rules)

e Rules like A — aB and A — C are regular grammar rules
where A, B, C are non-terminals and a is a terminal;

rules can be associated with probability distributions;

a derivation is associated with a probability

by compounding the probabilities of used rules;

a sequence may have more than one derivation;

one of the derivations of the sequence is of the max probability;
letters on the sequence are derived one at a time, independently;

e Can rules be designed to model complex relationships among letters?
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H;, — uHi_Ha
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e H, — G/Hi+1u
H;, — uHi_Ha
H,; — CHH_lg
Hi — gHi+1C

Li — CLLH_l
Li — CLZ'+1
L; = gLiva
Li = uliyy
L; — ¢ (empty)

e a derivation an RNA sequence that folds into a stem-loop
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Consider rules for RNA sequences

e H, — G/Hi+1u
H;, — uHi_Ha
H,; — CHH_lg
Hi — gHi+1C

Li — CLLH_l
Li — CLZ'+1
L; = gLiva
Li = uliyy
L; — ¢ (empty)

e a derivation an RNA sequence that folds into a stem-loop

Hy = aHiu = agHscu = agaHsucu = agaLsucu

= agaaLjucu = agaaaLsucu = agaaaicy
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RNA secondary structure examples:

Stems in crossmg pa’r’rerns

c--c-ccccaccgc-ggg-accggucc

Pseudoknots: crossing
patterns of stems

e nesting, parallel patterns are context-free, while
e crossing patterns are not!
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Illustration of context-free grammar derivation:

S > aSu L->alL
S 2> uSa L= el
S > gSc L>a
S 2> cSg [y @
S->L

cccc

cguu

e Context-free grammar derivation is a tree
(because of simultaneous emissions)
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[llustration of CFG derivation again:

S > aSu S aSu

S = cSg = acSgu

S = gSc = accSggu

S 2 uSa = accuSaggu

S=>a = accuSSaggu
S=>c = accugScSaggu
S=>g = accuggSccSaggu
S=2u = accuggaccSaggu
§$->8S8 = accuggacccSgaggu

= accuggacccuSagaggu

= accuggacccuuagaggu

1. ACFG 2. A derivation of "accuggacccuuagaggu” 3. Corresponding structure
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S > aSu
S > ¢cSg
S > gSc
S > uSa
S—>a
S>c
S->g
S>u
S->S8s

(A CFG applied on the same sequence with two alternative syntactic structures)

S = aSu

= acSgu

= accSggu

= accuSaggu

= accuSSaggu

= accugScSaggu

= accuggSccSaggu

= accuggaccSaggu

= accuggacccSgaggu
= accuggacccuSagaggu

=» accuggacccuuagaggu

(Drawn with VARNA)

S SS
= SSS
= aSS
= acSgS
= accSggS
= accuggS
= accuggaSu
= accuggacSgu
= accuggaccSggu




Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

e Probability distributions are associated with grammar rules

1. S—aSh {0.4} 4.5 —=a {0.1}
2.5 5aS {01} 5 .8—b {0.1}
3.5 =05 {0.1} 6. S — 88 {0.2}



Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

e Probability distributions are associated with grammar rules

1. S—aSh {0.4} 4.5 —=a {0.1}
2.5 5aS {01} 5 .8—b {0.1}
3.5 =05 {0.1} 6. S — 88 {0.2}

for every variable X, > Prob(X —a) =1

X—a



Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):
e Probability distributions are associated with grammar rules
1. S—aSh {0.4} 4.5 —=a {0.1}

2.S—>aS {01} 5 S—b {0.1}
3.5 bS {01} 6555 {02}

for every variable X, > Prob(X —a) =1

X—a

e Every syntax structure of a sequence is associated with a probability.



Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

e Probability distributions are associated with grammar rules

1. S—aSh {0.4} 4.5 —=a {0.1}
2.5 5aS {01} 5 .8—b {0.1}
3.5 =05 {0.1} 6. S — 88 {0.2}

for every variable X, > Prob(X —a) =1

X—a

e Every syntax structure of a sequence is associated with a probability.

ma: S =1 aSb =1 aaSbb =3 aabSbb =4 aababb = x
7g: S =¢S5 =1 aSbS =4 aabS =1 aabaSb =5 acba b=z



Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

e Probability distributions are associated with grammar rules

1. S—aSh {0.4} 4.5 —=a {0.1}
2.5 5aS {01} 5 .8—b {0.1}
3.5 =05 {0.1} 6. S — 88 {0.2}

for every variable X, > Prob(X —a) =1

X—a

e Every syntax structure of a sequence is associated with a probability.

ma: S =1 aSb =1 aaSbb =3 aabSbb =4 aababb =
5. S =6 95 =1 aSbS =4 aabS =1 aabaSb =5 aaba b = x

Prob(ma,z) = 0.4 x 0.4 x 0.1 x 0.1 = 0.016
Prob(rg,z) =0.2 x 0.4 x 0.1 x 0.4 x 0.1 = 0.0032
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RNA secondary structure modeling with SCFG:

o Effective
- specific enough for profiling
- general enough for structure prediction

e Efficient: O(n3)-time computations
- decoding (structure prediction)
- structure analysis (structural alignment)
- probability parameter estimation

e performance
- comparable to energy-based methods
- unique and successful in structural profile-based search

[Sakakibara et al, 1994, Eddy and Durbin 1994,

Rivas et al, 2012]
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Stochastic grammars for (RNA) tertiary structure modeling?

e much smaller set of resolved 3D structures
(in contrast to proteins or reported RNA secondary structures)

e tertiary interactions were not understood until recently

Interacting Edges Glycosidic Bond Orieniations Ll

o /‘Qs\’ 4 = , 59 / & = _

7 e oBPh - P = e sl " serh

LY > ot O g
g

W

T

Trams orstation of s Glyosidic Bonds o

(Leontis et al, 2003; Zirbel et al, 2009. 12 base-base, 10 base-phosphate, and
10 base-ribose families)
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All nucleotide interactions of a tRNA (excluding stacking)

e gray relation is context-free;
e purple relation is context-sensitive.
e We need a higher-order model for such complex relations!
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3. Markov networks and learning

e Compute joint probability distribution P(X) from observed
random variables X = (Xq,..., X,,)

Example 1: molecule residues forming structure

Example 2: gene networks from expression data
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e P(X) is a n'" order distribution, difficult to compute

e Approximation with a second order distribution Pg(X)
(i.e., binary relation, Markov network)

e.g., molecule residues are random variables

molecular structure is defined over their joint distribution,
involving multi-body interactions.

Markov network model approximates multi-body interactions
with pairwise interactions.
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Questions to answer:
e What does Pg(X) look like even a Markov graph G is given?
e How to measure the difference between P5(X) and P(X)?

e Can we compute G and Pg(X) efficiently?
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The framework of Chow and Liu 1968:

e to measure difference between two distributions P(X) and Pg(X))
with D1, Kullback-Leibler divergence;

e when G is assumed to be of tree topology, minimizing D results in
maximum spanning tree problem

e |f non-tree topology is desired
1. the problem becomes computationally intractable;

2. relying on heuristics.



Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable X = {X3,...,X,,}
with with a root X3



Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable X = {X3,...,X,,}
with with a root X3



Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable X = {X3,...,X,,}
with with a root X3

e tree topology is completely determined by 7, the parent information
eg., m(6)=3



Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable X = {X3,...,X,,}
with with a root X3

e tree topology is completely determined by 7, the parent information
eg., m(6)=3

e Pr(X)=P(Xy) .EIQP(X”XTFG))



Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable X = {X3,...,X,,}
with with a root X3

e tree topology is completely determined by 7, the parent information
eg., m(6)=3

e Pr(X)=P(Xy) .EIQP(Xi|X”(i))

e Minimizing Dk, (P(X), Pr(X)) would tell us what T should be.
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Kullback-Leilber divergence:

P(x
Diea((PO). (X)) = 3 Plo) g, o
where © = (x1,...,%,) is the vector of values for variables X1, ..., X,.
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where © = (x1,...,%,) is the vector of values for variables X1, ..., X,.
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Kullback-Leilber divergence:

P(z)
D P P(x)1
KL(( ( Z Og2 P ( )
where © = (x1,...,%,) is the vector of values for variables X1, ..., X,.
Dxr((P(X), Pr(X)) =) P(x)log, P ZP z) log, Pr(z)

ZP )logy P(x1) [ | P(ailzn(s))
=2

The second term is

— Z P(x1,...,2n)logy P Z P(z1,...,2n)log, H P(x:i| Xray)

(z1,..., Tn) [CIRTIIN Tn) =2

= —ZP(xl)log2 P(x1) — Z P(z1,...,%n Zlog2 (xi|Tr(s))
z1

= H(X1) - Z P(z1,.. z:log2 (xi|Tr(s))
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Kullback-Leilber divergence:

P(z)
D P P(x)1
KL(( ( Z Og2 P ( )
where © = (x1,...,%,) is the vector of values for variables X1, ..., X,.
Dxr((P(X), Pr(X)) =) P(x)log, P ZP z) log, Pr(z)

ZP )logy P(x1) [ | P(ailzn(s))
=2

The second term is

— Z P(x1,...,2n)logy P Z P(z1,...,2n)log, H P(x:i| Xray)

(z1,..., Tn) [CIRTIIN Tn) =2

= —ZP(xl)log2 P(x1) — Z P(z1,...,%n Zlog2 (xi|Tr(s))
z1

= H(X1) - Z P(z1,.. z:log2 (xi|Tr(s))
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from the last slide:

=H(X:1) - Z P(z1,...,2,) Z:log2 (xi|Tr(s))

('TZ|$7r(z))P(f)'W(/I\)

= H(X1)— Z P(z1,...,2x) ZlogQP(;I‘L

( )P(ﬁ[‘miu)
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from the last slide:

=H(X:1) - Z P(z1,...,2,) Z:log2 (xi|Tr(s))

i P(xrei))
= H(Xl) — Z P(a:l,...,xn Zlog2 P(TL (-T |$7r(7«)) 1 )

(@1,0esn) P(xi) P (1))
= Y . P(xhxw(z))
_H(Xl)_z E P(Il,...,xn)logzp(;pl)m
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continued from the previous page
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:H(Xl)*ZZP(a?i)logg (x4) Z Z P(xi, xr(;) logQ%

=2 x; =2 xz;, T ()

=D H(Xi) = 31X, Xe0)

=2
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So Kullback-Leilber divergence:

n

Dgr((P(X), Pr(X)) = -H(X) + ZH(XO - ZI(XuXW(i))

=2

e The left-hand-side is minimized if ) I(X;, X, (;)) is maximized,
i=2

P(xi,x.;
o (X0, Xp) = % play)log miista)

p(xi)p(Zr (1))
Lis T (i)

is the mutual information between X; and X, ;.
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Such Markovtree T' can be found with the following steps:
e Construct graph G x of n vertices, one for each variable X; € X;
e edge (7, 7) has weight I(X;, X,), for every pair of i, j;

e find a maximum spanning tree T of Gx;
(max spanning tree has the same algorithm as min spanning tree)
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Formulated complete graph:

A maximum spanning tree:
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We note that:
e Finding the best Markov tree equals the maximum spanning tree problem;
e Algorithms for MinST suit MaxST, e.g., Prim’s, Kruskal's ;

e The obtained Markov tree T' is not a causation relation,
(causal models are more difficult to obtain),

e The optimization idea based on Dg 1, has yet to be used to
obtain Markov graphs of topologies beyond tree until now.



