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Probabilistic models

• Characterization of data observable from a system

• Expression of uncertainty of data with probability theory

• Automatic learning of the system from data

• Computational inference/prediction of unknown
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Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

• HMM (and profile HMM) (introduced)
topology G: states and transitions
parameter θ: probability distributions for emissions and transitions

• parameter estimation (given G, and data D)

θ∗ = argmax
θ
P (θ|D)

• with structured data (e.g., a multiple alignment from D)
θ∗ can be computed (with prior P (θ)) by Bayes’s

P (θ|D) =
P (D|θ)P (θ)

P (D)
so P (θ|D) ≈ P (D|θ)P (θ)

with maximum likelihood method
P (D|θ) is maximized when θ is the frequencies obtained from D.
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• without structural data (e.g., with incomplete data), θ can still be
estimated.

P (D|θold): probability of data D given the parameter θold
P (D, e|θold): probability of D with event e given the parameter θold

P (e|θnew) = f(e,D, θold) =
P (D, e|θold)
P (D|θold)

• How to compute P (D, e|θold) and P (D|θold) ?
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• Let sequence x ∈ D, and π represents any path in HMM, then

P (x|θold) =
∑
π

P (x, π|θold)

the right-hand-side can be computed with DP similar to one used in
the Viterbi’s that compute max

π
P (x, π|θold)

P (D|θold) =
∑
x∈D

P (x|θold)

The algorithm to compute
∑
π
P (x, π|θold) is Forward Algorithm.
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• To compute P (D, e|θold), note that, for x ∈ D,

P (x, e|θold) =
∑

π contains e

P (x, π, e|θold)

for HMMs, path π containing event e can be expressed as

π = αeβ

where α is a prefix path of π and β is the corresponding suffix path
of π. Then

P (x, e|θold) =
∑
αeβ

P (x, αeβ|θold)

P (x, αeβ|θold) =

n∑
j=0

P (x[1..j], α|θold)P (e|θold)P (x[j+1..n], β|θold)

where position j partitions the sequence x into two segments
x[1..j] and x[j+1..n].
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To compute

P (x, αeβ|θold) =
n∑
j=0

P (x[1..j], α|θold)P (e|θold)P (x[j+1..n], β|θold)

• P (x[1..j], α|θold) is already a part of the Forward Algorithm
to compute P (x|θold);

• P (e|θold) is known;

• P (x[j+1..n], β|θold) is a part of the so-called Backward Algorithm
that computes P (x|θold).

Backward Algorithm computes for suffixes instead of prefixes.
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Examples of event e in a profile HMM (with begin and end states B and E);

• if e is transition Mi →Mi+1,
then prefix path α is B  Mi and suffix path β is Mi+1  E.

• if e is transition Ii → Di+1,
then prefix path α is B  Ii and suffix path β is Di+1  E.

• if e is emission that Mi emits letter A,
then prefix path α is B  Mi and suffix path β is Mi  E.

• etc..
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Li → gLi+1
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Li → ε (empty)

• a derivation an RNA sequence that folds into a stem-loop

H0 ⇒ aH1u⇒ agH2cu⇒ agaH3ucu⇒ agaL3ucu

⇒ agaaL4ucu⇒ agaaaL5ucu⇒ agaaaucu
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• Probability distributions are associated with grammar rules

1. S → aSb {0.4} 4. S → a {0.1}
2. S → aS {0.1} 5. S → b {0.1}
3. S → bS {0.1} 6. S → SS {0.2}

for every variable X,
∑
X→α

Prob(X → α) = 1

• Every syntax structure of a sequence is associated with a probability.

πA: S ⇒1 aSb ⇒1 aaSbb ⇒3 aabSbb ⇒4 aababb = x
πB : S ⇒6 SS ⇒1 aSbS ⇒4 aabS ⇒1 aabaSb ⇒5 aababb = x

Prob(πA, x) = 0.4× 0.4× 0.1× 0.1 = 0.016
Prob(πB , x) = 0.2× 0.4× 0.1× 0.4× 0.1 = 0.0032
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- specific enough for profiling
- general enough for structure prediction

• Efficient: O(n3)-time computations
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- structure analysis (structural alignment)
- probability parameter estimation

• performance
- comparable to energy-based methods
- unique and successful in structural profile-based search
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e.g., molecule residues are random variables

molecular structure is defined over their joint distribution,
involving multi-body interactions.

Markov network model approximates multi-body interactions
with pairwise interactions.
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• If non-tree topology is desired

1. the problem becomes computationally intractable;

2. relying on heuristics.
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• tree topology is completely determined by π, the parent information
e.g., π(6) = 3

• PT (X) = P (X1)
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i=2

P (Xi|Xπ(i))

• Minimizing DKL(P (X), PT (X)) would tell us what T should be.
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So Kullback-Leilber divergence:

DKL((P (X), PT (X)) = −H(X) +

n∑
i=1

H(Xi)−
n∑
i=2

I(Xi, Xπ(i))

• The left-hand-side is minimized if
n∑
i=2

I(Xi, Xπ(i)) is maximized,

• I(Xi, Xπ(i)) =
∑

xi,xπ(i)

p(xi) log
P (xi,xπ(i))

p(xi)p(xπ(i))

is the mutual information between Xi and Xπ(i).
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Such Markovtree T can be found with the following steps:

• Construct graph GX of n vertices, one for each variable Xi ∈ X;

• edge (i, j) has weight I(Xi, Xj), for every pair of i, j;

• find a maximum spanning tree T of GX ;
(max spanning tree has the same algorithm as min spanning tree)
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We note that:

• Finding the best Markov tree equals the maximum spanning tree problem;

• Algorithms for MinST suit MaxST, e.g., Prim’s, Kruskal’s ;

• The obtained Markov tree T is not a causation relation,
(causal models are more difficult to obtain),

• The optimization idea based on DKL has yet to be used to
obtain Markov graphs of topologies beyond tree until now.
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