CSCI x490 Algorithms for Computational Biology

Lecture Note 4 (by Liming Cai)

April 21, 2016

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

Probabilistic models

Part IV Probabilistic Models and Learning

Probabilistic models

- Characterization of data observable from a system

Part IV Probabilistic Models and Learning

Probabilistic models

- Characterization of data observable from a system
- Expression of uncertainty of data with probability theory

Part IV Probabilistic Models and Learning

Probabilistic models

- Characterization of data observable from a system
- Expression of uncertainty of data with probability theory
- Automatic learning of the system from data

Part IV Probabilistic Models and Learning

Probabilistic models

- Characterization of data observable from a system
- Expression of uncertainty of data with probability theory
- Automatic learning of the system from data
- Computational inference/prediction of unknown

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs
2. SCFG for Co-evolution

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs
2. SCFG for Co-evolution
3. Learning of Markov Networks

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs
2. SCFG for Co-evolution
3. Learning of Markov Networks

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions parameter θ : probability distributions for emissions and transitions

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions
parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions
parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

- with structured data (e.g., a multiple alignment from D) θ^{*} can be computed (with prior $P(\theta)$) by Bayes's

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions
parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

- with structured data (e.g., a multiple alignment from D) θ^{*} can be computed (with prior $P(\theta)$) by Bayes's

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions
parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

- with structured data (e.g., a multiple alignment from D) θ^{*} can be computed (with prior $P(\theta)$) by Bayes's

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \text { so } P(\theta \mid D) \approx P(D \mid \theta) P(\theta)
$$

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions
parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

- with structured data (e.g., a multiple alignment from D) θ^{*} can be computed (with prior $P(\theta)$) by Bayes's

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \text { so } P(\theta \mid D) \approx P(D \mid \theta) P(\theta)
$$

with maximum likelihood method

Part IV Probabilistic Models and Learning

1. Parameter Re-estimation for HMMs

- HMM (and profile HMM) (introduced) topology G : states and transitions
parameter θ : probability distributions for emissions and transitions
- parameter estimation (given G, and data D)

$$
\theta^{*}=\arg \max _{\theta} P(\theta \mid D)
$$

- with structured data (e.g., a multiple alignment from D) θ^{*} can be computed (with prior $P(\theta)$) by Bayes's

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \text { so } P(\theta \mid D) \approx P(D \mid \theta) P(\theta)
$$

with maximum likelihood method
$P(D \mid \theta)$ is maximized when θ is the frequencies obtained from D.

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

- without structural data (e.g., with incomplete data), θ can still be estimated.

Part IV Probabilistic Models and Learning

- without structural data (e.g., with incomplete data), θ can still be estimated.
$P\left(D \mid \theta_{\text {old }}\right)$: probability of data D given the parameter $\theta_{\text {old }}$

Part IV Probabilistic Models and Learning

- without structural data (e.g., with incomplete data), θ can still be estimated.
$P\left(D \mid \theta_{\text {old }}\right)$: probability of data D given the parameter $\theta_{\text {old }}$ $P\left(D, e \mid \theta_{\text {old }}\right)$: probability of D with event e given the parameter $\theta_{\text {old }}$

Part IV Probabilistic Models and Learning

- without structural data (e.g., with incomplete data), θ can still be estimated.
$P\left(D \mid \theta_{\text {old }}\right)$: probability of data D given the parameter $\theta_{\text {old }}$ $P\left(D, e \mid \theta_{\text {old }}\right)$: probability of D with event e given the parameter $\theta_{\text {old }}$

$$
P\left(e \mid \theta_{\text {new }}\right)=f\left(e, D, \theta_{\text {old }}\right)=\frac{P\left(D, e \mid \theta_{\text {old }}\right)}{P\left(D \mid \theta_{\text {old }}\right)}
$$

Part IV Probabilistic Models and Learning

- without structural data (e.g., with incomplete data), θ can still be estimated.
$P\left(D \mid \theta_{\text {old }}\right)$: probability of data D given the parameter $\theta_{\text {old }}$ $P\left(D, e \mid \theta_{\text {old }}\right)$: probability of D with event e given the parameter $\theta_{\text {old }}$

$$
P\left(e \mid \theta_{\text {new }}\right)=f\left(e, D, \theta_{\text {old }}\right)=\frac{P\left(D, e \mid \theta_{\text {old }}\right)}{P\left(D \mid \theta_{\text {old }}\right)}
$$

- How to compute $P\left(D, e \mid \theta_{\text {old }}\right)$ and $P\left(D \mid \theta_{\text {old }}\right)$?

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

- Let sequence $x \in D$, and π represents any path in HMM,

Part IV Probabilistic Models and Learning

- Let sequence $x \in D$, and π represents any path in HMM, then

$$
P\left(x \mid \theta_{\text {old }}\right)=\sum_{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)
$$

Part IV Probabilistic Models and Learning

- Let sequence $x \in D$, and π represents any path in HMM, then

$$
P\left(x \mid \theta_{o l d}\right)=\sum_{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)
$$

the right-hand-side can be computed with DP similar to one used in the Viterbi's

Part IV Probabilistic Models and Learning

- Let sequence $x \in D$, and π represents any path in HMM, then

$$
P\left(x \mid \theta_{\text {old }}\right)=\sum_{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)
$$

the right-hand-side can be computed with DP similar to one used in the Viterbi's that compute $\max _{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)$

Part IV Probabilistic Models and Learning

- Let sequence $x \in D$, and π represents any path in HMM, then

$$
P\left(x \mid \theta_{\text {old }}\right)=\sum_{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)
$$

the right-hand-side can be computed with DP similar to one used in the Viterbi's that compute $\max _{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)$

$$
P\left(D \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x \mid \theta_{\text {old }}\right)
$$

Part IV Probabilistic Models and Learning

- Let sequence $x \in D$, and π represents any path in HMM, then

$$
P\left(x \mid \theta_{\text {old }}\right)=\sum_{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)
$$

the right-hand-side can be computed with DP similar to one used in the Viterbi's that compute $\max _{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)$

$$
P\left(D \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x \mid \theta_{\text {old }}\right)
$$

The algorithm to compute $\sum_{\pi} P\left(x, \pi \mid \theta_{\text {old }}\right)$ is Forward Algorithm.

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

- To compute $P\left(D, e \mid \theta_{\text {old }}\right)$,

Part IV Probabilistic Models and Learning

- To compute $P\left(D, e \mid \theta_{o l d}\right)$, note that, for $x \in D$,

$$
P\left(x, e \mid \theta_{o l d}\right)=\sum_{\pi \text { contains } e} P\left(x, \pi, e \mid \theta_{\text {old }}\right)
$$

Part IV Probabilistic Models and Learning

- To compute $P\left(D, e \mid \theta_{\text {old }}\right)$, note that, for $x \in D$,

$$
P\left(x, e \mid \theta_{\text {old }}\right)=\sum_{\pi \text { contains } e} P\left(x, \pi, e \mid \theta_{\text {old }}\right)
$$

for HMMs, path π containing event e can be expressed as

Part IV Probabilistic Models and Learning

- To compute $P\left(D, e \mid \theta_{o l d}\right)$, note that, for $x \in D$,

$$
P\left(x, e \mid \theta_{\text {old }}\right)=\sum_{\pi \text { contains } e} P\left(x, \pi, e \mid \theta_{\text {old }}\right)
$$

for HMMs, path π containing event e can be expressed as

$$
\pi=\alpha e \beta
$$

where α is a prefix path of π and β is the corresponding suffix path of π.

Part IV Probabilistic Models and Learning

- To compute $P\left(D, e \mid \theta_{o l d}\right)$, note that, for $x \in D$,

$$
P\left(x, e \mid \theta_{o l d}\right)=\sum_{\pi \text { contains } e} P\left(x, \pi, e \mid \theta_{\text {old }}\right)
$$

for HMMs, path π containing event e can be expressed as

$$
\pi=\alpha e \beta
$$

where α is a prefix path of π and β is the corresponding suffix path of π. Then

$$
\begin{gathered}
P\left(x, e \mid \theta_{o l d}\right)=\sum_{\alpha e \beta} P\left(x, \alpha e \beta \mid \theta_{o l d}\right) \\
P\left(x, \alpha e \beta \mid \theta_{o l d}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right) P\left(e \mid \theta_{o l d}\right) P\left(x_{[j+1 \ldots n]}, \beta \mid \theta_{o l d}\right)
\end{gathered}
$$

Part IV Probabilistic Models and Learning

- To compute $P\left(D, e \mid \theta_{o l d}\right)$, note that, for $x \in D$,

$$
P\left(x, e \mid \theta_{o l d}\right)=\sum_{\pi \text { contains } e} P\left(x, \pi, e \mid \theta_{\text {old }}\right)
$$

for HMMs, path π containing event e can be expressed as

$$
\pi=\alpha e \beta
$$

where α is a prefix path of π and β is the corresponding suffix path of π. Then

$$
\begin{gathered}
P\left(x, e \mid \theta_{o l d}\right)=\sum_{\alpha e \beta} P\left(x, \alpha e \beta \mid \theta_{o l d}\right) \\
P\left(x, \alpha e \beta \mid \theta_{o l d}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right) P\left(e \mid \theta_{o l d}\right) P\left(x_{[j+1 \ldots n]}, \beta \mid \theta_{o l d}\right)
\end{gathered}
$$

where position j partitions the sequence x into two segments $x_{[1 . . j]}$ and $x_{[j+1 \ldots n]}$.

Part IV Probabilistic Models and Learning

To compute

$$
P\left(x, \alpha e \beta \mid \theta_{\text {old }}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{\text {old }}\right) P\left(e \mid \theta_{\text {old }}\right) P\left(x_{[j+1 \ldots n]}, \beta \mid \theta_{\text {old }}\right)
$$

Part IV Probabilistic Models and Learning

To compute

$$
P\left(x, \alpha e \beta \mid \theta_{o l d}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right) P\left(e \mid \theta_{o l d}\right) P\left(x_{[j+1 . . n]}, \beta \mid \theta_{o l d}\right)
$$

- $P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right)$ is already a part of the Forward Algorithm to compute $P\left(x \mid \theta_{\text {old }}\right)$;

Part IV Probabilistic Models and Learning

To compute

$$
P\left(x, \alpha e \beta \mid \theta_{o l d}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{\text {old }}\right) P\left(e \mid \theta_{o l d}\right) P\left(x_{[j+1 . . n]}, \beta \mid \theta_{\text {old }}\right)
$$

- $P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right)$ is already a part of the Forward Algorithm to compute $P\left(x \mid \theta_{\text {old }}\right)$;
- $P\left(e \mid \theta_{\text {old }}\right)$ is known;

Part IV Probabilistic Models and Learning

To compute

$$
P\left(x, \alpha e \beta \mid \theta_{\text {old }}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{\text {old }}\right) P\left(e \mid \theta_{\text {old }}\right) P\left(x_{[j+1 . . n]}, \beta \mid \theta_{\text {old }}\right)
$$

- $P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right)$ is already a part of the Forward Algorithm to compute $P\left(x \mid \theta_{\text {old }}\right)$;
- $P\left(e \mid \theta_{\text {old }}\right)$ is known;
- $P\left(x_{[j+1 \ldots n]}, \beta \mid \theta_{o l d}\right)$ is a part of the so-called Backward Algorithm that computes $P\left(x \mid \theta_{\text {old }}\right)$.

Part IV Probabilistic Models and Learning

To compute

$$
P\left(x, \alpha e \beta \mid \theta_{\text {old }}\right)=\sum_{j=0}^{n} P\left(x_{[1 . . j]}, \alpha \mid \theta_{\text {old }}\right) P\left(e \mid \theta_{\text {old }}\right) P\left(x_{[j+1 . . n]}, \beta \mid \theta_{\text {old }}\right)
$$

- $P\left(x_{[1 . . j]}, \alpha \mid \theta_{o l d}\right)$ is already a part of the Forward Algorithm to compute $P\left(x \mid \theta_{\text {old }}\right)$;
- $P\left(e \mid \theta_{\text {old }}\right)$ is known;
- $P\left(x_{[j+1 \ldots n]}, \beta \mid \theta_{\text {old }}\right)$ is a part of the so-called Backward Algorithm that computes $P\left(x \mid \theta_{\text {old }}\right)$.

Backward Algorithm computes for suffixes instead of prefixes.

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$,

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i+1} \rightsquigarrow E$.

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i+1} \rightsquigarrow E$.
- if e is transition $I_{i} \rightarrow D_{i+1}$,

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i+1} \rightsquigarrow E$.
- if e is transition $I_{i} \rightarrow D_{i+1}$, then prefix path α is $B \rightsquigarrow I_{i}$ and suffix path β is $D_{i+1} \rightsquigarrow E$.

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i+1} \rightsquigarrow E$.
- if e is transition $I_{i} \rightarrow D_{i+1}$, then prefix path α is $B \rightsquigarrow I_{i}$ and suffix path β is $D_{i+1} \rightsquigarrow E$.
- if e is emission that M_{i} emits letter A,

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i+1} \rightsquigarrow E$.
- if e is transition $I_{i} \rightarrow D_{i+1}$, then prefix path α is $B \rightsquigarrow I_{i}$ and suffix path β is $D_{i+1} \rightsquigarrow E$.
- if e is emission that M_{i} emits letter A, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i} \rightsquigarrow E$.

Part IV Probabilistic Models and Learning

Examples of event e in a profile HMM (with begin and end states B and E);

- if e is transition $M_{i} \rightarrow M_{i+1}$, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i+1} \rightsquigarrow E$.
- if e is transition $I_{i} \rightarrow D_{i+1}$, then prefix path α is $B \rightsquigarrow I_{i}$ and suffix path β is $D_{i+1} \rightsquigarrow E$.
- if e is emission that M_{i} emits letter A, then prefix path α is $B \rightsquigarrow M_{i}$ and suffix path β is $M_{i} \rightsquigarrow E$.
- etc..

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

- Assume $\theta_{\text {old }}$ to be the existing parameter set for an HMM;

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

- Assume $\theta_{\text {old }}$ to be the existing parameter set for an HMM;
- For every event e in the HMM, compute

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

- Assume $\theta_{\text {old }}$ to be the existing parameter set for an HMM;
- For every event e in the HMM, compute

$$
P\left(e \mid \theta_{\text {new }}\right)=\frac{P\left(D, e \mid \theta_{o l d}\right)}{P\left(D \mid \theta_{o l d}\right)}
$$

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

- Assume $\theta_{\text {old }}$ to be the existing parameter set for an HMM;
- For every event e in the HMM, compute

$$
P\left(e \mid \theta_{\text {new }}\right)=\frac{P\left(D, e \mid \theta_{o l d}\right)}{P\left(D \mid \theta_{o l d}\right)}
$$

where $P\left(D \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x \mid \theta_{\text {old }}\right)$ that can be computed with Forward

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

- Assume $\theta_{\text {old }}$ to be the existing parameter set for an HMM;
- For every event e in the HMM, compute

$$
P\left(e \mid \theta_{\text {new }}\right)=\frac{P\left(D, e \mid \theta_{o l d}\right)}{P\left(D \mid \theta_{o l d}\right)}
$$

where $P\left(D \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x \mid \theta_{\text {old }}\right)$ that can be computed with Forward
and $P\left(D, e \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x, e \mid \theta_{\text {old }}\right)$ that can be computed with
both Forward and Backward.

Part IV Probabilistic Models and Learning

Summary of parameter re-estimation for HMMs from given data D

- Assume $\theta_{\text {old }}$ to be the existing parameter set for an HMM;
- For every event e in the HMM, compute

$$
P\left(e \mid \theta_{\text {new }}\right)=\frac{P\left(D, e \mid \theta_{o l d}\right)}{P\left(D \mid \theta_{o l d}\right)}
$$

where $P\left(D \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x \mid \theta_{\text {old }}\right)$ that can be computed with Forward
and $P\left(D, e \mid \theta_{\text {old }}\right)=\sum_{x \in D} P\left(x, e \mid \theta_{\text {old }}\right)$ that can be computed with both Forward and Backward.

- iterate the above steps until $\frac{\left|P\left(D \mid \theta_{\text {new }}\right)-P\left(D \mid \theta_{\text {old }}\right)\right|}{P\left(D \mid \theta_{\text {old }}\right)}<\Delta$. for a given constant Δ.

Called Forward-backward algorithm.

Part IV Probabilistic Models and Learning

2. Stochastic context-free grammar

Part IV Probabilistic Models and Learning

2. Stochastic context-free grammar

Part IV Probabilistic Models and Learning

2. Stochastic context-free grammar

- an extension of HMM;

Part IV Probabilistic Models and Learning

2. Stochastic context-free grammar

- an extension of HMM;
- with a capability to model correlation and coevolution;

Part IV Probabilistic Models and Learning

2. Stochastic context-free grammar

- an extension of HMM;
- with a capability to model correlation and coevolution;
- correlation patterns are limited.

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$ Begin $\rightarrow e I_{0}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Begin $\rightarrow e I_{0}$
Begin $\rightarrow D_{1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Begin $\rightarrow e I_{0}$
Begin $\rightarrow D_{1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Begin $\rightarrow e I_{0}$
Begin $\rightarrow D_{1}$

- $M_{i} \rightarrow e M_{i+1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Begin $\rightarrow e I_{0}$
Begin $\rightarrow D_{1}$

- $M_{i} \rightarrow e M_{i+1}$
$M_{i} \rightarrow e I_{i}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Begin $\rightarrow e I_{0}$
Begin $\rightarrow D_{1}$

- $M_{i} \rightarrow e M_{i+1}$
$M_{i} \rightarrow e I_{i}$
$M_{i} \rightarrow D_{i+1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow e M_{1}, \quad e \in\{a, c, g, t\}$

Begin $\rightarrow e I_{0}$
Begin $\rightarrow D_{1}$

- $M_{i} \rightarrow e M_{i+1}$
$M_{i} \rightarrow e I_{i}$
$M_{i} \rightarrow D_{i+1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow a M_{1}$, Begin $\rightarrow c M_{1}$, Begin $\rightarrow g M_{1}$, Begin $\rightarrow t M_{1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow a M_{1}$, Begin $\rightarrow c M_{1}$, Begin $\rightarrow g M_{1}$, Begin $\rightarrow t M_{1}$ Begin $\rightarrow a I_{0}$, Begin $\rightarrow c I_{0}$, Begin $\rightarrow g I_{0}$, Begin $\rightarrow t I_{0}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow a M_{1}$, Begin $\rightarrow c M_{1}$, Begin $\rightarrow g M_{1}$, Begin $\rightarrow t M_{1}$ Begin $\rightarrow a I_{0}$, Begin $\rightarrow c I_{0}$, Begin $\rightarrow g I_{0}$, Begin $\rightarrow t I_{0}$ Begin $\rightarrow D_{1}$

Part IV Probabilistic Models and Learning

We can use a different notation for the HMM.

- Begin $\rightarrow a M_{1}$, Begin $\rightarrow c M_{1}$, Begin $\rightarrow g M_{1}$, Begin $\rightarrow t M_{1}$ Begin $\rightarrow a I_{0}$, Begin $\rightarrow c I_{0}$, Begin $\rightarrow g I_{0}$, Begin $\rightarrow t I_{0}$ Begin $\rightarrow D_{1}$
- $M_{i} \rightarrow e M_{i+1}$
$M_{i} \rightarrow e I_{i}$
$M_{i} \rightarrow D_{i+1}$

Part IV Probabilistic Models and Learning

sequence acggt

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$
$M_{i} \rightarrow c M_{i+1}, \quad M_{i} \rightarrow c I_{i}, \quad I_{i} \rightarrow c M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow g I_{i}, \quad I_{i} \rightarrow g M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow t I_{i}, \quad I_{i} \rightarrow t M_{i+1}, \quad$ for $i=1,2,3$.
$M_{4} \rightarrow$ End

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$
$M_{i} \rightarrow c M_{i+1}, \quad M_{i} \rightarrow c I_{i}, \quad I_{i} \rightarrow c M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow g I_{i}, \quad I_{i} \rightarrow g M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow t I_{i}, \quad I_{i} \rightarrow t M_{i+1}, \quad$ for $i=1,2,3$.
$M_{4} \rightarrow$ End
we use rules to produce acggt:

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$
$M_{i} \rightarrow c M_{i+1}, \quad M_{i} \rightarrow c I_{i}, \quad I_{i} \rightarrow c M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow g I_{i}, \quad I_{i} \rightarrow g M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow t I_{i}, \quad I_{i} \rightarrow t M_{i+1}, \quad$ for $i=1,2,3$.
$M_{4} \rightarrow$ End
we use rules to produce acggt:
Begin

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$
$M_{i} \rightarrow c M_{i+1}, \quad M_{i} \rightarrow c I_{i}, \quad I_{i} \rightarrow c M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow g I_{i}, \quad I_{i} \rightarrow g M_{i+1}$
$M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow t I_{i}, \quad I_{i} \rightarrow t M_{i+1}, \quad$ for $i=1,2,3$.
$M_{4} \rightarrow$ End
we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1}
$$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
M_{i} \rightarrow c M_{i+1}, \quad M_{i} \rightarrow c I_{i}, \quad I_{i} \rightarrow c M_{i+1}
$$

$$
M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow g I_{i}, \quad I_{i} \rightarrow g M_{i+1}
$$

$$
M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow t I_{i}, \quad I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3
$$

$$
M_{4} \rightarrow E n d
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2}
$$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
M_{i} \rightarrow c M_{i+1}, \quad M_{i} \rightarrow c I_{i}, \quad I_{i} \rightarrow c M_{i+1}
$$

$$
M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow g I_{i}, \quad I_{i} \rightarrow g M_{i+1}
$$

$$
M_{i} \rightarrow t M_{i+1}, \quad M_{i} \rightarrow t I_{i}, \quad I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3
$$

$$
M_{4} \rightarrow E n d
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2} \Rightarrow \operatorname{acg} I_{2}
$$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
\begin{array}{lll}
M_{i} \rightarrow c M_{i+1}, & M_{i} \rightarrow c I_{i}, & I_{i} \rightarrow c M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow g I_{i}, & I_{i} \rightarrow g M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow t I_{i}, & I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3 . \\
M_{4} \rightarrow \text { End } & &
\end{array}
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2} \Rightarrow \operatorname{acg} I_{2} \Rightarrow \operatorname{acgg} M_{3}
$$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
\begin{array}{lll}
M_{i} \rightarrow c M_{i+1}, & M_{i} \rightarrow c I_{i}, & I_{i} \rightarrow c M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow g I_{i}, & I_{i} \rightarrow g M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow t I_{i}, & I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3 . \\
M_{4} \rightarrow \text { End } & &
\end{array}
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2} \Rightarrow \operatorname{acg} I_{2} \Rightarrow \operatorname{acgg} M_{3} \Rightarrow \operatorname{acggt} M_{4}
$$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
\begin{array}{lll}
M_{i} \rightarrow c M_{i+1}, & M_{i} \rightarrow c I_{i}, & I_{i} \rightarrow c M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow g I_{i}, & I_{i} \rightarrow g M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow t I_{i}, & I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3 . \\
M_{4} \rightarrow \text { End } & &
\end{array}
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2} \Rightarrow \operatorname{acg} I_{2} \Rightarrow \operatorname{acgg} M_{3} \Rightarrow \operatorname{acggt} M_{4} \Rightarrow \text { acggtEnd }
$$

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
\begin{array}{lll}
M_{i} \rightarrow c M_{i+1}, & M_{i} \rightarrow c I_{i}, & I_{i} \rightarrow c M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow g I_{i}, & I_{i} \rightarrow g M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow t I_{i}, & I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3 . \\
M_{4} \rightarrow \text { End } & &
\end{array}
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2} \Rightarrow \operatorname{acg} I_{2} \Rightarrow \operatorname{acgg} M_{3} \Rightarrow \operatorname{acggt} M_{4} \Rightarrow \text { acggtEnd }
$$

Called a derivation

Part IV Probabilistic Models and Learning

sequence acggt

- Begin $\rightarrow a M_{1}, \ldots$
- $M_{i} \rightarrow a M_{i+1}, \quad M_{i} \rightarrow a I_{i}, \quad I_{i} \rightarrow a M_{i+1}$

$$
\begin{array}{lll}
M_{i} \rightarrow c M_{i+1}, & M_{i} \rightarrow c I_{i}, & I_{i} \rightarrow c M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow g I_{i}, & I_{i} \rightarrow g M_{i+1} \\
M_{i} \rightarrow t M_{i+1}, & M_{i} \rightarrow t I_{i}, & I_{i} \rightarrow t M_{i+1}, \quad \text { for } i=1,2,3 . \\
M_{4} \rightarrow \text { End } & &
\end{array}
$$

we use rules to produce acggt:

$$
\text { Begin } \Rightarrow a M_{1} \Rightarrow a c M_{2} \Rightarrow \operatorname{acg} I_{2} \Rightarrow \operatorname{acgg} M_{3} \Rightarrow \operatorname{acggt} M_{4} \Rightarrow \text { acggtEnd }
$$

Called a derivation \Longleftrightarrow a path in HMM .

Part IV Probabilistic Models and Learning

Notes on the rules:

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;
- a derivation is associated with a probability

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;
- a derivation is associated with a probability by compounding the probabilities of used rules;

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;
- a derivation is associated with a probability by compounding the probabilities of used rules;
- a sequence may have more than one derivation;

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;
- a derivation is associated with a probability by compounding the probabilities of used rules;
- a sequence may have more than one derivation;
- one of the derivations of the sequence is of the max probability;

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;
- a derivation is associated with a probability by compounding the probabilities of used rules;
- a sequence may have more than one derivation;
- one of the derivations of the sequence is of the max probability;
- letters on the sequence are derived one at a time, independently;

Part IV Probabilistic Models and Learning

Notes on the rules:

- Rules are grammar rules (also called rewriting rules)
- Rules like $A \rightarrow a B$ and $A \rightarrow C$ are regular grammar rules where A, B, C are non-terminals and a is a terminal;
- rules can be associated with probability distributions;
- a derivation is associated with a probability by compounding the probabilities of used rules;
- a sequence may have more than one derivation;
- one of the derivations of the sequence is of the max probability;
- letters on the sequence are derived one at a time, independently;
- Can rules be designed to model complex relationships among letters?

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$
$H_{i} \rightarrow u H_{i+1} a$
$H_{i} \rightarrow c H_{i+1} g$
$H_{i} \rightarrow g H_{i+1} c$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$
$H_{i} \rightarrow u H_{i+1} a$
$H_{i} \rightarrow c H_{i+1} g$
$H_{i} \rightarrow g H_{i+1} c$
$H_{i} \rightarrow L_{i}$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$
$H_{i} \rightarrow u H_{i+1} a$
$H_{i} \rightarrow c H_{i+1} g$
$H_{i} \rightarrow g H_{i+1} c$
$H_{i} \rightarrow L_{i}$
$L_{i} \rightarrow a L_{i+1}$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
H_{0}
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
H_{0} \Rightarrow a H_{1} u
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \quad \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
H_{0} \Rightarrow a H_{1} u \Rightarrow a g H_{2} c u
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
H_{0} \Rightarrow a H_{1} u \Rightarrow a g H_{2} c u \Rightarrow a g a H_{3} u c u
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
H_{0} \Rightarrow a H_{1} u \Rightarrow a g H_{2} c u \Rightarrow a g a H_{3} u c u \Rightarrow a g a L_{3} u c u
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
\begin{aligned}
H_{0} & \Rightarrow a H_{1} u \Rightarrow a g H_{2} c u \Rightarrow a g a H_{3} u c u \Rightarrow a g a L_{3} u c u \\
& \Rightarrow a g a a L_{4} u c u
\end{aligned}
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
\begin{aligned}
H_{0} & \Rightarrow a H_{1} u \Rightarrow a g H_{2} c u \Rightarrow a g a H_{3} u c u \Rightarrow a g a L_{3} u c u \\
& \Rightarrow a g a a L_{4} u c u \Rightarrow \text { agaaa } L_{5} u c u
\end{aligned}
$$

Part IV Probabilistic Models and Learning

Consider rules for RNA sequences

- $H_{i} \rightarrow a H_{i+1} u$

$$
H_{i} \rightarrow u H_{i+1} a
$$

$$
H_{i} \rightarrow c H_{i+1} g
$$

$$
H_{i} \rightarrow g H_{i+1} c
$$

$$
H_{i} \rightarrow L_{i}
$$

$$
L_{i} \rightarrow a L_{i+1}
$$

$$
L_{i} \rightarrow c L_{i+1}
$$

$$
L_{i} \rightarrow g L_{i+1}
$$

$$
L_{i} \rightarrow u L_{i+1}
$$

$$
L_{i} \rightarrow \epsilon \text { (empty) }
$$

- a derivation an RNA sequence that folds into a stem-loop

$$
\begin{aligned}
H_{0} & \Rightarrow a H_{1} u \Rightarrow a g H_{2} c u \Rightarrow a g a H_{3} u c u \Rightarrow a g a L_{3} u c u \\
& \Rightarrow a g a a L_{4} u c u \Rightarrow \text { agaaa } L_{5} u c u \Rightarrow \text { agaaaucu }
\end{aligned}
$$

Part IV Probabilistic Models and Learning

RNA secondary structure examples:

Stems in crossing patterns

Pseudoknots: crossing patterns of stems

Part IV Probabilistic Models and Learning

RNA secondary structure examples:

Stems in crossing patterns

Pseudoknots: crossing patterns of stems

- nesting, parallel patterns are context-free, while

Part IV Probabilistic Models and Learning

RNA secondary structure examples:

Stems in crossing patterns

Pseudoknots: crossing patterns of stems

- nesting, parallel patterns are context-free, while
- crossing patterns are not!

Part IV Probabilistic Models and Learning

Illustration of context-free grammar derivation:

$S \rightarrow a S u$	$L \rightarrow a L$
$S \rightarrow u S a$	$L \rightarrow c L$
$S \rightarrow g S c$	$L \rightarrow a$
$S \rightarrow c S g$	$L \rightarrow c$
$S \rightarrow L$	

Part IV Probabilistic Models and Learning

Illustration of context-free grammar derivation:

$S \rightarrow a S u$	$L \rightarrow a L$
$S \rightarrow u S a$	$L \rightarrow c L$
$S \rightarrow g S c$	$L \rightarrow a$
$S \rightarrow c S g$	$L \rightarrow c$
$S \rightarrow L$	

- Context-free grammar derivation is a tree (because of simultaneous emissions)

Part IV Probabilistic Models and Learning

Illustration of CFG derivation again:

$\mathrm{S} \rightarrow \mathrm{aSu}$	$\mathrm{S} \rightarrow$ aSu
$\mathrm{S} \rightarrow \mathrm{cSg}$	\rightarrow acSgu
$\mathrm{S} \rightarrow \mathrm{gSc}$	\rightarrow accSggu
$\mathrm{S} \rightarrow \mathrm{uSa}$	\rightarrow accuSaggu
$\mathrm{S} \rightarrow \mathrm{a}$	\rightarrow accuSSaggu
$\mathrm{S} \rightarrow \mathrm{c}$	\rightarrow accugScSaggu
$\mathrm{S} \rightarrow \mathrm{g}$	\rightarrow accuggSccSaggu
$\mathrm{S} \rightarrow \mathrm{u}$	\rightarrow accuggaccSaggu
$\mathrm{S} \rightarrow \mathrm{SS}$	\rightarrow accuggaccoSgaggu
	\rightarrow accuggacccuSagaggu
	\rightarrow accuggacccuuagaggu
1. ACFG	2. A derivation of "accuggacccuuagaggu"

Part IV Probabilistic Models and Learning

$\mathrm{S} \rightarrow \mathrm{aSu}$	$\mathrm{S} \rightarrow$ aSu
$\mathrm{S} \rightarrow \mathrm{cSg}$	\rightarrow acSgu
$\mathrm{S} \rightarrow \mathrm{gSc}$	\rightarrow accSggu
$\mathrm{S} \rightarrow \mathrm{uSa}$	\rightarrow accuSaggu
$\mathrm{S} \rightarrow \mathrm{a}$	\rightarrow accuSSaggu
$\mathrm{S} \rightarrow \mathrm{c}$	\rightarrow accugScSaggu
$\mathrm{S} \rightarrow \mathrm{g}$	\rightarrow accuggSccSaggu
$\mathrm{S} \rightarrow \mathrm{u}$	\rightarrow accuggaccSaggu
$\mathrm{S} \rightarrow \mathrm{SS}$	\rightarrow accuggaccoSgaggu
	\rightarrow accuggacccuSagaggu

$S \rightarrow$ SS
\rightarrow SSS
\rightarrow aSS
$\rightarrow \mathrm{acSgS}$
\rightarrow accSggS
\rightarrow accuggS
\rightarrow accuggaSu
\rightarrow accuggacSgu
\rightarrow accuggaccSggu
$\rightarrow \ldots \ldots$
\rightarrow accuggacccuuagaggu

(A CFG applied on the same sequence with two alternative syntactic structures)

Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

- Probability distributions are associated with grammar rules

1. $S \rightarrow a S b$	$\{0.4\}$	4. $S \rightarrow a$	$\{0.1\}$
2. $S \rightarrow a S$	$\{0.1\}$	5. $S \rightarrow b$	$\{0.1\}$
3. $S \rightarrow b S$	$\{0.1\}$	6. $S \rightarrow S S$	$\{0.2\}$

Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

- Probability distributions are associated with grammar rules

1. $S \rightarrow a S b$	$\{0.4\}$	4. $S \rightarrow a$	$\{0.1\}$
2. $S \rightarrow a S$	$\{0.1\}$	5. $S \rightarrow b$	$\{0.1\}$
3. $S \rightarrow b S$	$\{0.1\}$	6. $S \rightarrow S S$	$\{0.2\}$

for every variable $X, \sum_{X \rightarrow \alpha} \operatorname{Prob}(X \rightarrow \alpha)=1$

Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

- Probability distributions are associated with grammar rules

1. $S \rightarrow a S b$	$\{0.4\}$	4. $S \rightarrow a$	$\{0.1\}$
2. $S \rightarrow a S$	$\{0.1\}$	5. $S \rightarrow b$	$\{0.1\}$
3. $S \rightarrow b S$	$\{0.1\}$	6. $S \rightarrow S S$	$\{0.2\}$

for every variable $X, \sum_{X \rightarrow \alpha} \operatorname{Prob}(X \rightarrow \alpha)=1$

- Every syntax structure of a sequence is associated with a probability.

Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

- Probability distributions are associated with grammar rules

1. $S \rightarrow a S b$	$\{0.4\}$	4. $S \rightarrow a$	$\{0.1\}$
2. $S \rightarrow a S$	$\{0.1\}$	5. $S \rightarrow b$	$\{0.1\}$
3. $S \rightarrow b S$	$\{0.1\}$	6. $S \rightarrow S S$	$\{0.2\}$

for every variable $X, \quad \sum_{X \rightarrow \alpha} \operatorname{Prob}(X \rightarrow \alpha)=1$

- Every syntax structure of a sequence is associated with a probability.

$$
\begin{aligned}
& \pi_{A}: \underline{S} \Rightarrow_{1} a \underline{S} b \Rightarrow_{1} a a \underline{S} b b \Rightarrow_{3} a a b \underline{S} b b \Rightarrow_{4} a a b a b b=x \\
& \pi_{B}: \underline{S} \Rightarrow \Rightarrow_{6} \underline{S} S \Rightarrow_{1} a \underline{S} b S \Rightarrow_{4} a a b \underline{S} \Rightarrow_{1} \text { aaba } \underline{S} b \Rightarrow_{5} \text { aaba } b=x
\end{aligned}
$$

Part IV Probabilistic Models and Learning

Stochastic context-free grammar (SCFG):

- Probability distributions are associated with grammar rules

1. $S \rightarrow a S b$	$\{0.4\}$	4. $S \rightarrow a$	$\{0.1\}$
2. $S \rightarrow a S$	$\{0.1\}$	5. $S \rightarrow b$	$\{0.1\}$
3. $S \rightarrow b S$	$\{0.1\}$	6. $S \rightarrow S S$	$\{0.2\}$

for every variable $X, \quad \sum_{X \rightarrow \alpha} \operatorname{Prob}(X \rightarrow \alpha)=1$

- Every syntax structure of a sequence is associated with a probability.

$$
\begin{aligned}
& \pi_{A}: \underline{S} \Rightarrow_{1} a \underline{S} b \Rightarrow_{1} a a \underline{S} b b \Rightarrow_{3} a a b \underline{S} b b \Rightarrow_{4} a a b a b b=x \\
& \pi_{B}: \underline{S} \Rightarrow_{6} \underline{S} S \Rightarrow_{1} a \underline{S} b S \Rightarrow_{4} a a b \underline{S} \Rightarrow_{1} a a b a \underline{S} b \Rightarrow_{5} a a b a b=x \\
& \quad \operatorname{Prob}\left(\pi_{A}, x\right)=0.4 \times 0.4 \times 0.1 \times 0.1=0.016 \\
& \operatorname{Prob}\left(\pi_{B}, x\right)=0.2 \times 0.4 \times 0.1 \times 0.4 \times 0.1=0.0032
\end{aligned}
$$

Part IV Probabilistic Models and Learning

RNA secondary structure modeling with SCFG:

Part IV Probabilistic Models and Learning

RNA secondary structure modeling with SCFG:

- Effective
- specific enough for profiling
- general enough for structure prediction

Part IV Probabilistic Models and Learning

RNA secondary structure modeling with SCFG:

- Effective
- specific enough for profiling
- general enough for structure prediction
- Efficient: $O\left(n^{3}\right)$-time computations
- decoding (structure prediction)
- structure analysis (structural alignment)
- probability parameter estimation

Part IV Probabilistic Models and Learning

RNA secondary structure modeling with SCFG:

- Effective
- specific enough for profiling
- general enough for structure prediction
- Efficient: $O\left(n^{3}\right)$-time computations
- decoding (structure prediction)
- structure analysis (structural alignment)
- probability parameter estimation
- performance
- comparable to energy-based methods
- unique and successful in structural profile-based search

Part IV Probabilistic Models and Learning

RNA secondary structure modeling with SCFG:

- Effective
- specific enough for profiling
- general enough for structure prediction
- Efficient: $O\left(n^{3}\right)$-time computations
- decoding (structure prediction)
- structure analysis (structural alignment)
- probability parameter estimation
- performance
- comparable to energy-based methods
- unique and successful in structural profile-based search
[Sakakibara et al, 1994, Eddy and Durbin 1994,
Rivas et al, 2012]

Part IV Probabilistic Models and Learning

Stochastic grammars for (RNA) tertiary structure modeling?

Part IV Probabilistic Models and Learning

Stochastic grammars for (RNA) tertiary structure modeling?

- much smaller set of resolved 3D structures (in contrast to proteins or reported RNA secondary structures)

Part IV Probabilistic Models and Learning

Stochastic grammars for (RNA) tertiary structure modeling?

- much smaller set of resolved 3D structures (in contrast to proteins or reported RNA secondary structures)
- tertiary interactions were not understood until recently

Part IV Probabilistic Models and Learning

Stochastic grammars for (RNA) tertiary structure modeling?

- much smaller set of resolved 3D structures (in contrast to proteins or reported RNA secondary structures)
- tertiary interactions were not understood until recently

(Leontis et al, 2003; Zirbel et al, 2009. 12 base-base, 10 base-phosphate, and 10 base-ribose families)

Part IV Probabilistic Models and Learning

All nucleotide interactions of a tRNA (excluding stacking)

Part IV Probabilistic Models and Learning

All nucleotide interactions of a tRNA (excluding stacking)

- gray relation is context-free;

Part IV Probabilistic Models and Learning

All nucleotide interactions of a tRNA (excluding stacking)

- gray relation is context-free;
- purple relation is context-sensitive.

Part IV Probabilistic Models and Learning

All nucleotide interactions of a tRNA (excluding stacking)

- gray relation is context-free;
- purple relation is context-sensitive.
- We need a higher-order model for such complex relations!

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

3. Markov networks and learning

Part IV Probabilistic Models and Learning

3. Markov networks and learning

- Compute joint probability distribution $P(X)$ from observed random variables $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

Example 1: molecule residues forming structure

Part IV Probabilistic Models and Learning

3. Markov networks and learning

- Compute joint probability distribution $P(X)$ from observed random variables $X=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

Example 1: molecule residues forming structure
Example 2: gene networks from expression data

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

- $P(X)$ is a $n^{\text {th }}$ order distribution, difficult to compute

Part IV Probabilistic Models and Learning

- $P(X)$ is a $n^{\text {th }}$ order distribution, difficult to compute
- Approximation with a second order distribution $P_{G}(X)$ (i.e., binary relation, Markov network)

Part IV Probabilistic Models and Learning

- $P(X)$ is a $n^{\text {th }}$ order distribution, difficult to compute
- Approximation with a second order distribution $P_{G}(X)$ (i.e., binary relation, Markov network)
e.g., molecule residues are random variables

Part IV Probabilistic Models and Learning

- $P(X)$ is a $n^{\text {th }}$ order distribution, difficult to compute
- Approximation with a second order distribution $P_{G}(X)$ (i.e., binary relation, Markov network)
e.g., molecule residues are random variables
molecular structure is defined over their joint distribution, involving multi-body interactions.

Markov network model approximates multi-body interactions with pairwise interactions.

Part IV Probabilistic Models and Learning

Part IV Probabilistic Models and Learning

Questions to answer:

Part IV Probabilistic Models and Learning

Questions to answer:

- What does $P_{G}(X)$ look like

Part IV Probabilistic Models and Learning

Questions to answer:

- What does $P_{G}(X)$ look like even a Markov graph G is given?

Part IV Probabilistic Models and Learning

Questions to answer:

- What does $P_{G}(X)$ look like even a Markov graph G is given?
- How to measure the difference between $P_{G}(X)$ and $P(X)$?

Part IV Probabilistic Models and Learning

Questions to answer:

- What does $P_{G}(X)$ look like even a Markov graph G is given?
- How to measure the difference between $P_{G}(X)$ and $P(X)$?
- Can we compute G and $P_{G}(X)$ efficiently?

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

- to measure difference between two distributions $P(X)$ and $\left.P_{G}(X)\right)$ with $D_{K L}$, Kullback-Leibler divergence;

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

- to measure difference between two distributions $P(X)$ and $\left.P_{G}(X)\right)$ with $D_{K L}$, Kullback-Leibler divergence;
- when G is assumed to be of tree topology,

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

- to measure difference between two distributions $P(X)$ and $\left.P_{G}(X)\right)$ with $D_{K L}$, Kullback-Leibler divergence;
- when G is assumed to be of tree topology, minimizing $D_{K L}$ results in maximum spanning tree problem

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

- to measure difference between two distributions $P(X)$ and $\left.P_{G}(X)\right)$ with $D_{K L}$, Kullback-Leibler divergence;
- when G is assumed to be of tree topology, minimizing $D_{K L}$ results in maximum spanning tree problem
- If non-tree topology is desired

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

- to measure difference between two distributions $P(X)$ and $\left.P_{G}(X)\right)$ with $D_{K L}$, Kullback-Leibler divergence;
- when G is assumed to be of tree topology, minimizing $D_{K L}$ results in maximum spanning tree problem
- If non-tree topology is desired

1. the problem becomes computationally intractable;

Part IV Probabilistic Models and Learning

The framework of Chow and Liu 1968:

- to measure difference between two distributions $P(X)$ and $\left.P_{G}(X)\right)$ with $D_{K L}$, Kullback-Leibler divergence;
- when G is assumed to be of tree topology, minimizing $D_{K L}$ results in maximum spanning tree problem
- If non-tree topology is desired

1. the problem becomes computationally intractable;
2. relying on heuristics.

Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable $X=\left\{X_{1}, \ldots, X_{n}\right\}$ with with a root X_{1}

Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable $X=\left\{X_{1}, \ldots, X_{n}\right\}$ with with a root X_{1}

Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable $X=\left\{X_{1}, \ldots, X_{n}\right\}$ with with a root X_{1}

- tree topology is completely determined by π, the parent information e.g., $\pi(6)=3$

Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable $X=\left\{X_{1}, \ldots, X_{n}\right\}$ with with a root X_{1}

- tree topology is completely determined by π, the parent information e.g., $\pi(6)=3$
- $P_{T}(X)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{\pi(i)}\right)$

Part IV Probabilistic Models and Learning

Assume we have a Markov tree T for variable $X=\left\{X_{1}, \ldots, X_{n}\right\}$ with with a root X_{1}

- tree topology is completely determined by π, the parent information e.g., $\pi(6)=3$
- $P_{T}(X)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{\pi(i)}\right)$
- Minimizing $D_{K L}\left(P(X), P_{T}(X)\right)$ would tell us what T should be.

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} P(x)-\sum_{x} P(x) \log _{2} P_{T}(x)\right.
$$

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

$$
\begin{gathered}
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} P(x)-\sum_{x} P(x) \log _{2} P_{T}(x)\right. \\
=-H(X)-\sum_{x} P(x) \log _{2} P\left(x_{1}\right) \prod_{i=2}^{n} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

$$
\begin{gathered}
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} P(x)-\sum_{x} P(x) \log _{2} P_{T}(x)\right. \\
=-H(X)-\sum_{x} P(x) \log _{2} P\left(x_{1}\right) \prod_{i=2}^{n} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

The second term is

$$
-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \prod_{i=2}^{n} P\left(x_{i} \mid X_{\pi(i)}\right)
$$

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

$$
\begin{gathered}
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} P(x)-\sum_{x} P(x) \log _{2} P_{T}(x)\right. \\
=-H(X)-\sum_{x} P(x) \log _{2} P\left(x_{1}\right) \prod_{i=2}^{n} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

The second term is

$$
\begin{aligned}
& -\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \prod_{i=2}^{n} P\left(x_{i} \mid X_{\pi(i)}\right) \\
& \quad=-\sum_{x_{1}} P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{aligned}
$$

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

$$
\begin{gathered}
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} P(x)-\sum_{x} P(x) \log _{2} P_{T}(x)\right. \\
=-H(X)-\sum_{x} P(x) \log _{2} P\left(x_{1}\right) \prod_{i=2}^{n} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

The second term is

$$
\begin{gathered}
-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \prod_{i=2}^{n} P\left(x_{i} \mid X_{\pi(i)}\right) \\
=-\sum_{x_{1}} P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right) \\
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

Part IV Probabilistic Models and Learning

Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} \frac{P(x)}{P_{T}(x)}\right.
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ is the vector of values for variables X_{1}, \ldots, X_{n}.

$$
\begin{gathered}
D_{K L}\left(\left(P(X), P_{T}(X)\right)=\sum_{x} P(x) \log _{2} P(x)-\sum_{x} P(x) \log _{2} P_{T}(x)\right. \\
=-H(X)-\sum_{x} P(x) \log _{2} P\left(x_{1}\right) \prod_{i=2}^{n} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

The second term is

$$
\begin{gathered}
-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \prod_{i=2}^{n} P\left(x_{i} \mid X_{\pi(i)}\right) \\
=-\sum_{x_{1}} P\left(x_{1}\right) \log _{2} P\left(x_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right) \\
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right)
\end{gathered}
$$

Part IV Probabilistic Models and Learning

from the last slide:

$$
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right)
$$

Part IV Probabilistic Models and Learning

from the last slide:

$$
\begin{gathered}
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right) \\
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i} \mid x_{\pi(i)}\right) P\left(x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)}
\end{gathered}
$$

Part IV Probabilistic Models and Learning

from the last slide:

$$
\begin{gathered}
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i} \mid x_{\pi(i)}\right) \\
=H\left(X_{1}\right)-\sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \sum_{i=2}^{n} \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i} \mid x_{\pi(i)}\right) P\left(x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)}
\end{gathered}
$$

Part IV Probabilistic Models and Learning

continued from the previous page

$$
\begin{gathered}
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \\
\quad-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)}
\end{gathered}
$$

Part IV Probabilistic Models and Learning

continued from the previous page

$$
\begin{gathered}
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \\
\quad-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{x_{i}} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)-\sum_{i=2}^{n} \sum_{x_{i}, x_{\pi(i)}} P\left(x_{i}, x_{\pi(i)}\right) \log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)}
\end{gathered}
$$

Part IV Probabilistic Models and Learning

continued from the previous page

$$
\begin{gathered}
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \\
-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{x_{i}} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)-\sum_{i=2}^{n} \sum_{x_{i}, x_{\pi(i)}} P\left(x_{i}, x_{\pi(i)}\right) \log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)+\sum_{i=2}^{n} H\left(X_{i}\right)-\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)
\end{gathered}
$$

Part IV Probabilistic Models and Learning

continued from the previous page

$$
\begin{gathered}
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{\left(x_{1}, \ldots, x_{n}\right)} P\left(x_{1}, \ldots, x_{n}\right) \log _{2} P\left(x_{i}\right) \\
=H\left(X_{1}\right)-\sum_{i=2}^{n} \sum_{x_{i}} P\left(x_{i}\right) \log _{2} P\left(x_{i}\right)-\sum_{i=2}^{n} \sum_{x_{i}, x_{\pi(i)}} P\left(x_{i}, \ldots, x_{n}\right) \log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
=H\left(\log _{2} \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)}\right. \\
=\sum_{i=2}^{n} H\left(X_{i}\right)-\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right) \\
=\sum_{i=1}^{n} H\left(X_{i}\right)-\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)
\end{gathered}
$$

Part IV Probabilistic Models and Learning

So Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=-H(X)+\sum_{i=1}^{n} H\left(X_{i}\right)-\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)\right.
$$

Part IV Probabilistic Models and Learning

So Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=-H(X)+\sum_{i=1}^{n} H\left(X_{i}\right)-\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)\right.
$$

- The left-hand-side is minimized if $\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)$ is maximized,

Part IV Probabilistic Models and Learning

So Kullback-Leilber divergence:

$$
D_{K L}\left(\left(P(X), P_{T}(X)\right)=-H(X)+\sum_{i=1}^{n} H\left(X_{i}\right)-\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)\right.
$$

- The left-hand-side is minimized if $\sum_{i=2}^{n} I\left(X_{i}, X_{\pi(i)}\right)$ is maximized,
- $I\left(X_{i}, X_{\pi(i)}\right)=\sum_{x_{i}, x_{\pi(i)}} p\left(x_{i}\right) \log \frac{P\left(x_{i}, x_{\pi(i)}\right)}{p\left(x_{i}\right) p\left(x_{\pi(i)}\right)}$
is the mutual information between X_{i} and $X_{\pi(i)}$.

Part IV Probabilistic Models and Learning

Such Markovtree T can be found with the following steps:

Part IV Probabilistic Models and Learning

Such Markovtree T can be found with the following steps:

- Construct graph G_{X} of n vertices, one for each variable $X_{i} \in X$;

Part IV Probabilistic Models and Learning

Such Markovtree T can be found with the following steps:

- Construct graph G_{X} of n vertices, one for each variable $X_{i} \in X$;
- edge (i, j) has weight $I\left(X_{i}, X_{j}\right)$, for every pair of i, j;

Part IV Probabilistic Models and Learning

Such Markovtree T can be found with the following steps:

- Construct graph G_{X} of n vertices, one for each variable $X_{i} \in X$;
- edge (i, j) has weight $I\left(X_{i}, X_{j}\right)$, for every pair of i, j;
- find a maximum spanning tree T of G_{X};
(max spanning tree has the same algorithm as min spanning tree)

Part IV Probabilistic Models and Learning

Formulated complete graph:

Part IV Probabilistic Models and Learning

Formulated complete graph:

Part IV Probabilistic Models and Learning

We note that:

Part IV Probabilistic Models and Learning

We note that:

- Finding the best Markov tree equals the maximum spanning tree problem;

Part IV Probabilistic Models and Learning

We note that:

- Finding the best Markov tree equals the maximum spanning tree problem;
- Algorithms for MinST suit MaxST, e.g., Prim's, Kruskal's ;

Part IV Probabilistic Models and Learning

We note that:

- Finding the best Markov tree equals the maximum spanning tree problem;
- Algorithms for MinST suit MaxST, e.g., Prim's, Kruskal's ;
- The obtained Markov tree T is not a causation relation,

Part IV Probabilistic Models and Learning

We note that:

- Finding the best Markov tree equals the maximum spanning tree problem;
- Algorithms for MinST suit MaxST, e.g., Prim's, Kruskal's ;
- The obtained Markov tree T is not a causation relation, (causal models are more difficult to obtain),

Part IV Probabilistic Models and Learning

We note that:

- Finding the best Markov tree equals the maximum spanning tree problem;
- Algorithms for MinST suit MaxST, e.g., Prim's, Kruskal's ;
- The obtained Markov tree T is not a causation relation, (causal models are more difficult to obtain),
- The optimization idea based on $D_{K L}$ has yet to be used to obtain Markov graphs of topologies beyond tree

Part IV Probabilistic Models and Learning

We note that:

- Finding the best Markov tree equals the maximum spanning tree problem;
- Algorithms for MinST suit MaxST, e.g., Prim's, Kruskal's ;
- The obtained Markov tree T is not a causation relation, (causal models are more difficult to obtain),
- The optimization idea based on $D_{K L}$ has yet to be used to obtain Markov graphs of topologies beyond tree until now.

