Chapter 3. The fundamentals: algorithms, the integers, and matrices
3.1 Algorithms
algorithm: a finte set of precise instructions for solving a problem.
example, an algorithm for finding the maximum value in a finite list of integers
pseudo-code, Algorithm 1 p169
Properties that algorithms share:
input
output
definiteness
correctness
finiteness
effectiveness
generality

Searching:

General searching problem: locate an element x in a list of distinct elements a_{1}, \ldots, a_{n} or determine that it is not in the list.

Linear search, Algorithm 2 p170

Binary search, Algorithm 3 p172
which one is better? why?

Sorting:

Bubble sort, Algorithm 4 p 173.

Insertion sort, Algorithm 5 p 174.
which one is better? why?

3.2 Growth of functions

Big-O notation
$f(x)$ is $O(g(x))$ if there are constants C and k such that
$f(x) \leq C g(x)$ for $x>k$.
important results:

- about polynomial functions
- relationships among logartithm, linear, polynomial, and exponential functions
growth of combinations of functions
$-\left(f_{1}+f_{2}\right)(x)$
$-\left(f_{1} f_{2}\right)(x)$
- $(g(f(x)) ? ?$

Big-Omega and Big-Theta notation

3.3 Complexity of algorithms

time complexity
space complexity
worst case complexity
average case complexity
table 1 on p196 commonly used terminology for complexity
solvable/not solvable problems
tractable/intractable problems
3.4 The integers and division
division:
a divides b, written as $a \mid b$, if $\exists c(a c=b)$
how many integers $\leq n$ are divisible by d ?

Theorem 1:

1. $(a|b \wedge a| c) \rightarrow a \mid(b+c)$
2. $a \mid b \rightarrow \forall c(a \mid b c)$
3. $(a|b \wedge b| c) \rightarrow a \mid c$

Corollary 1:
$(a|b \wedge a| c) \rightarrow \forall n \forall m a \mid(m b+n c)$
3.5 Primes and gcds
primes:

A positive integer $p>1$ is called prime if only 1 and p can divide p. A non-prime positive integer is called composite.

Theorem 2: (The fundamental theorem of arithmetic)
For every $n \geq 1, n=p_{1}^{c_{1}} p_{2}^{c_{2}} \ldots p_{r}^{c_{r}}$ uniquely where $p_{1}<p_{2}<\ldots<p_{r}$ are primes and $c_{i}>0, i=1, \cdots, r$
factorization was hard

Theorem 3: If n is composite, then n has a prime divisor $\leq \sqrt{n}$

The infinitude of primes

Theorem 4: there are infinitely many primes

The distribution of primes

Theorem 5: (The prime number theorem)
The number of primes not exceeding x is
$\approx x / \ln x$.

The division algorithm

Theorem 6: Let a be an integer and d be a positive integer. Then there exist two unique integers q and $r, 0 \leq r<d$, such that $a=d q+r$

Proof:
gcd and Icm
gcd: greatest common divisor of a and b : the largest d such that $d \mid a$ and $d \mid b$
$\operatorname{gcd}(24,36)=12$
a and b are relatively prime if $\operatorname{gcd}(a, b)=1$
a_{1}, \ldots, a_{n} are pairwise relatively prime
if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ whenever $1 \leq i<j \leq n$.
use factorizations of a and b to find the gcd.

Icm: least common multiple of a and b : the smallest m such that $a \mid m$ and $b \mid m$
use factorization of a and b to find the Icm .

Theorem 7: $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$

modular arithmetic

a is congruent to b modulo m
if $m \mid(a-b)$, denoted as $a \equiv b(\bmod m)$

Theorem 8: $a \equiv b(\bmod m)$ if and only if $a \bmod m=b \bmod m$

Theorem 9: $a \equiv b(\bmod m)$ if and only if there is an integer k such that $a=b+k m$.
applications of congruences:
hashing functions: $h(k)=k \bmod m$ pseudorandom numbers: $x_{n+1}=\left(a x_{n}+c\right) \bmod m$ cryptology: $f(p)=(p+k) \bmod 26$

3.6 Integers and Algorithms

representations of integers

Theorem 1: (base b expansion)
$n=a_{k} b^{k}+a_{k-1} b^{k-1}+\ldots+a_{1} b+a_{0}$, where $a_{i}<b$ is non-negative and $a_{k} \neq 0$
denoted as $\left(a_{k} \cdots a_{1} a_{0}\right)_{b}$
decimal expansion
binary expansion
hexadecimal expansion
octal expansion
algorithms for integers

Algorithm 1 Constructing Base b Expansion

Algorithm 2 Addition of Integers

Algorithm 3 Multiplying Integers

Algorithm 4 Computing div and mod

Algorithm 5 Modular Exponentiation

Algorithm 6 Eculidean Algorithm

Lemma 1 Let $a=b q+r$. Then $\operatorname{gcd}(a, b)=g c d(b, r)$.
Proof:

3.8 Matrices

matrix: definition, row, column vectors, dimensions.
addition of matrices
multiplication of matrices
$A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{n \times r}$
$A \times B=A B==\left[c_{i j}\right]_{m \times r}$ where

$$
c_{i_{j}}=a_{i_{1}} b_{1_{j}}+a_{i_{2}} b_{2_{j}}+\cdots+a_{i_{n}} b_{n_{j}}
$$

$A B \neq B A$

Algorithm 1 for matrix multiplication p249.

$$
A^{r}=A \times A \times \ldots \times A(r \text { times })
$$

0-1 matrices

logic operations
$A \vee B$ and $A \wedge B$ similar to addition
$A \odot B=\left[c_{i j}\right]$ where

$$
c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 j}\right) \vee \ldots \vee\left(a_{i n} \wedge b_{n j}\right)
$$

Algorithm 2 for boolean matrix production
boolean matrices representing graphs determining connectivity

