
Chapter 3. The fundamentals: algorithms, the
integers, and matrices

3.1 Algorithms

algorithm: a finte set of precise instructions
for solving a problem.

example, an algorithm for finding the maxi-
mum value in a finite list of integers

pseudo-code, Algorithm 1 p169

Properties that algorithms share:

input
output
definiteness
correctness
finiteness
effectiveness
generality

1

Searching:

General searching problem: locate an element

x in a list of distinct elements a1, . . . , an or de-

termine that it is not in the list.

Linear search, Algorithm 2 p170

Binary search, Algorithm 3 p172

which one is better? why?

2

Sorting:

Bubble sort, Algorithm 4 p 173.

Insertion sort, Algorithm 5 p 174.

which one is better? why?

3

3.2 Growth of functions

Big-O notation

f(x) is O(g(x)) if there are constants C and k

such that
f(x) ≤ Cg(x) for x > k.

important results:

– about polynomial functions

– relationships among logartithm, linear, poly-
nomial, and exponential functions

growth of combinations of functions

– (f1 + f2)(x)

– (f1f2)(x)

– (g(f(x)) ??

Big-Omega and Big-Theta notation

4

3.3 Complexity of algorithms

time complexity

space complexity

worst case complexity

average case complexity

table 1 on p196 commonly used terminology

for complexity

solvable/not solvable problems

tractable/intractable problems

5

3.4 The integers and division

division:

a divides b, written as a|b, if ∃c(ac = b)

how many integers ≤ n are divisible by d?

Theorem 1:

1. (a|b ∧ a|c) → a|(b + c)

2. a|b → ∀c(a|bc)
3. (a|b ∧ b|c) → a|c

Corollary 1:

(a|b ∧ a|c) → ∀n∀m a|(mb + nc)

6

3.5 Primes and gcds

primes:

A positive integer p > 1 is called prime if only

1 and p can divide p. A non-prime positive

integer is called composite.

Theorem 2: (The fundamental theorem of arith-

metic)

For every n ≥ 1, n = p
c1
1 p

c2
2 . . . pcr

r uniquely

where p1 < p2 < . . . < pr are primes and

ci > 0, i = 1, · · · , r

factorization was hard

Theorem 3: If n is composite, then n has a

prime divisor ≤
√

n

7

The infinitude of primes

Theorem 4: there are infinitely many primes

The distribution of primes

Theorem 5: (The prime number theorem)

The number of primes not exceeding x is

≈ x/lnx.

The division algorithm

Theorem 6: Let a be an integer and d be a

positive integer. Then there exist two unique

integers q and r, 0 ≤ r < d, such that

a = dq + r

Proof:

8

gcd and lcm

gcd: greatest common divisor of a and b: the

largest d such that d|a and d|b

gcd(24,36) = 12

a and b are relatively prime if gcd(a, b) = 1

a1, . . . , an are pairwise relatively prime

if gcd(ai, aj) = 1 whenever 1 ≤ i < j ≤ n.

use factorizations of a and b to find the gcd.

lcm: least common multiple of a and b: the

smallest m such that a|m and b|m

use factorization of a and b to find the lcm.

Theorem 7: ab = gcd(a, b) · lcm(a, b)

9

modular arithmetic

a is congruent to b modulo m

if m|(a− b), denoted as a ≡ b(modm)

Theorem 8: a ≡ b(modm) if and only if

amodm = bmodm

Theorem 9: a ≡ b(modm) if and only if there

is an integer k such that a = b + km.

applications of congruences:

hashing functions: h(k) = k modm

pseudorandom numbers: xn+1 = (axn+c)modm

cryptology: f(p) = (p + k)mod26

10

3.6 Integers and Algorithms

representations of integers

Theorem 1: (base b expansion)

n = akbk + ak−1bk−1 + . . . + a1b + a0, where

ai < b is non-negative and ak 6= 0

denoted as (ak · · · a1a0)b

decimal expansion

binary expansion

hexadecimal expansion

octal expansion

11

algorithms for integers

Algorithm 1 Constructing Base b Expansion

Algorithm 2 Addition of Integers

Algorithm 3 Multiplying Integers

Algorithm 4 Computing div and mod

Algorithm 5 Modular Exponentiation

Algorithm 6 Eculidean Algorithm

Lemma 1 Let a = bq + r. Then

gcd(a, b) = gcd(b, r).

Proof:

12

3.8 Matrices

matrix: definition, row, column vectors, di-

mensions.

addition of matrices

multiplication of matrices

A = [aij]m×n and B = [bij]n×r

A×B = AB == [cij]m×r where

cij = ai1b1j
+ ai2b2j

+ · · ·+ ainbnj

AB 6= BA

Algorithm 1 for matrix multiplication p249.

Ar = A×A× . . .×A (r times)

13

0-1 matrices

logic operations

A ∨B and A ∧B similar to addition

A�B = [cij] where

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ . . . ∨ (ain ∧ bnj)

Algorithm 2 for boolean matrix production

boolean matrices representing graphs

determining connectivity

14

