Recommended Group Brainstorm (NO computers during this time)

Good programmers think before they begin coding. Part I of this assignment involves brainstorming with a group of peers with no computers to talk about a strategy for solving this week’s lab. Breakup into groups based on your seating (3-4 people per group) and brainstorm about how to solve the problems below. Make sure everyone understands the problem and sketch out potential ways to move toward a solution. You may find it helpful to look over the required readings for this week.

Note: Brainstorms are to help you get started with the lab and get you in the habit of designing before you code. You won’t submit them to eLC.

Introduction

Twitter and similar micro-blogging platforms allow users to broadcast short messages to a potentially large audience. With Twitter, the messages are called “tweets” and consist of 140 characters or less. Tweets are often sent from mobile phones, and tweeters can choose whether their tweets are public or not.

The platforms allow people to communicate in ways that were not possible even a few years ago, and they have already had a profound effect on society. They even affect how society reacts to natural and manmade disasters—ordinary citizens can now broadcast timely and location specific information that is of vital importance to both emergency management agencies and members of the public.

Sifting through the tweets for useful information is difficult, however. As a result, there have been proposals to manually add structure to tweets sent during disasters. One proposal is called Tweak the Tweet (TtT).1 In TtT, information is marked using a “hashtag” such as #loc (for location):

MT @carlseelye: #lovelandfire #Wind just switched and now the smoke is thick around our house #loc 40.352,-105.2045

Adding the structure makes it far easier for a computer to classify the tweets.

In this lab, you will use methods of the String class to process messages similar to TtT tweets (the data is made from real TtT data but it has been altered to suit the lab). You will use the substring and other methods to pull out information from the text, manipulate it, and print it out to the screen.

Lab Objectives

By the end of the lab, you should:

• understand how String constants and String objects are represented in Java;
• be able to declare, initialize, and assign variables of type String;
• perform string processing using the methods of the String class;
• concatenate strings (and other values) together using the ‘+’ operator.

1 http://epic.cs.colorado.edu/?page_id=11
Prerequisites

The lab deals with material from Chapter 2 (specifically, the discussions of the `String` class). It assumes you know how define simple classes in Java, and that you can declare and assign values to variables.

Exercise – Parsing Tweets

The class `ParseTheTweet` will read in a single tweet from the keyboard, and so when writing your program, you will need to use the `Scanner` class in addition to the `String` class. As usual, almost everything you write will go in the `main` method of the `ParseTheTweet` class.

The tweets processed by the call all encode the following information using so-called “hashtags”: The report type (`#typ`); some further detail (`#det`); a location (`#loc`) such as a street address; and latitude (`#lat`) and longitude (`#lng`). The type indicates the meaning of the tweet (i.e., whether it is a request for help or reports factual information), and the report detail provides additional information. Each of the hashtags is followed by some value (such as an actual latitude or longitude value).

When writing your code, you can assume that all of the tweets to process have the following format:

```
#typ value; #det value; #loc value; #lat value; #lng value;
```

That is, they consist of a series of hashtags, each followed by a value, and each value followed by a semicolon (`;`). 9 sample tweets are provided at the end of this document. You should test your code on them.

Instructions

1. At the top of your source file, include a comment stating your Java class name, your name, the date, the program purpose, and containing the statement of academic honesty as you did in previous labs.
2. Use the `Scanner` class (as discussed in lecture) to read in a tweet entered by the user and store it in a `String` variable named `tweet`.
 - **Hint:** Using the `Scanner` class involves 1) importing a package, 2) creating a `Scanner` object, and 3) using the appropriate method to read in a whole line of text.
3. You will be splitting up (parsing) the information in the tweet into the 5 different types of information specified by the hashtags (type, location, detail, latitude, & longitude). Declare variables to store each of these pieces of information. Be sure to give these variables the appropriate data types and meaningful names.
4. Now you actually need to divide the information in the tweet into the separate substrings of information. Declare 2 variables (`start` and `finish`) to hold the indices of where each substring starts and finishes.
 - **Hint:** Each substring `starts` with a hashtag and `finishes` with a semicolon (Is there a String class method that you can use to get the index of “#typ” or a ‘;’?)
5. Once you have numbers assigned to start and finish, we want to discard the #tag and extract only the value. We know that the ‘;’ is where the value finishes – but we need to find the index where the actual value begins. Hint: our start variable currently points to the index of the “#” – and we know that all hashtag identifiers have the format, hashtag, 3 letters, and a space. Can we do simple math here to figure out the starting position of our value?

6. Once we have the correct starting and ending positions for the value, we want to extract the substring at those positions and assign it to the appropriate variable declared in step 3.

- The trim() method removes leading and trailing white spaces (if any) from a String. Use the trim() method on each resultant String.

- **Hint:** The trim() method returns a modified String, but does not alter the String object that calls it. Ensure you are (re-)assigning a String to the result of trim().

Example

```java
String original = "  text here   ";
String trimmed = original.trim(); //trimmed contains "text here"
//At this point, the original string still contains -- "  text here   "
```

7. After extracting the value encoded by each hashtag, we discard that part of the tweet String – we are finished with it and are ready to repeat these steps for the next hashtag. We can use the substring method to extract the substring of our tweet variable starting where the last hashtag finished (Hint: we know it finishes at a semicolon – and we have that index stored in our finish variable, and we want to start right after that semicolon – Also, remember that if we pass the substring method only 1 value, it begins at that index and goes until the end of the String).

```
DISCARD SUBSTRING STORED IN TWEET
#type value; #det value; #loc value; #lat value; #lng value;
```

9. The type values come from a very small set of values, and we want to make them all caps. To do this, use the toUpperCase method of the String class.

10. We also want to ensure that the detail and location values are free of commas (which might pose an obstacle to further processing). Use the replace method of the String class to do this. Replace each comma with a single hyphen (-).

11. Now use System.out and print or println statements to produce formatted output, as shown in the included examples.

HINT: Use the escape sequence \t to include tabs as needed.
eLC Submission and Grading

After you have completed and thoroughly tested ParseTheTweet.java, submit it to eLC in order to receive credit for the lab. Always double check that your submission was successful on eLC!

The lab will be graded according to the following guidelines.
- A score between 0 and 100 will be assigned.
- Penalties for late submissions will be deducted as described in the syllabus.
- If the required comment for all labs describing the program and the academic honesty statement is not included at the top of the file, then 10 points will be deducted. Note: this required comment can be found in Lab 02.
- All source code must adhere to good Java programming style standards as discussed in lecture class and in the course textbook readings.
- The program will be evaluated using the sample tweets below and additional tweets. For each test case, the output must be correct in order to receive credit for that test case.

Example Tweets

Test your code with these. If you want to copy and paste, you'll need to move them to a text file first. Copying and pasting from a pdf will give runtime errors because of the location of the newline characters.

1. "#typ offer; #det free essential supplies 4 evacs pets.; #loc 2323 55th st, boulder; #lat 40.022; #lng -105.226;"
2. "#typ structure; #det damaged; #loc 224 left fork road (shed) (house okay); #lat 40.029854; #lng -105.391055;"
3. "#typ wind; #det just switched, and now the smoke is thick around our house; #loc 40.352,-105.2045; #lat 40.3523; #lng -105.2045;"
4. "#typ fire; #det firefighter sees a glow; #loc sw from west coach rd toward sunshine canyon; #lat 40.0515; #lng -105.332;"
5. "#typ structure; #det damaged; #loc unknown number, by 204 gold run road; #lat 40.050904; #lng -105.373941;"
6. "#typ evac; #det overflow shlitr 4 evacuees at; #loc walt clark middle school, loveland; #lat 40.383; #lng -105.113;"
7. "#typ no fire; #det activity; #loc west of the pinewood res dam; #lat 40.367; #lng -105.292;"
8. "#typ photo; #det local wild horse; #loc wild horse; #lat 40.052304; #lng -105.319374;"
9. "#typ smoke; #det its raining ash; #loc windsor, co; #lat 40.499812; #lng -105.012075;"
Sample Output

Type: OFFER
Detail: free essential supplies 4 evacs pets.
Location: 2323 55th st- boulder
Latitude: 40.022
Longitude: -105.226

Type: STRUCTURE
Detail: damaged
Location: 224 left fork road (shed) (house okay)
Latitude: 40.029854
Longitude: -105.391055

Type: WIND
Detail: just switched- and now the smoke is thick around our house
Location: 40.352--105.2045
Latitude: 40.3523
Longitude: -105.2045

Type: FIRE
Detail: firefighter sees a glow
Location: sw from west coach rd toward sunshine canyon
Latitude: 40.0515
Longitude: -105.332

Type: STRUCTURE
Detail: damaged
Location: unknown number- by 204 gold run road
Latitude: 40.050904
Longitude: -105.373941

Type: EVAC
Detail: overflow shltr 4 evacuees at
Location: walt clark middle school- loveland
Latitude: 40.383
Longitude: -105.113
Type: NO FIRE
Detail: activity
Location: west of the pinewood res dam
Latitude: 40.367
Longitude: -105.292

Type: PHOTO
Detail: local wild horse
Location: wild horse
Latitude: 40.052304
Longitude: -105.319374

Type: SMOKE
Detail: its raining ash
Location: windsor- co
Latitude: 40.499812
Longitude: -105.012075