PRIME = "On input p:
1. If p is even, accept if $p = 2$; otherwise, reject.
2. Select a_1, \ldots, a_k randomly in \mathbb{Z}_p^+.
3. For each i from 1 to k:
4. Compute $a_i^{p-1} \mod p$ and reject if different from 1.
5. Let $p - 1 = st$ where s is odd and $t = 2^h$ is a power of 2.
6. Compute the sequence $a_i^{s \cdot 2^0}, a_i^{s \cdot 2^1}, a_i^{s \cdot 2^2}, \ldots, a_i^{s \cdot 2^h}$ modulo p.
7. If some element of this sequence is not 1, find the last element that is not 1 and reject if that element is not -1.
8. All tests have passed at this point, so accept."

Source: Introduction to the Theory of Computation
by Michael Sipser