PRIME = "On input p:

- 1. If p is even, accept if p = 2; otherwise, reject.
- 2. Select a_1, \ldots, a_k randomly in \mathbb{Z}_p^+ .
- 3. For each i from 1 to k:
- 4. Compute $a_i^{p-1} \mod p$ and reject if different from 1.
- 5. Let p-1=st where s is odd and $t=2^h$ is a power of 2.
- 6. Compute the sequence $a_i^{s \cdot 2^0}$, $a_i^{s \cdot 2^1}$, $a_i^{s \cdot 2^2}$, ..., $a_i^{s \cdot 2^h}$ modulo p.
- 7. If some element of this sequence is not 1, find the last element that is not 1 and reject if that element is not -1.
- 8. All tests have passed at this point, so accept."

Source: Introduction to the Theory of Computation

by Michael Sipser