New HW & Reading
HW #5, due Thurs 9/22, Chapter 6, # 5, 17(BUT with 3 c’s instead of 2), 25, 29(the people are distinguishable), 33.

Graduate students:
(1) By taking a derivative and comparing coefficients of z^n, find a recursion for the sequence of integers a_n defined by
\[
\exp \left(z + \frac{z^2}{2} \right) = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}.
\]
Show that a_n equals the number of involutions of $[n]$. (An involution is a permutation which equals its own inverse.)

(2) In the same manner, find a recursion for d_n, where
\[
\exp \left(\frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \cdots \right) = \sum_{n=0}^{\infty} d_n \frac{z^n}{n!}.
\]
Show that d_n equals the number of derangements of $[n]$.
Hint. Rewrite the left side as
\[
\frac{e^z}{1 - z}.
\]

Reading for September 13, pages 161–171; for September 15, pages 172–182.

From Last We gave a combinatorial proof for
\[
\sum_{n=k}^{N} \binom{n}{k} = \binom{N + 1}{k + 1}.
\]
We went over Newton’s binomial theorem; Brualdi gives the date 1676. We proved
\[
(1 + z)^{1/2} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2n}{2n - 1} \binom{2n}{n} \left(\frac{z}{4} \right)^n.
\]
Several times we have used “generating functions” to obtain algebraic (as opposed to combinatorial proofs) of identities. E.g., $\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right)^2$. How about
\[
\sum_{\ell} \binom{m}{k - \ell} \binom{n}{\ell} = \binom{m + n}{k}.
\]
Combinatorial proof.

Today Any questions from HW solutions on last handout? Note our grader’s name and email address: Sal Lamarca, slamarca@uga.edu

Start Chapter 6, PIE. Good way to think: we have a collection O of combinatorial objects, and a collection of properties P_1, P_2, \ldots which the objects are capable of having. Example. Consider index cards that contain pairs (X, S) where X is an object and S is a set of properties that X has. (It may not be all the properties.) Let N_i be the number of cards in which the set S has size i. Then, the number of objects with no properties is $N_0 = N_1 + N_2 - \ldots$.

Handout 5 We neglected to tell how to sum $k^p \binom{n}{k}$ for $p > 1$.