Upcoming new chapter: Connectivity and flow
$\nu(n)$ equals the largest integer such that every tournament on n vertices contains a transitive subset of size $\nu(n)$. Known results, found in old book of Erdős and Spencer:

$$1 + \lfloor \log_2 n \rfloor \leq \nu(n) \leq 1 + \lfloor 2 \log_2 n \rfloor.$$

Revisit HW #6: Problem 4.40, Proof of Prim. Unassigned, but interesting: 4.41 Kruskal vs Prim
From HW #7: Problems 5.35 (a) through (c)

Reading.
For March 22: Re-read Section 6.1
For March 24: Section 6.2

Homework #8. Due Thursday, March 24.
Exercises 5.41, 5.43*, 6.1, 6.3, 6.8
Graduate/bonus exercises 6.2, 6.6*

Notes
* 5.43 The second line should read “contain a directed cycle.”
* 6.6 Add the hypothesis that G has $n \geq 2$ vertices.