Last time. Planar graphs, Jordan curve theorem, sphere vs plane, Euler’s formula, K_5 not planar.

Today. Kuratowski’s theorem.

Homework # 11. Due Thursday, 4/21. Text: 7.1, 7.2, 7.3; plus the following two.

4. Let G be a bipartite graph with parts A and B. Assume that G is bi-regular; that is, each vertex in A has the same degree, and each vertex in B has the same degree. Prove that if $|A| \leq |B|$, then A can be matched into B. (see Handout 15) Guide to proof:
 (a) Let d_A be the degree of each vertex in A, and d_B be the degree of each vertex in B. Show that $d_A \times |A| = d_B \times |B|$.
 Conclude that $d_A \geq d_B$.
 (b) Let $S \subseteq A$; show that the number of edges leaving S is $d_A \times |S|$. Show that for each $b \in \Gamma(S)$ the number of edges entering b from S is at most d_B. Conclude that $d_A \times |S| \leq d_B \times |\Gamma(S)|$
 (c) From part (b) conclude $|S| \leq |\Gamma(S)|$
 Done.

5. Suppose p people are placed, with some overlap, into c committees. Each committee has the same size, and each person serves on the same number of committees. Prove that so long as $p \geq c$ then each committee can elect/appoint a chairperson in such a manner that nobody is required to chair two different committees.

Graduate / Bonus

6. (Graduate/bonus). Let $S = \{1, 2, \ldots, n\}$. Form a bipartite graph with parts A and B. Let A consist of all subsets of S of size k, and B consist of all subsets of S of size $k + 1$. Two subsets X, Y are joined by an edge if and only if $X \subseteq Y$. Show that if $k < n/2$, then A can be matched into B.