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Log-concavity and cycle index polynomials

Abstract

Let An denote the n-th cycle index polynomial, in the vari-

ables Xj , for the symmetric group on n letters. We show that if

the variables Xj are assigned nonnegative real values which are log-
concave, then the resulting quantities An satisfy the two inequalities
An�1An+1 � A2

n �
�
n+1
n

�
An�1An+1: This implies that the coe�-

cients of the formal power series exp(g(u)) are log-concave whenever
those of g(u) satisfy a condition slightly weaker than log-concavity.

The latter includes many familiar combinatorial sequences, only
some of which were previously known to be log-concave. To prove
the �rst inequality we show that in fact the di�erenceA2

n
�An�1An+1

can be written as a polynomial with positive coe�cients in the ex-
pressions Xj and XjXk �Xj�1Xk+1, j � k. The second inequality

is proven combinatorially, by working with the notion of a marked

permutation, which we introduce in this paper. The latter is a
permutation each of whose cycles is assigned a subset of available
markers fMi;jg. Each marker has a weight, wt(Mi;j ) = xj , and we
relate the second inequality to properties of the weight enumerator

polynomials. Finally, using asymptotic analysis, we show that the
same inequalities hold for n su�ciently large when the Xj are �xed
with only �nitely many nonzero values, with no additional assump-

tion on the Xj .
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Log-concavity and cycle index polynomials

Section 1. Introduction

Recall that a sequence of nonnegative real numbers bn, n � 0, is log-convex provided
b2n � bn�1bn+1 for all n � 1 and that it is log-concave provided b2n � bn�1bn+1 for

all n � 1. Throughout this paper we strengthen the de�nition of log-concavity by also

requiring that, if bn = 0 for some integer n, then bk = 0 for all k > n. A nonneg-
ative sequence bn satis�es this strengthened condition of log-concavity if and only if

bjbk � bj�1bk+1 for all j � k; such sequences are also known as one sided P�olya fre-

quency sequences of order 2 [5, p. 393]. This paper is devoted to the following theorem

and related results. For a general introduction to the use of generating functions in

combinatorics, as well as to the notions of convexity and concavity, we refer the reader
to [10].

Theorem 1. Let 1;X1;X2; : : : be a log-concave sequence of nonnegative real

numbers and de�ne the sequences An and Pn by

1X
n=0

Anu
n =

1X
n=0

Pnu
n

n!
= exp

� 1X
j=1

Xju
j

j

�
: (1:1)

Then the An are log-concave and the Pn are log-convex. In other words,

An�1An+1 � A2
n �

�
n+1
n

�
An�1An+1 (1:2)

and

Pn�1Pn+1 � P 2
n �

�
n

n+1

�
Pn�1Pn+1: (1:3)

One easily shows that (1.2) and (1.3) are equivalent. Since Pn = n! when Xj = 1 for
all j while Pn = 1 for all n if Xj = �j;1, the Kronecker delta, (1.3) is best possible.
With Xj = 1 or Xj = 1=(j � 1)! for j < k and Xj = 0 otherwise, one easily obtains
the following corollaries.

Corollary 1.1. Let �n;k be the number of permutations of an n-element set

such that every cycle has less than k elements. Then

�n�1;k �n+1;k � �2n;k �
�

n

n+1

�
�n�1;k �n+1;k:

Corollary 1.2. Let Bn;k be the number of partitions of an n-element set such

that every block has less than k elements. Then

Bn�1;kBn+1;k � B2
n;k
� � n

n+1

�
Bn�1;kBn+1;k:

When k = 1, the �rst corollary is trivial and the second was stated in [3], which is

devoted to inequalities about Bell numbers.
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Log-concavity and cycle index polynomials

Each An is a polynomial in the variables Xj , 1 � j � n, having a well known

combinatorial signi�cance: Let �n denote the symmetric group and let Nj(�) be the

number of j-cycles in the permutation �. Then

An(X1; : : : ;Xn) =
Pn(X1; : : : ;Xn)

n!
=

1

n!

X
�2�n

wt(�); (1:4)

where wt(�) = X
N1(�)

1 � � �XNn(�)
n . The An are the cycle index polynomials generally

associated with P�olya [7] although in fact appearing in earlier work of Red�eld [8].

Theorem 1 will be seen to be a consequence of more general results concerning the

form of the cycle index polynomials:

Theorem 2. Let X0 = 1, let X1;X2; : : : be indeterminates, let

Y =
�
X1;X2 : : :

	
[
�
XjXk �Xj�1Xk+1 : 0 < j � k

	
and let

1X
n=0

Pnu
n

n!
= exp

� 1X
j=1

Xju
j

j

�
:

Then

(n+ 1)PmPn �mPm�1Pn+1 2 N[Y] for 1 � m � n; (1:5)

that is, (n + 1)PmPn � mPm�1Pn+1 can be expressed as a polynomial in

the Y with nonnegative integer coe�cients. Let v 2 N and let x1; : : : ; xv be

indeterminates. After the substitutions

Xj =

vY
i=1

(1 + xi)
min(i;j); (1:6)

we have

Pm�1Pn+1 � PmPn 2 N[x1; : : : ; xv] for 1 � m � n. (1:7)

We illustrate (1.5) with the example m = n = 3:

P2 = X2 +X2
1

P3 = 2X3 + 3X1X2 +X3
1

P4 = 6X4 + 8X1X3 + 3X2
2 + 6X2X

2
1 +X4

1

4P 2
3 � 3P2P4 = (X2

1 �X2)
3 + 6X1(X1X2 �X3)(X

2
1 �X2)

+ 8(X2
2 �X1X3)(X

2
1 �X2) + 4(X1X2 �X3)

2 + 6X2(X1X3 �X4)

+ 6X2
1 (X1X3 �X4) + 12X1(X2X3 �X1X4) + 12(X2

3 �X2X4):
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Log-concavity and cycle index polynomials

The relationships among these polynomials and log-concavity is given in the next

section where we deduce Theorem 1 from Theorem 2. Result (1.5) is proved in Sec-

tion 3. In Section 4, we give a combinatorial interpretation of the xi's and use it to
prove (1.7). The fact that log-concavity of the Xj 's produces both log-concavity and
log-convexity seems rather curious. This can be explained somewhat by studying the
asymptotic behavior of the An's and Pn's when the log-concavity of the Xj 's is not

required. This is illustrated by the following theorem, which we prove in Section 5.

Theorem 3. Let P (u) =
Pd

j=1
cju

j be a polynomial with nonnegative

coe�cients, cd 6= 0, and assume that gcdfj : cj 6= 0g = 1. Then there exists

an integer n0 such that for the sequence Pn de�ned by the generating function

equation

1X
n=0

Pnu
n

n!
= exp

�
P (u)

�

we have

Pn�1Pn+1 � P 2
n
� � n

n+1

�
Pn�1Pn+1 for all n � n0. (1:9)

(The gcd hypothesis in Theorem 3 is necessary: without it the sequence Pn contains
in�nitely many nonzero elements whose two immediate neighbors are zero.)

The literature on log-concavity is vast, and we mention only a few selections; the

bibliographies of these will lead the interested reader to many other works. A standard
reference is [5], especially Chapter 8. Combinatorial inequalities in particular are the
subject of [1] and [9]. In [2] it is shown that if the coe�cients of the power series g(u)
are log-concave then s(n; k) = [un]g(u)k is log-concave in k for �xed n; as a corollary
the coe�cients of the polynomial Pn(x) = [un=n!] exp(xg(u)) are strictly log-concave.

In [6] consideration is given to the question of when the coe�cients of a su�ciently
high power of a polynomial are log-concave.

Section 2. Theorem 2 Implies Theorem 1

The following lemma provides the connection between Theorems 1 and 2.

Lemma 2.1. The real sequence Xj , with X0 = 1, is strictly positive and

log-concave if and only if there exisit xj � 0 such that

Xj = X
j

1

j�1Y
i=1

(1 + xi)
�j+i:
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Log-concavity and cycle index polynomials

Proof of Lemma 2.1. From the inequality X2
1 � 1X2 we have for some x1 � 0 that

X2 = X2
1 (1 + x1)

�1. Similarly, from X2
2 � X1X3 we have for some x2 � 0 that

X3 = (1 + x2)
�1X2

2=X1 = (1 + x2)
�1(1 + x1)

�2X3
1 :

Continuing in this way, by induction, we obtain Lemma 2.1.

With this preparation, we now show that Theorem 2 implies Theorem 1.

Proof of Theorem 1 from Theorem 2. As pointed out after the statement of Theorem

1, (1.2) is equivalent to (1.3). Thus we may concentrate on proving (1.3). Fix an

integer n � 1 and consider the �rst inequality in (1.3). Let Xj be a real, strictly
positive, log-concave sequence and let xj be the corresponding nonnegative sequence
given by the above Lemma 2.1. (We will remove the restriction of strict positivity in
a moment.) We may restate the conclusion of the Lemma thus:

Xj = X
j

1

nY
i=1

(1 + xi)
�j+min(i;j); for 1 � j � n+ 1: (2:1)

Let P̂m denote the real number that results when the substitutions (1.6) with v = n

are made in the polynomial Pm, and the xj are given the nonnegative values of the
Lemma. Because for each permutation � 2 �m we have

X
j�1

jNj(�) =m;

we see from (1.4) and (2.1) that for m � n+ 1

Pm =

�
X1

. nY
i=1

(1 + xi)

�m
� P̂m:

Thus (1.7), with m = n, implies the �rst inequality of (1.3).

Suppose now that Xj vanishes for j > i. The preceding argument applies to the

positive sequence X0; : : : ;Xi;Xi�; Xi�
2; : : :, and we obtain the desired inequality by

continuity, letting �! 0.

We turn now to the second inequality in (1.3). As pointed out in the introduction

(it is not hard to prove) our de�nition of log-concavity implies that XjXk�Xj�1Xk+1

is nonnegative for j � k. Hence, the second inequality of (1.3) is an immediate

consequence of (1.5) with m = n, and the proof is complete.

6



Log-concavity and cycle index polynomials

Section 3. Proof of (1.5)

Let X1; : : : be indeterminates and let Y �Z[X1; : : :]. For P;Q 2 Z[X1; : : :], we de�ne

P � Q to mean P �Q 2 N[Y]; that is, P � Q is a polynomial in the polynomials

in Y with nonnegative coe�cients. Throughout this section, an inequality involving
polynomials will have this interpretation with Y as in Theorem 2. This notion of

inequality is reexive, antisymmetric, transitive, and has two other algebraic properties
familiar from the numerical case:

(a) (P � Q) ) (P +R � Q+R).

(b)
�
(P � Q) and (R 2 N[Y])

�
) (PR � QR).

The idea can be extended to rings, but we need only this case.

Proof of (1.5). The proof is by induction on m. When m = 1 we must show

(n+ 1)X1Pn � Pn+1: (3:1)

For � 2 �n+1, let �
0 be � with element n+ 1 deleted from the cycle containing it. If

n+ 1 belongs to a j-cycle of �, then

Xj�1 wt(�) = Xj wt(�
0):

Since X1Xj�1 � Xj , we conclude

X1wt(�
0) � wt(�):

Summing the latter over all � 2 �n+1 yields (3.1) and starts the induction.
Now suppose 1 < � and that (1.5) holds for 1 � m < �. We want to prove (1.5)

for m = �. Let (t)k denote the falling factorial t(t � 1) � � � (t � k + 1). Observe that

for � > m � 1, h � 0, and n � m

(n+ h)hPmPn � (m)hPm�hPn+h; (3:2)

this is obtained by iterating (1.5) h times:

(n + h)hPmPn � (n+ h)h�1mPm�1Pn+1

� (n+ h)h�2m(m� 1)Pm�2Pn+2

� : : : � (m)hPm�hPn+h:

Let n � �. With �0 again denoting � with its largest element deleted,

(n + 1)P�Pn � �P��1Pn+1 =
X
�12��

X
�22�n+1

�
wt(�1)wt(�

0
2)� wt(�01)wt(�2)

�
:
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Log-concavity and cycle index polynomials

Partition the sum according to the size j of the cycle of �1 containing � and the size

k of the cycle of �2 containing n + 1. For example, the sum of wt(�1) over all �1
for which � belongs to a j-cycle is (�� 1)j�1XjP��j because (� � 1)j�1 counts the
number of ways to construct a j-cycle containing �, Xj is the weight of this cycle and
P��j is the sum of the weights over all ways to complete the permutation. Using this
approach we �nd

(n+ 1)P�Pn � �P��1Pn+1
=
X
j;k�1

�
XjXk�1 �Xj�1Xk

�
(�� 1)j�1(n)k�1P��jPn+1�k:

Since the summand in this identity vanishes when j = k, the sum may be e�ected by
restricting to 1 � j < k while replacing the summand by itself plus the summand with
j and k interchanged. Since interchanging j and k simply negates XjXk�1�Xj�1Xk,
we �nd

(n+ 1)P�Pn � �P��1Pn+1
=

X
1�j<k

�
XjXk�1 �Xj�1Xk

��
(�� 1)j�1(n)k�1P��jPn+1�k

� (� � 1)k�1(n)j�1P��kPn+1�j

�

=
X

1�j<k

(�� 1)j�1(n)j�1

�
XjXk�1 �Xj�1Xk

�

 (3:3)

where


 = (n� j + 1)k�jP��jPn+1�k � (�� j)k�jP��kPn+1�j: (3:4)

Since XjXk�1�Xj�1Xk 2 Y for j < k, to complete the proof we need only show that


 � 0 for all 1 � j < k. (3:5)

There are two cases to consider: �� j � n+ 1� k and n+ 1� k < �� j. In the �rst

case, 
 � 0 by (3.2) with the replacements

m �� j; n n+ 1� k; h k � j:

In the second case, by (3.2) with the replacements

m n+ 1� k; n �� j and h n+ 1� �

we �nd that

(n + 1� j)n+1��Pn+1�kP��j � (n + 1� k)n+1��P��kPn+1�j: (3:6)
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Let S = (�� j)��j+k�n�1. Since 0 � n+1�k < �� j, S is a positive integer. Noting

that n+ 1� � � 0 and the two simple relations

(n + 1� j)k�j = (n + 1� j)n+1�� � S

and

(�� j)k�j = S � (n+ 1� k)n+1��;

we may multiply both sides of (3.6) by S to obtain 
 � 0. Thus the right side of (3.3)

is in N[Y], and the induction is complete.

Section 4. Interpretation and Proof of (1.7)

We begin with a combinatorial interpretation of the xj 's that appear in (1.6).

Fix an integer v � 0. The
�
v+1

2

�
objects in fMi;j : 1 � i � j � vg will be called

markers. A marked permutation �̂ on [n] = f1; 2; : : : ; ng is a permutation � 2 �n each
of whose cycles is assigned a subset, possibly empty, of markers subject to the one
condition that marker Mi;j can be assigned only to cycles of size i or greater. The set
of marked permutations is denoted by M�n.

Let fxj : 1 � j � vg be a �xed set of v variables. The weight of a marker is

Wt(Mi;j) = xj , and the weight of a set S of markers is the product of the weights of
the individual elements of S. For example

Wt
�
fM1;1;M1;3;M3;3g

�
= x1x

2
3:

The weight of the empty set is the empty product and is taken to be 1. Wt(�̂), the
weight of the marked permutation �̂, is the product of the weights of the individual
cycles in �̂, andWt(�) is the sum of the weights of all marked permutations having � for

their underlying unmarked permutation. We de�ne the weight enumerator polynomial

Pn;v in the variables xj by

Pn;v(x1; : : : ; xv) =
X

�̂2M�n

Wt(�̂) =
X
�2�n

Wt(�):

In the future we will always write Pn;v, without mention of the arguments x1; : : : ; xv,
since they are implicit in the second subscript of the notation.

To illustrate we take n = 3 and v = 2. The possible weights of a 1-cycle are
1; x1; x2, and x1x2. The sum of the latter is (1 +x1)(1 + x2). The sum of the possible
weights for any cycle of size greater than 1 is (1 + x1)(1 + x2)

2. Within �3 there are

� 2 permutations consisting of a 3-cycle,

� 1 permutation consisting of three 1-cycles and

9
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� 3 permutations consisting of a 2-cycle and a 1-cycle.

Hence,

P3;2 = 2
�
(1 + x1)(1 + x2)

2
�
+
�
(1 + x1)(1 + x2)

�3

+ 3
�
(1 + x1)(1 + x2)

2
��

(1 + x1)(1 + x2)
�

= 6 + 11x1 + 16x2 + 6x21 + 31x1x2 + 14x22 + x31 + 18x21x2 + 29x1x
2
2 + 4x32

+ 3x31x2 + 18x21x
2
2 + 9x1x

3
2 + 3x31x

2
2 + 6x21x

3
2 + x31x

3
2:

We now generalize this example to prove that Pn;v equals Pn with the substitutions

(1.6). To see this, �rst observe that Wt(�), de�ned as the sum of Wt(�̂) over all marked

permutations �̂ with � as their underlying permutation, is the following product

Wt(�) =

nY
i=1

W
Ni(�)

i
;

whereWi is the sum of all possible weights legally assignable to an i-cycle in a marked
permutation. We may assign to an i-cycle any marker Mh;j such that h � i and
h � j � v. Hence, for a given j, the number of h such that marker Mh;j can be
assigned to an i-cycle is min(i; j). Since marker Mh;j has weight xj , an i-cycle has
min(i; j) independent chances to include a factor xj in its assigned weight; whence,

Wi =

vY
j=1

(1 + xj)
min(i;j):

Since Pn is the sum over � of the product
Q
XNi

i
, in view of the last two equations for

Wt(�) andWi respectively, we see that as claimed Pn;v equals Pn after the substitution
(1.6). Furthermore, we may combinatorially interpret xj in Pn;v as keeping up with

the number of markers Mi;j which have been used in a marked permutation. This
dual understanding of Pn;v is the key to the proof of (1.7), but before that proof we

require one lemma.

Lemma 4.1. After the substitutions (1.6) we have, for j � k,
XjXk �Xj�1Xk+1 2 N[x1; : : : ; xv ]:

Proof of Lemma 4.1. With the usual convention that, when the starting index of

a product is greater than the ending index, as in
Q2

i=3
, the product is empty and

equals 1, we have for j � k,

XjXk �Xj�1Xk+1

=

� vY
i=1

(1 + xi)
min(i;j�1)

�� vY
i=1

(1 + xi)
min(i;k)

�� vY
i=j

(1 + xi) �
vY

i=k+1

(1 + xi)

�

and

10
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� vY
i=j

(1 + xi) �
vY

i=k+1

(1 + xi)

�
=

� vY
i=k+1

(1 + xi)

��min(k;v)Y
i=j

(1 + xi) � 1

�
:

We are now ready to proceed with the main proof of this section.

Proof of (1.7). The case m = 1 requires a separate argument. Since P1;v can be

considered the weight enumerator for all permutations of the singleton set fn+ 1g, it
follows that Pn+1;v � P1;vPn;v is the weight enumerator for all permutations in M�n+1
for which fn+1g is not a 1-cycle. To complete the proof of (1.7) for m = 1, note that
P0;v = 1.

Let �̂ 2 M�n be a marked permutation. We say that �̂ is maximally marked if
the cycle containing n carries one or more of the marks Mj;j ;Mj;j+1; : : : ;Mj;v, where
j is the length of the cycle. Let M��n � M�n be the set of marked permutations
�̂ which are not maximally marked. If �̂ 2 M��n, then removal of n from the cycle
containing it produces a marked permutation in M�n�1 and all elements of M�n�1
are obtained exactly n times by this procedure. HenceX

�̂2M��n

Wt(�̂) = nPn�1;v (4:1)

and so� X
�̂2M��m

Wt(�̂)

�
� Pn;v = Pm�1;v �

� X
�̂2M��n+1

Wt(�̂) � (n+ 1�m)Pn;v

�
: (4:2)

We next �nd a di�erent formula for the sum on the left of (4.1). Each �̂ 2 M�n in
which element n does reside in a maximally marked cycle is created once and only

once by the following procedure: (a) choose a length j for the cycle containing n,
(b) complete that cycle, (c) choose a maximal marking for that cycle and (d) choose a
marked permutation on the remaining n�j elements. A maximal marking for a j-cycle
is one that includes at least one mark from the set fMj;j ;Mj;j+1; : : : ;Mj;vg. De�ne
the polynomial Qj;v to be the sum of all possible maximal markings for a j-cycle. It is

not hard to give an explicit formula for Qj;v , but we require only the obvious facts that
it has positive coe�cients and that Qj;v is 0 when j > v. By the above construction

of marked permutations in which n resides in a maximally marked cycle, we have

X
�̂2M��n

Wt(�̂) = Pn;v �
v�1X
j=0

(n � 1)jQj+1;vPn�1�j;v: (4:3)

By using (4.3) to replace the sums in (4.2) and rearranging, we have proven the

following for all integers n � 1, m > 1 and v � 0:

Pm�1;vPn+1;v � Pm;vPn;v = (n + 1�m)Pm�1;vPn;v +

v�1X
j=0

Qj+1;v

0 (4:4)

where

11
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0 = (n)jPm�1;vPn�j;v � (m� 1)jPm�1�j;vPn;v:

We can use (3.4), (3.5) with n; �; j; k replaced by n;m; 1; j+1 respectively to conclude

(n)jPm�1Pn�j � (m � 1)jPm�1�jPn 2 N[Y] for 1 < m � n.

Since 
0 is obtained from the latter by the substitutions (1.6), and since Lemma 4.1
shows that XjXk�1�Xj�1Xk 2 N[x1; : : : ; xv ] after these same substitutions, it follows

that 
0 2 N[x1; : : : ; xv]. From (4.4) we obtain the desired (1.7).

Section 5. Proof of Theorem 3

If d = 1 we have Pn = cn1 and we may take n0 = 1. Henceforth we assume d > 1. We

shall prove, uniformly for h = O(1) as n!1,

Pn+h =
(n + h)!

rn+h
� expfP (r)g

(2�B)1=2
�
�
1 +

R0 + hR1 + h2R2

B
+O(r�2d)

�
(5:1)

using the familiar circle method as presented by Hayman [4] and described in [10,

p. 152]. The positive quantity r in (5.1) is determined by the equation

rP 0(r) = n; (5:2)

B is given by

B = rP 0(r) + r2P 00(r); (5:3)

and the Ri are rational functions of r, bounded as r ! 1, with R2 = �1=2. Using
(5.2) and (5.3), we �nd n = dcdr

d(1+O(r�1)) and B = d2cdr
d(1+O(r�1)). It is now

easy to compute

(n+ 1)P 2
n � nPn�1Pn+1 =

(n+ 1)!n!

r2n
expf2P (r)g

2�B2

�
1 +O(r�d)

�
and

Pn�1Pn+1 � P 2
n =

(n + 1)!n!

r2n
expf2P (r)g

2�B2

d� 1

n

�
1 +O(r�1)

�

from (5.1). It remains to prove (5.1).

In what follows, the Ci are positive constants which depend only on P (u).
Let S = fj : cj 6= 0g and let

P (rei�) = P (r) +Ai� � 1
2
B�2 + � � �

12
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be the Taylor series expansion about � = 0; we �nd that A = A(r) = rP 0(r) and that

B is given by (5.3). Choose r by (5.2) to satisfy A(r) = n, and apply Cauchy's integral

formula with the circle jzj = r to �nd

Pn+hr
n+h

(n+ h)!
=

1

2�

Z +�

��
expfP (rei�) � i(n + h)�g d�: (5:4)

Let � = r(1�d)=2 and partition the interval of integration into j�j < � and � � j�j � �.

We now show that the integral over � � j�j � � in (5.4) is negligible by using

���exp�P (rei�)	
��� = exp

�
ReP (rei�)

	
:

First, if � � j�j � �=d then cos d� � 1 � �2d2�2=�2 and since rd�2 = r

ReP (rei�) = P (r) +
X
j2S

cjr
j (cos j� � 1) � P (r) � C1r: (5:5)

To handle �=d � � � � we need the gcd condition which implies the existence of
integers Nj , j 2 S, such that

P
j2S jNj = 1. Set M =

P
j2S jNj j and for j 2 S de�ne

�j by the two conditions eij� = ei�j and j�jj � �. At least one �j , j 2 S, satis�es
j�j j � �=M(d + 1) for otherwise

ei� = exp
n
�
P
jNj

o
= exp

n
i
P
�jNj

o
= ei�;

with j�j � (maxj j�jj)(
P

j
jNj j) � �=(d + 1), a contradiction. Thus, for at least one

j 2 S we have cos j� � 1 � �2=M2(d + 1)2 and so

ReP (rei�) = P (r) +
X
j2S

cjr
j (cos j� � 1) � P (r) �C2r: (5:6)

Together inequalities (5.5) and (5.6) imply

�����
Z
��j�j��

exp
�
P (rei�) � i(n+ h)�

	
d�

����� � 2� exp fP (r) � C3rg:

This concludes the demonstration that this part of the integral (5.4) is negligible.
Now supose j�j � �. We use Taylor's theorem with remainder to write

P (rei�)� i(n + h)� = P (r) � 1

2
B�2 +

h
�hi� + : : :+O(rd�6)

i
:

13
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For typographical simplicity we omit explicit statement of the terms involving third,

fourth, and �fth powers of �, although of course these are needed for the exact deter-

mination of the rational functions R0; R1; R2 in (5.1). We then integrate as follows

Z +�

��
expfP (rei�) � i(n + h)�g d�

= eP (r)
Z +�

��
e�B�

2
=2
�
1 + [�hi� + : : :] +

1

2
[�hi� + : : :]2 + : : :

�
d�;

with a careful analysis of the remainder. Terms up to the fourth power in h are

needed, but only up to the second power of the others. To carry out the term-by-term
integration, we make the following standard estimate.

Since � ! 0 and
p
B� !1 we have for su�ciently large n

Z
���

�2me�B�
2
=2d� = B�m�1=2

Z
 �

p
B�

 2me� 
2
=2d 

� B�m�1=2
Z
 �

p
B�

( 2m+1 � 2m 2m�1)e� 
2
=2d 

= �B�m�1=2 2me� 2=2
���1p
B�

= �B�1=2�2me�B�2=2 = O(e�C4r):

Hence we have

Z
j�j��

�2me�B�
2
=2d� = B�m�1=2

Z +1

�1
�2me��

2
=2d� +O(e�C4r);

=

r
2�

B

�
(2m� 1) � � � (3)(1)

Bm
+O(e�C5r)

�
;

and this accounts for the various terms appearing in (5.1).

14
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