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Log-concavity and cycle index polynomaials

Abstract

Let A, denote the n-th cycle index polynomial, in the vari-
ables X, for the symmetric group on n letters. We show that if
the variables X; are assigned nonnegative real values which are log-
concave, then the resulting quantities A,, satisfy the two inequalities
Ap 1A < A2 < ("TH>An_1An+1. This implies that the coeffi-
cients of the formal power series exp(¢g(u)) are log-concave whenever
those of g(u) satisfy a condition slightly weaker than log-concavity.
The latter includes many familiar combinatorial sequences, only
some of which were previously known to be log-concave. To prove
the first inequality we show that in fact the difference Ai —An1A4nt
can be written as a polynomial with positive coefficients in the ex-
pressions X; and X; X3 — X;_1 X411, 5 < k. The second inequality
is proven combinatorially, by working with the notion of a marked
permutation, which we introduce in this paper. The latter is a
permutation each of whose cycles is assigned a subset of available
markers {M; ;}. Each marker has a weight, wt(M, ;) = z;, and we
relate the second inequality to properties of the weight enumerator
polynomaials. Finally, using asymptotic analysis, we show that the
same inequalities hold for n sufficiently large when the X; are fixed
with only finitely many nonzero values, with no additional assump-
tion on the X;.
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Section 1. Introduction

Recall that a sequence of nonnegative real numbers b,,, n > 0, is log-convez provided
b2 < by_1bypyq for all n > 1 and that it is log-concave provided b2 > b,_1b,11 for
all n > 1. Throughout this paper we strengthen the definition of log-concavity by also
requiring that, if b, = 0 for some integer n, then by = 0 for all £ > n. A nonneg-
ative sequence b, satisfies this strengthened condition of log-concavity if and only if
bjbr > bj_1br4q for all j < k; such sequences are also known as one sided Pdlya fre-
quency sequences of order 2[5, p.393]. This paper is devoted to the following theorem
and related results. For a general introduction to the use of generating functions in
combinatorics, as well as to the notions of convexity and concavity, we refer the reader

to [10].

Theorem 1. Let 1, X7, X5, ... be a log-concave sequence of nonnegative real
numbers and define the sequences A, and P, by

io: A u" = io: P:;?n = exp (i leuj>‘ (1.1)
n=0 )

n=0 7=1 J

Then the A,, are log-concave and the P, are log-convex. In other words,

Ap_ 1A < A2 < <nT+1>An—1An—|—1 (1.2)
and
Py_1Ppyy > P2 > <nL_|_1>Pn—1Pn+1- (1.3)

One easily shows that (1.2) and (1.3) are equivalent. Since P, = n! when X; =1 for
all j while P, = 1 for all n if X; = ¢;1, the Kronecker delta, (1.3) is best possible.
With X; =1or X; =1/(j — 1)! for j < k and X; = 0 otherwise, one easily obtains
the following corollaries.

Corollary 1.1.  Let 7w, 1 be the number of permutations of an n-element set
such that every cycle has less than k elements. Then

2
Tn—1,k Tnt1,k 2= Ty = <nL_|_1>7Tn—1,k 41, k-

Corollary 1.2, Let B,,  be the number of partitions of an n-element set such
that every block has less than k elements. Then

Bk Bnyik > Bi,k > <nL_|_1>Bn—1,k Brii k-

When k& = oo, the first corollary is trivial and the second was stated in [3], which is
devoted to inequalities about Bell numbers.
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Each A, is a polynomial in the variables X;, 1 < j < n, having a well known
combinatorial significance: Let ¥, denote the symmetric group and let N;(o) be the
number of j-cycles in the permutation . Then

Apn(Xy, .. X)) = P"(Xl"""X") :% > wi(o), (1.4)

.
oEX,

where wt(o) = XlNl(U) XN The A, are the cycle index polynomials generally
associated with Poélya [7] although in fact appearing in earlier work of Redfield [8§].
Theorem 1 will be seen to be a consequence of more general results concerning the
form of the cycle index polynomials:

Theorem 2. Let Xy =1, let Xy, Xs,... be indeterminates, let

V={X1,Xo... ) U{X; Xt — Xjo1Xp41:0< j < k}

and let
= Pu" > Xjuj
Z nl exp(Z J )
n=0 =1
Then
(n+ 1)PnPy, — mPy_1Pry1 € N[Y] for 1 <m < n; (1.5)

that is, (n + 1)Py, P, — mPy,_1P,11 can be expressed as a polynomial in
the ) with nonnegative integer coefficients. Let v € N and let zq,...,z, be
indeterminates. After the substitutions

X = [+ wominted, (1.6)
=1
we have
Py 1Poy1 — PP, € Njzy,...,2,] for1 <m < n. (1.7)

We illustrate (1.5) with the example m = n = 3:
P, =X, + X7
Py =2X; +3X, X, + X7
Py =6X, +8X; X3 +3X7 +6X, X7 + X}
4P? 3PP, = (X2 - Xu)* 46X (X1 Xs — X3)(X2 — Xy)

+8(XZ — XiX3) (X7 — Xo) +4(X1 Xy — X3)? +6X5(X1 X3 — Xy)
+6XT(X 1 Xy — Xy) + 12X1(Xo X3 — X1 Xy) +12(X5 — X0 Xy).
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The relationships among these polynomials and log-concavity is given in the next
section where we deduce Theorem 1 from Theorem 2. Result (1.5) is proved in Sec-
tion 3. In Section 4, we give a combinatorial interpretation of the z;’s and use it to
prove (1.7). The fact that log-concavity of the X;’s produces both log-concavity and
log-convexity seems rather curious. This can be explained somewhat by studying the
asymptotic behavior of the A,’s and P,’s when the log-concavity of the X;’s is not
required. This is illustrated by the following theorem, which we prove in Section 5.

Theorem 3. Let P(u) = 2?21 cju’ be a polynomial with nonnegative
coefficients, ¢q # 0, and assume that ged{j : ¢; # 0} = 1. Then there exists
an integer ng such that for the sequence P, defined by the generating function

equation
= Pu"
Z = exp <P(u)>
n=0
we have
Pn_1Pn+1 ZPg Z <nL_|_1>Pn—1Pn—|—1 for a]]nZno. (19)

(The ged hypothesis in Theorem 3 is necessary: without it the sequence P, contains
infinitely many nonzero elements whose two immediate neighbors are zero.)

The literature on log-concavity is vast, and we mention only a few selections; the
bibliographies of these will lead the interested reader to many other works. A standard
reference is [5], especially Chapter 8. Combinatorial inequalities in particular are the
subject of [1] and [9]. In [2] it is shown that if the coefficients of the power series ¢(u)
are log-concave then s(n, k) = [u™]g(u)* is log-concave in k for fixed n; as a corollary
the coefficients of the polynomial P,(xz) = [u™/n!] exp(xg(u)) are strictly log-concave.
In [6] consideration is given to the question of when the coeflicients of a sufficiently
high power of a polynomial are log-concave.

Section 2. Theorem 2 Implies Theorem 1

The following lemma provides the connection between Theorems 1 and 2.

Lemma 2.1.  The real sequence X;, with Xq = 1, is strictly positive and
log-concave if and only if there exisit x; > 0 such that

7—1
Xj = Xi? H(l + xi)_H—i.

=1

S
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Proof of Lemma 2.1. From the inequality X12 > 1X5 we have for some z; > 0 that
Xy = X(1 +21)~ 1. Similarly, from X2 > X; X3 we have for some x5 > 0 that

X3 = (1 + $2)_1X22/X1 = (1 + 1’2)_1(1 + $1)_2X{).
Continuing in this way, by induction, we obtain Lemma 2.1. 1

With this preparation, we now show that Theorem 2 implies Theorem 1.

Proof of Theorem 1 from Theorem 2. As pointed out after the statement of Theorem
1, (1.2) is equivalent to (1.3). Thus we may concentrate on proving (1.3). Fix an
integer n > 1 and consider the first inequality in (1.3). Let X; be a real, strictly
positive, log-concave sequence and let x; be the corresponding nonnegative sequence
given by the above Lemma 2.1. (We will remove the restriction of strict positivity in
a moment.) We may restate the conclusion of the Lemma thus:

X =X{ JJ@ 4z tminG) for 1< <n+1, (2.1)

=1

Let Pm denote the real number that results when the substitutions (1.6) with v = n
are made in the polynomial P,,, and the z; are given the nonnegative values of the
Lemma. Because for each permutation o € ¥,,, we have

Y iNj(o)=m,

i>1

we see from (1.4) and (2.1) that for m <n +1

P = <X1 / ilf[l(l +xi)>m % Pp.

Thus (1.7), with m = n, implies the first inequality of (1.3).

Suppose now that X; vanishes for j > 7. The preceding argument applies to the
positive sequence Xy, ..., X;, X;e, X;€?,..., and we obtain the desired inequality by
continuity, letting ¢ — 0.

We turn now to the second inequality in (1.3). As pointed out in the introduction
(it is not hard to prove) our definition of log-concavity implies that X; Xy — X ;1 X4
is nonnegative for j < k. Hence, the second inequality of (1.3) is an immediate
consequence of (1.5) with m = n, and the proof is complete. I
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Section 3. Proof of (1.5)

Let Xy,... be indeterminates and let Y C Z[Xy,...]. For P,Q € Z[X4,...], we define
P > @ to mean P — @ € N[))]; that is, P — @ is a polynomial in the polynomials
in ) with nonnegative coefficients. Throughout this section, an inequality involving
polynomials will have this interpretation with ) as in Theorem 2. This notion of
inequality is reflexive, antisymmetric, transitive, and has two other algebraic properties
familiar from the numerical case:

(a) (P>Q) = (P+R>Q+R).
(b) (P> Q)and (ReND)) = (PR>QR).

The idea can be extended to rings, but we need only this case.

Proof of (1.5). The proof is by induction on m. When m = 1 we must show

For 0 € ¥,,41, let ¢’ be o with element n 4+ 1 deleted from the cycle containing it. If
n 4+ 1 belongs to a j-cycle of o, then

X;o1wt(o) = X wt(a').
Since X1 X1 > X, we conclude
X; wt(a') > wt(o).
Summing the latter over all o € ¥,,41 yields (3.1) and starts the induction.

Now suppose 1 < p and that (1.5) holds for 1 < m < p. We want to prove (1.5)
for m = p. Let (t); denote the falling factorial (¢t —1)--- (¢ — k+ 1). Observe that
forpy>m>1,Ah>0,andn>m

(n + h)hPmPn > (m)hPm—th—l—h; (32)

this is obtained by iterating (1.5) h times:

(n‘|‘h)hPmPn > ( ‘I’h) 1um—1Pn—|—1
> (n+h)p—2m(m —1)Pp_2Ppio
> .. > (m)pPrm—phPoyn-

Let n > u. With o' again denoting o with its largest element deleted,

(n+1)P,P, — pPy_1Pry1 = Z Z <Wt o1)wt(og) — Wt(Ul)Wt(02)>
o1€8, 02€8 041

7
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Partition the sum according to the size j of the cycle of o; containing p and the size
k of the cycle of oy containing n + 1. For example, the sum of wt(o1) over all oy
for which p belongs to a j-cycle is (g — 1);—1X;P,—; because (¢ — 1);—1 counts the
number of ways to construct a j-cycle containing p, X; is the weight of this cycle and
P, _; is the sum of the weights over all ways to complete the permutation. Using this
approach we find

(n+1)Py Py — pPy—1Pnty

= <X1Xk—1 - Xj—le>(/~L — D)j—1(n)k—1 Py Poy1—s
jok>1

Since the summand in this identity vanishes when j = k, the sum may be effected by
restricting to 1 < 5 < k while replacing the summand by itself plus the summand with
J and k interchanged. Since interchanging j and k& simply negates X; X34 — X;_1 X},
we find

(n+ )PPy — pPu—1Ppy

1<j<k
— (5= Dt ()1 Pk Pata ;)
= > (p=1)-1(n)j <Xij_1 - Xj—le>Q (3.3)
1<j<k
where
Q=(n—J+Lk—jPujPryi-t — (1= J)k—j Pu-k Pry1-j- (3.4)

Since X; X1 — X; 1 X} € Yfor j <k, to complete the proof we need only show that
Q>0 forall1 <5 < k. (3.5)

There are two cases to consider: p—j <n+1—kandn+1—%k < p—j. In the first
case, 0 > 0 by (3.2) with the replacements

me—p—j, ne—n+1l—=~k hek—j.
In the second case, by (3.2) with the replacements
mee—n+1l—k n—p—jy and h—n+1—p
we find that
(41 =G)ntr—pPryri-rPuj =2 (n+1=F)np1pPppPri1—j. (3.6)

8
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Let S = (pt—J)p—jth—n—1. Since 0 <n+1—Fk < p—j, S is a positive integer. Noting
that n +1 — ¢ > 0 and the two simple relations

(n—|—1—j)k_] = (n—|—1—j)n+1_u x 8
and

=3k = 5 X (n+1=k)nt1-p,

we may multiply both sides of (3.6) by S to obtain € > 0. Thus the right side of (3.3)

is in N[, and the induction is complete. 1

Section 4. Interpretation and Proof of (1.7)

We begin with a combinatorial interpretation of the z;’s that appear in (1.6).

Fix an integer v > 0. The (”;1> objects in {M; ; : 1 < < j < v} will be called
markers. A marked permutation 6 on [n] = {1,2,...,n} is a permutation ¢ € ¥, each
of whose cycles is assigned a subset, possibly empty, of markers subject to the one
condition that marker M; ; can be assigned only to cycles of size v or greater. The set
of marked permutations is denoted by MX,,.

Let {z; : 1 < j < v} be a fixed set of v variables. The weight of a marker is
Wt(M; ;) = z;, and the weight of a set S of markers is the product of the weights of
the individual elements of S. For example

Wt ({My 1, My, Ms3}) = w23,

The weight of the empty set is the empty product and is taken to be 1. Wt(&), the
weight of the marked permutation &, is the product of the weights of the individual
cycles in &, and Wt(o) is the sum of the weights of all marked permutations having o for
their underlying unmarked permutation. We define the weight enumerator polynomzual
P, , in the variables z; by

Ppo(rr,..a0) = Y Wi(5) = Y Wi(o),

oceEMX, ocEX,

In the future we will always write P, ,, without mention of the arguments zq,..., z,
since they are implicit in the second subscript of the notation.

To illustrate we take n = 3 and v = 2. The possible weights of a 1-cycle are
1,21, 22, and x122. The sum of the latter is (1 + 21 )(1 4+ 22). The sum of the possible
weights for any cycle of size greater than 1 is (1 + a1)(1 + 22)?. Within 33 there are

e 2 permutations consisting of a 3-cycle,

e 1 permutation consisting of three 1-cycles and

9
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e 3 permutations consisting of a 2-cycle and a 1-cycle.

Hence,
Pyo=2((Lt )1+ 22?) + (14 2)(1 4 22)

—|—3<(1—|—:1;1 )1+ 29) 2><1—|—:1;1 1—|—:1;2)>

=64 112y + 1629 + 627 + 3lay e + 1425 + 2} + 1827wy + 292 25 + 425

+ 3:1;?:1;2 + 18:1;%:1;3 + 9:1;1:1;3 + 3:1;?:1;3 + 622 :1;2 + :1;3:1;3

We now generalize this example to prove that P, , equals P, with the substitutions
(1.6). To see this, first observe that Wt(o), defined as the sum of Wt(&) over all marked

permutations & with o as their underlying permutation, is the following product

0) = ﬁ WiNi(U)v
=1

where W; is the sum of all possible weights legally assignable to an ¢-cycle in a marked
permutation. We may assign to an i-cycle any marker M}, ; such that A < ¢ and
h < j < v. Hence, for a given j, the number of h such that marker M} ; can be
assigned to an i-cycle is min(z,7). Since marker M}, ; has weight z;, an i-cycle has
min(z, j ) independent chances to include a factor z; in its assigned weight; whence,

W, = H(l + xj)min(i,j)‘
j=1

Since P, is the sum over o of the product [ vai, in view of the last two equations for
Wt(o) and W; respectively, we see that as claimed P, , equals P, after the substitution
(1.6). Furthermore, we may combinatorially interpret «; in P, , as keeping up with
the number of markers M; ; which have been used in a marked permutation. This
dual understanding of P, , is the key to the proof of (1.7), but before that proof we
require one lemma.

Lemma 4.1. After the substitutions (1.6) we have, for j < k,
X]‘Xk — Xj_le_|_1 € N[l‘l, ... ,l‘v].

Proof of Lemma 4.1. With the usual convention that, when the starting index of

a product is greater than the ending index, as in H?:3, the product is empty and
equals 1, we have for 7 < k,

XX, — Xj 1 Xp

- (ﬁu + xi)min@f—l)) (ﬁ(l + xi)mi““”‘?)) (ﬁ(l +ai) — H (1+ xi)>

i=1 i=1 i=j i=k+1

and

10
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(Tl T oe0) = (TTasn) (1 00 - 1), »

i=j i=k+1 i=k+1 i=J
We are now ready to proceed with the main proof of this section.

Proof of (1.7). The case m = 1 requires a separate argument. Since P, can be
considered the weight enumerator for all permutations of the singleton set {n + 1}, it
follows that P,41,0 — P10 Pp v 1s the weight enumerator for all permutations in M3, 14
for which {n 4 1} is not a 1-cycle. To complete the proof of (1.7) for m = 1, note that
Py, =1.

Let 6 € MY, be a marked permutation. We say that & is mazimally marked if
the cycle containing n carries one or more of the marks M; ;, M; j41,...,M; ., where
J 1s the length of the cycle. Let M*X, C MX, be the set of marked permutations
¢ which are not maximally marked. If & € M*Y,,, then removal of n from the cycle
containing it produces a marked permutation in M3¥,,_; and all elements of M3,
are obtained exactly n times by this procedure. Hence

Z Wt(6) = nPn_1. (4.1)
oceM*X
and so
( Z Wt (& ) X Ppy=Pn_1, % ( . Wi(s) - (n+1—m)Pn,v>. (4.2)
FEM* Y FEM* S, 11

We next find a different formula for the sum on the left of (4.1). Each ¢ € MY, in
which element n does reside in a maximally marked cycle is created once and only
once by the following procedure: (a) choose a length j for the cycle containing n,
(b) complete that cycle, (¢) choose a maximal marking for that cycle and (d) choose a
marked permutation on the remaining n—j elements. A maximal marking for a j-cycle
is one that includes at least one mark from the set {M; ;, M; j41,...,M;}. Define
the polynomial (); , to be the sum of all possible maximal markings for a j-cycle. It is
not hard to give an explicit formula for ¢); ., but we require only the obvious facts that
it has positive coefficients and that );, is 0 when j > v. By the above construction
of marked permutations in which n resides in a maximally marked cycle, we have

v—1
Y Wt(8) = Puyp— ) (n—=1)jQjt1,0Pai—ju- (4.3)
ocEM* X 7=0

By using (4.3) to replace the sums in (4.2) and rearranging, we have proven the
following for all integers n > 1, m > 1 and v > 0:

Pm—l,an—l—l,v - Pm,an,v = (n +1-— m)Pm—l,an,v + Z Qj—l—l,le (44)
where

11
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O =(n)jPm1vPnjo—(m—=1)jPn1—joPno.
We can use (3.4), (3.5) with n, i, j, k replaced by n,m, 1, j + 1 respectively to conclude
(n)jPm—1Ppn_j—(m —1);Pp_1-;P, € N]Y| for 1 <m <n.
Since ' is obtained from the latter by the substitutions (1.6), and since Lemma 4.1

shows that X; X1 —X;_1 Xy € N[zq,...,2,] after these same substitutions, it follows
that Q' € N[xq1,...,2,]. From (4.4) we obtain the desired (1.7). 1

Section 5. Proof of Theorem 3

If d =1 we have P, = ¢} and we may take ng = 1. Henceforth we assume d > 1. We
shall prove, uniformly for h = O(1) as n — oo,

Poin — (n+h) exp{P(r)} (1 N Ry + hRy + h’R,

" (2aB) B +0(r_2d)> &

using the familiar circle method as presented by Hayman [4] and described in [10,
p. 152]. The positive quantity r in (5.1) is determined by the equation

rP'(r) =n, (5.2)

B is given by
B=rP'(r)+r*P"(r), (5.3)
and the R; are rational functions of r, bounded as r — oo, with Ry = —1/2. Using

(5.2) and (5.3), we find n = dcdrd(l + O(r_l)) and B = dzcdrd(l + O(r_l)). It is now

easy to compute

9 (n+ 1)!n! exp{2P(r)} 4
Y A T (14 067)

and

(n —I;zln)! n! exp;fggr)} d; 1 <1 N O(r_1)>

from (5.1). It remains to prove (5.1).

Pn—IPn—I—l_Pg:
In what follows, the C; are positive constants which depend only on P(u).
Let S ={j : ¢; # 0} and let
P(re')y=P(r) + Aif — 1B§” + - -

12
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be the Taylor series expansion about § = 0; we find that A = A(r) = rP'(r) and that
B is given by (5.3). Choose r by (5.2) to satisfy A(r) = n, and apply Cauchy’s integral
formula with the circle |z| = r to find

Poyprth 1 [T ; ,
W = ﬁ/ exp{P(re'?) —i(n + h)8} db. (5.4)

Let § = r{1=9/2 and partition the interval of integration into |8 < § and § < |8] < 7.
We now show that the integral over ¢ < |0 < 7 in (5.4) is negligible by using

exp{P(reiG)}‘ = exp{Re P(rew)}.
First, if 6 < |f] < n/d then cosdf — 1 < —2d?¢* /x? and since r6? = r

Re P(rew) = P(r)+ Zerj(cost —1) < P(r)— Chqr. (5.5)

To handle 7/d < 6 < 7 we need the ged condition which implies the existence of
integers N;, 7 € S, such that ZjESij =1. Set M = E]‘es |N;| and for j € S define

\; by the two conditions ¢? = ¢"A and |\;| < 7. At least one )\;, j € S, satisfies
|A;| > m/M(d + 1) for otherwise

et = exp{eszj} = eXP{iE /\ij} = e,

with [A] < (max; [A;)(32; [Nj|) < 7/(d+ 1), a contradiction. Thus, for at least one
j €S we have cosj8 — 1 < —2/M2(d—|— 1)2 and so

Re P(rew) = P(r)+ Z erj(cost —1) < P(r) — Cayr. (5.6)

Together inequalities (5.5) and (5.6) imply

< 27mexp {P(r) — Csr}.

/5<|9|< exp{P(rew) —i(n+ h)e} do

This concludes the demonstration that this part of the integral (5.4) is negligible.
Now supose |0] < 6. We use Taylor’s theorem with remainder to write

P(re®) — i(n + h)f = P(r) — %BG? t [-hio 00,

13
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For typographical simplicity we omit explicit statement of the terms involving third,
fourth, and fifth powers of 6, although of course these are needed for the exact deter-
mination of the rational functions Ry, Ry, Rz in (5.1). We then integrate as follows

+6 ‘
/_5 exp{P(re'?) —i(n + h)8} df

P(r) o —B6#?/2 . 1 . 2
—¢ ¢ <1—|—[—hu9—|—...]+5[—hz9+...] —|—...>d9,
—6

with a careful analysis of the remainder. Terms up to the fourth power in h are
needed, but only up to the second power of the others. To carry out the term-by-term
integration, we make the following standard estimate.

Since § — 0 and VB§ — oo we have for sufficiently large n

/ 92me—392/2d9 — B—m—1/2 / ¢2m6_¢2/2d77/)
6>6 Y>VBé

< B—m—l/Z/ (¢2m—|—1 . 2m;/)2m_1)e_¢2/2d;/)
v>VBS§

VBé
_ _B—1/262m6—B52/2 _ 0(6—041”)‘

_ _B—m—1/2¢2me—¢2/2

Hence we have

2 oo 2
/ 92me—BO /Zde — B—m—1/2 / 92me—9 /Zde + 0(6—041”)7
10]< —oo

B () ey,

and this accounts for the various terms appearing in (5.1).

14
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