Log-Concavity and Related Properties of the Cycle Index Polynomials

Edward A. Bender¹ Department of Mathematics UCSD La Jolla, CA 92093, USA

E. Rodney Canfield² Department of Computer Science University of Georgia Athens, GA 30602, USA

Running head: Log-concavity and cycle index polynomials

 1 Research supported in part by the National Science Foundation.

 $^2\,$ Research supported by the National Security Agency.

AMS-MOS Subject Classification (1990): 05A20, 05E99, 26B25

Abstract

Let A_n denote the *n*-th cycle index polynomial, in the variables X_j , for the symmetric group on n letters. We show that if the variables X_i are assigned nonnegative real values which are logconcave, then the resulting quantities A_n satisfy the two inequalities $A_{n-1}A_{n+1} \leq A_n^2 \leq \left(\frac{n+1}{n}\right)A_{n-1}A_{n+1}$. This implies that the coefficients of the formal power series $\exp(g(u))$ are log-concave whenever those of g(u) satisfy a condition slightly weaker than log-concavity. The latter includes many familiar combinatorial sequences, only some of which were previously known to be log-concave. To prove the first inequality we show that in fact the difference $A_n^2 - A_{n-1}A_{n+1}$ can be written as a polynomial with positive coefficients in the expressions X_j and $X_j X_k - X_{j-1} X_{k+1}$, $j \leq k$. The second inequality is proven combinatorially, by working with the notion of a marked permutation, which we introduce in this paper. The latter is a permutation each of whose cycles is assigned a subset of available markers $\{M_{i,j}\}$. Each marker has a weight, wt $(M_{i,j}) = x_j$, and we relate the second inequality to properties of the *weight enumerator* polynomials. Finally, using asymptotic analysis, we show that the same inequalities hold for n sufficiently large when the X_i are fixed with only finitely many nonzero values, with no additional assumption on the X_i .

Section 1. Introduction

Recall that a sequence of nonnegative real numbers b_n , $n \ge 0$, is log-convex provided $b_n^2 \le b_{n-1}b_{n+1}$ for all $n \ge 1$ and that it is log-concave provided $b_n^2 \ge b_{n-1}b_{n+1}$ for all $n \ge 1$. Throughout this paper we strengthen the definition of log-concavity by also requiring that, if $b_n = 0$ for some integer n, then $b_k = 0$ for all k > n. A nonnegative sequence b_n satisfies this strengthened condition of log-concavity if and only if $b_j b_k \ge b_{j-1}b_{k+1}$ for all $j \le k$; such sequences are also known as one sided Pólya frequency sequences of order 2 [5, p. 393]. This paper is devoted to the following theorem and related results. For a general introduction to the use of generating functions in combinatorics, as well as to the notions of convexity and concavity, we refer the reader to [10].

Theorem 1. Let $1, X_1, X_2, \ldots$ be a log-concave sequence of nonnegative real numbers and define the sequences A_n and P_n by

$$\sum_{n=0}^{\infty} A_n u^n = \sum_{n=0}^{\infty} \frac{P_n u^n}{n!} = \exp\left(\sum_{j=1}^{\infty} \frac{X_j u^j}{j}\right).$$
 (1.1)

Then the A_n are log-concave and the P_n are log-convex. In other words,

$$A_{n-1}A_{n+1} \le A_n^2 \le \left(\frac{n+1}{n}\right)A_{n-1}A_{n+1}$$
 (1.2)

and

$$P_{n-1}P_{n+1} \ge P_n^2 \ge \left(\frac{n}{n+1}\right)P_{n-1}P_{n+1}.$$
(1.3)

One easily shows that (1.2) and (1.3) are equivalent. Since $P_n = n!$ when $X_j = 1$ for all j while $P_n = 1$ for all n if $X_j = \delta_{j,1}$, the Kronecker delta, (1.3) is best possible. With $X_j = 1$ or $X_j = 1/(j-1)!$ for j < k and $X_j = 0$ otherwise, one easily obtains the following corollaries.

Corollary 1.1. Let $\pi_{n,k}$ be the number of permutations of an *n*-element set such that every cycle has less than k elements. Then

$$\pi_{n-1,k} \pi_{n+1,k} \ge \pi_{n,k}^2 \ge \left(\frac{n}{n+1}\right) \pi_{n-1,k} \pi_{n+1,k}.$$

Corollary 1.2. Let $B_{n,k}$ be the number of partitions of an *n*-element set such that every block has less than k elements. Then

$$B_{n-1,k} B_{n+1,k} \ge B_{n,k}^2 \ge \left(\frac{n}{n+1}\right) B_{n-1,k} B_{n+1,k}.$$

When $k = \infty$, the first corollary is trivial and the second was stated in [3], which is devoted to inequalities about Bell numbers.

Each A_n is a polynomial in the variables X_j , $1 \leq j \leq n$, having a well known combinatorial significance: Let Σ_n denote the symmetric group and let $N_j(\sigma)$ be the number of *j*-cycles in the permutation σ . Then

$$A_n(X_1,\ldots,X_n) = \frac{P_n(X_1,\ldots,X_n)}{n!} = \frac{1}{n!} \sum_{\sigma \in \Sigma_n} \operatorname{wt}(\sigma), \qquad (1.4)$$

where $\operatorname{wt}(\sigma) = X_1^{N_1(\sigma)} \cdots X_n^{N_n(\sigma)}$. The A_n are the cycle index polynomials generally associated with Pólya [7] although in fact appearing in earlier work of Redfield [8]. Theorem 1 will be seen to be a consequence of more general results concerning the form of the cycle index polynomials:

Theorem 2. Let $X_0 = 1$, let X_1, X_2, \ldots be indeterminates, let

$$\mathcal{Y} = \{X_1, X_2 \dots\} \cup \{X_j X_k - X_{j-1} X_{k+1} : 0 < j \le k\}$$

and let

$$\sum_{n=0}^{\infty} \frac{P_n u^n}{n!} = \exp\left(\sum_{j=1}^{\infty} \frac{X_j u^j}{j}\right).$$

Then

$$(n+1)P_mP_n - mP_{m-1}P_{n+1} \in \mathbb{N}[\mathcal{Y}] \quad \text{for } 1 \le m \le n;$$

$$(1.5)$$

that is, $(n + 1)P_mP_n - mP_{m-1}P_{n+1}$ can be expressed as a polynomial in the \mathcal{Y} with nonnegative integer coefficients. Let $v \in \mathbb{N}$ and let x_1, \ldots, x_v be indeterminates. After the substitutions

$$X_j = \prod_{i=1}^{v} (1+x_i)^{\min(i,j)}, \qquad (1.6)$$

we have

 $P_{m-1}P_{n+1} - P_m P_n \in \mathbb{N}[x_1, \dots, x_v] \text{ for } 1 \le m \le n.$ (1.7)

We illustrate (1.5) with the example m = n = 3:

$$P_{2} = X_{2} + X_{1}^{2}$$

$$P_{3} = 2X_{3} + 3X_{1}X_{2} + X_{1}^{3}$$

$$P_{4} = 6X_{4} + 8X_{1}X_{3} + 3X_{2}^{2} + 6X_{2}X_{1}^{2} + X_{1}^{4}$$

$$4P_{3}^{2} - 3P_{2}P_{4} = (X_{1}^{2} - X_{2})^{3} + 6X_{1}(X_{1}X_{2} - X_{3})(X_{1}^{2} - X_{2})$$

$$+ 8(X_{2}^{2} - X_{1}X_{3})(X_{1}^{2} - X_{2}) + 4(X_{1}X_{2} - X_{3})^{2} + 6X_{2}(X_{1}X_{3} - X_{4})$$

$$+ 6X_{1}^{2}(X_{1}X_{3} - X_{4}) + 12X_{1}(X_{2}X_{3} - X_{1}X_{4}) + 12(X_{3}^{2} - X_{2}X_{4}).$$

The relationships among these polynomials and log-concavity is given in the next section where we deduce Theorem 1 from Theorem 2. Result (1.5) is proved in Section 3. In Section 4, we give a combinatorial interpretation of the x_i 's and use it to prove (1.7). The fact that log-concavity of the X_j 's produces both log-concavity and log-convexity seems rather curious. This can be explained somewhat by studying the asymptotic behavior of the A_n 's and P_n 's when the log-concavity of the X_j 's is not required. This is illustrated by the following theorem, which we prove in Section 5.

Theorem 3. Let $P(u) = \sum_{j=1}^{d} c_j u^j$ be a polynomial with nonnegative coefficients, $c_d \neq 0$, and assume that $gcd\{j : c_j \neq 0\} = 1$. Then there exists an integer n_0 such that for the sequence P_n defined by the generating function equation

$$\sum_{n=0}^{\infty} \frac{P_n u^n}{n!} = \exp\left(P(u)\right)$$

we have

$$P_{n-1}P_{n+1} \ge P_n^2 \ge \left(\frac{n}{n+1}\right)P_{n-1}P_{n+1} \text{ for all } n \ge n_0.$$
(1.9)

(The gcd hypothesis in Theorem 3 is necessary: without it the sequence P_n contains infinitely many nonzero elements whose two immediate neighbors are zero.)

The literature on log-concavity is vast, and we mention only a few selections; the bibliographies of these will lead the interested reader to many other works. A standard reference is [5], especially Chapter 8. Combinatorial inequalities in particular are the subject of [1] and [9]. In [2] it is shown that if the coefficients of the power series g(u) are log-concave then $s(n,k) = [u^n]g(u)^k$ is log-concave in k for fixed n; as a corollary the coefficients of the polynomial $P_n(x) = [u^n/n!] \exp(xg(u))$ are strictly log-concave. In [6] consideration is given to the question of when the coefficients of a sufficiently high power of a polynomial are log-concave.

Section 2. Theorem 2 Implies Theorem 1

The following lemma provides the connection between Theorems 1 and 2.

Lemma 2.1. The real sequence X_j , with $X_0 = 1$, is strictly positive and log-concave if and only if there exist $x_j \ge 0$ such that

$$X_j = X_1^j \prod_{i=1}^{j-1} (1+x_i)^{-j+i}.$$

Proof of Lemma 2.1. From the inequality $X_1^2 \ge 1X_2$ we have for some $x_1 \ge 0$ that $X_2 = X_1^2(1+x_1)^{-1}$. Similarly, from $X_2^2 \ge X_1X_3$ we have for some $x_2 \ge 0$ that

$$X_3 = (1+x_2)^{-1} X_2^2 / X_1 = (1+x_2)^{-1} (1+x_1)^{-2} X_1^3.$$

Continuing in this way, by induction, we obtain Lemma 2.1. \blacksquare

With this preparation, we now show that Theorem 2 implies Theorem 1.

Proof of Theorem 1 from Theorem 2. As pointed out after the statement of Theorem 1, (1.2) is equivalent to (1.3). Thus we may concentrate on proving (1.3). Fix an integer $n \geq 1$ and consider the first inequality in (1.3). Let X_j be a real, strictly positive, log-concave sequence and let x_j be the corresponding nonnegative sequence given by the above Lemma 2.1. (We will remove the restriction of strict positivity in a moment.) We may restate the conclusion of the Lemma thus:

$$X_j = X_1^j \prod_{i=1}^n (1+x_i)^{-j+\min(i,j)}, \quad \text{for} \quad 1 \le j \le n+1.$$
(2.1)

Let \hat{P}_m denote the real number that results when the substitutions (1.6) with v = n are made in the polynomial P_m , and the x_j are given the nonnegative values of the Lemma. Because for each permutation $\sigma \in \Sigma_m$ we have

$$\sum_{j\geq 1} j N_j(\sigma) = m,$$

we see from (1.4) and (2.1) that for $m \leq n+1$

$$P_m = \left(X_1 \ \Big/ \ \prod_{i=1}^n (1+x_i)\right)^m \ \times \ \hat{P}_m.$$

Thus (1.7), with m = n, implies the first inequality of (1.3).

Suppose now that X_j vanishes for j > i. The preceding argument applies to the positive sequence $X_0, \ldots, X_i, X_i \epsilon, X_i \epsilon^2, \ldots$, and we obtain the desired inequality by continuity, letting $\epsilon \to 0$.

We turn now to the second inequality in (1.3). As pointed out in the introduction (it is not hard to prove) our definition of log-concavity implies that $X_j X_k - X_{j-1} X_{k+1}$ is nonnegative for $j \leq k$. Hence, the second inequality of (1.3) is an immediate consequence of (1.5) with m = n, and the proof is complete.

Section 3. Proof of (1.5)

Let X_1, \ldots be indeterminates and let $\mathcal{Y} \subset \mathbb{Z}[X_1, \ldots]$. For $P, Q \in \mathbb{Z}[X_1, \ldots]$, we define $P \geq Q$ to mean $P - Q \in \mathbb{N}[\mathcal{Y}]$; that is, P - Q is a polynomial in the polynomials in \mathcal{Y} with nonnegative coefficients. Throughout this section, an inequality involving polynomials will have this interpretation with \mathcal{Y} as in Theorem 2. This notion of inequality is reflexive, antisymmetric, transitive, and has two other algebraic properties familiar from the numerical case:

- (a) $(P \ge Q) \Rightarrow (P + R \ge Q + R).$
- (b) $((P \ge Q) \text{ and } (R \in \mathbb{N}[\mathcal{Y}])) \Rightarrow (PR \ge QR).$

The idea can be extended to rings, but we need only this case.

Proof of (1.5). The proof is by induction on m. When m = 1 we must show

$$(n+1)X_1P_n \ge P_{n+1}.$$
 (3.1)

For $\sigma \in \Sigma_{n+1}$, let σ' be σ with element n+1 deleted from the cycle containing it. If n+1 belongs to a *j*-cycle of σ , then

$$X_{j-1} \operatorname{wt}(\sigma) = X_j \operatorname{wt}(\sigma').$$

Since $X_1 X_{j-1} \ge X_j$, we conclude

$$X_1 \operatorname{wt}(\sigma') \ge \operatorname{wt}(\sigma).$$

Summing the latter over all $\sigma \in \Sigma_{n+1}$ yields (3.1) and starts the induction.

Now suppose $1 < \mu$ and that (1.5) holds for $1 \le m < \mu$. We want to prove (1.5) for $m = \mu$. Let $(t)_k$ denote the falling factorial $t(t-1)\cdots(t-k+1)$. Observe that for $\mu > m \ge 1$, $h \ge 0$, and $n \ge m$

$$(n+h)_h P_m P_n \ge (m)_h P_{m-h} P_{n+h};$$
 (3.2)

this is obtained by iterating (1.5) h times:

$$(n+h)_h P_m P_n \ge (n+h)_{h-1} m P_{m-1} P_{n+1}$$

$$\ge (n+h)_{h-2} m(m-1) P_{m-2} P_{n+2}$$

$$\ge \dots \ge (m)_h P_{m-h} P_{n+h}.$$

Let $n \ge \mu$. With σ' again denoting σ with its largest element deleted,

$$(n+1)P_{\mu}P_{n} - \mu P_{\mu-1}P_{n+1} = \sum_{\sigma_{1} \in \Sigma_{\mu}} \sum_{\sigma_{2} \in \Sigma_{n+1}} \Big(\operatorname{wt}(\sigma_{1}) \operatorname{wt}(\sigma_{2}') - \operatorname{wt}(\sigma_{1}') \operatorname{wt}(\sigma_{2}) \Big).$$

Partition the sum according to the size j of the cycle of σ_1 containing μ and the size k of the cycle of σ_2 containing n + 1. For example, the sum of wt (σ_1) over all σ_1 for which μ belongs to a j-cycle is $(\mu - 1)_{j-1}X_jP_{\mu-j}$ because $(\mu - 1)_{j-1}$ counts the number of ways to construct a j-cycle containing μ , X_j is the weight of this cycle and $P_{\mu-j}$ is the sum of the weights over all ways to complete the permutation. Using this approach we find

$$(n+1)P_{\mu}P_{n} - \mu P_{\mu-1}P_{n+1}$$

= $\sum_{j,k\geq 1} (X_{j}X_{k-1} - X_{j-1}X_{k})(\mu-1)_{j-1}(n)_{k-1}P_{\mu-j}P_{n+1-k}.$

Since the summand in this identity vanishes when j = k, the sum may be effected by restricting to $1 \leq j < k$ while replacing the summand by itself plus the summand with j and k interchanged. Since interchanging j and k simply negates $X_j X_{k-1} - X_{j-1} X_k$, we find

$$(n+1)P_{\mu}P_{n} - \mu P_{\mu-1}P_{n+1}$$

$$= \sum_{1 \le j < k} \left(X_{j}X_{k-1} - X_{j-1}X_{k} \right) \left((\mu-1)_{j-1}(n)_{k-1}P_{\mu-j}P_{n+1-k} - (\mu-1)_{k-1}(n)_{j-1}P_{\mu-k}P_{n+1-j} \right)$$

$$= \sum_{1 \le j < k} (\mu-1)_{j-1}(n)_{j-1} \left(X_{j}X_{k-1} - X_{j-1}X_{k} \right) \Omega$$
(3.3)

where

$$\Omega = (n - j + 1)_{k-j} P_{\mu-j} P_{n+1-k} - (\mu - j)_{k-j} P_{\mu-k} P_{n+1-j}.$$
(3.4)

Since $X_j X_{k-1} - X_{j-1} X_k \in \mathcal{Y}$ for j < k, to complete the proof we need only show that

$$\Omega \ge 0 \quad \text{for all } 1 \le j < k. \tag{3.5}$$

There are two cases to consider: $\mu - j \le n + 1 - k$ and $n + 1 - k < \mu - j$. In the first case, $\Omega \ge 0$ by (3.2) with the replacements

 $m \leftarrow \mu - j, n \leftarrow n + 1 - k, h \leftarrow k - j.$

In the second case, by (3.2) with the replacements

$$m \leftarrow n+1-k, \quad n \leftarrow \mu-j \text{ and } h \leftarrow n+1-\mu$$

we find that

$$(n+1-j)_{n+1-\mu}P_{n+1-k}P_{\mu-j} \ge (n+1-k)_{n+1-\mu}P_{\mu-k}P_{n+1-j}.$$
(3.6)

Let $S = (\mu - j)_{\mu - j + k - n - 1}$. Since $0 \le n + 1 - k < \mu - j$, S is a positive integer. Noting that $n + 1 - \mu \ge 0$ and the two simple relations

$$(n+1-j)_{k-j} = (n+1-j)_{n+1-\mu} \times S$$

and

$$(\mu - j)_{k-j} = S \times (n+1-k)_{n+1-\mu}$$

we may multiply both sides of (3.6) by S to obtain $\Omega \ge 0$. Thus the right side of (3.3) is in $\mathbb{N}[\mathcal{Y}]$, and the induction is complete.

Section 4. Interpretation and Proof of (1.7)

We begin with a combinatorial interpretation of the x_j 's that appear in (1.6).

Fix an integer $v \ge 0$. The $\binom{v+1}{2}$ objects in $\{M_{i,j} : 1 \le i \le j \le v\}$ will be called markers. A marked permutation $\hat{\sigma}$ on $[n] = \{1, 2, ..., n\}$ is a permutation $\sigma \in \Sigma_n$ each of whose cycles is assigned a subset, possibly empty, of markers subject to the one condition that marker $M_{i,j}$ can be assigned only to cycles of size i or greater. The set of marked permutations is denoted by $M\Sigma_n$.

Let $\{x_j : 1 \leq j \leq v\}$ be a fixed set of v variables. The *weight* of a marker is $Wt(M_{i,j}) = x_j$, and the weight of a set S of markers is the product of the weights of the individual elements of S. For example

Wt
$$(\{M_{1,1}, M_{1,3}, M_{3,3}\}) = x_1 x_3^2.$$

The weight of the empty set is the empty product and is taken to be 1. $Wt(\hat{\sigma})$, the weight of the marked permutation $\hat{\sigma}$, is the product of the weights of the individual cycles in $\hat{\sigma}$, and $Wt(\sigma)$ is the sum of the weights of all marked permutations having σ for their underlying unmarked permutation. We define the *weight enumerator polynomial* $P_{n,v}$ in the variables x_j by

$$P_{n,v}(x_1,\ldots,x_v) = \sum_{\hat{\sigma}\in M\Sigma_n} Wt(\hat{\sigma}) = \sum_{\sigma\in\Sigma_n} Wt(\sigma).$$

In the future we will always write $P_{n,v}$, without mention of the arguments x_1, \ldots, x_v , since they are implicit in the second subscript of the notation.

To illustrate we take n = 3 and v = 2. The possible weights of a 1-cycle are $1, x_1, x_2$, and x_1x_2 . The sum of the latter is $(1 + x_1)(1 + x_2)$. The sum of the possible weights for any cycle of size greater than 1 is $(1 + x_1)(1 + x_2)^2$. Within Σ_3 there are

- 2 permutations consisting of a 3-cycle,
- 1 permutation consisting of three 1-cycles and

• 3 permutations consisting of a 2-cycle and a 1-cycle.

Hence,

$$\begin{split} P_{3,2} &= 2\left((1+x_1)(1+x_2)^2\right) + \left((1+x_1)(1+x_2)\right)^3 \\ &\quad + 3\left((1+x_1)(1+x_2)^2\right) \left((1+x_1)(1+x_2)\right) \\ &= 6+11x_1+16x_2+6x_1^2+31x_1x_2+14x_2^2+x_1^3+18x_1^2x_2+29x_1x_2^2+4x_2^3 \\ &\quad + 3x_1^3x_2+18x_1^2x_2^2+9x_1x_2^3+3x_1^3x_2^2+6x_1^2x_2^3+x_1^3x_2^3. \end{split}$$

We now generalize this example to prove that $P_{n,v}$ equals P_n with the substitutions (1.6). To see this, first observe that $Wt(\sigma)$, defined as the sum of $Wt(\hat{\sigma})$ over all marked permutations $\hat{\sigma}$ with σ as their underlying permutation, is the following product

$$\operatorname{Wt}(\sigma) = \prod_{i=1}^{n} W_{i}^{N_{i}(\sigma)},$$

where W_i is the sum of all possible weights legally assignable to an *i*-cycle in a marked permutation. We may assign to an *i*-cycle any marker $M_{h,j}$ such that $h \leq i$ and $h \leq j \leq v$. Hence, for a given *j*, the number of *h* such that marker $M_{h,j}$ can be assigned to an *i*-cycle is min(i, j). Since marker $M_{h,j}$ has weight x_j , an *i*-cycle has min(i, j) independent chances to include a factor x_j in its assigned weight; whence,

$$W_i = \prod_{j=1}^v (1+x_j)^{\min(i,j)}$$

Since P_n is the sum over σ of the product $\prod X_i^{N_i}$, in view of the last two equations for $Wt(\sigma)$ and W_i respectively, we see that as claimed $P_{n,v}$ equals P_n after the substitution (1.6). Furthermore, we may combinatorially interpret x_j in $P_{n,v}$ as keeping up with the number of markers $M_{i,j}$ which have been used in a marked permutation. This dual understanding of $P_{n,v}$ is the key to the proof of (1.7), but before that proof we require one lemma.

Lemma 4.1. After the substitutions (1.6) we have, for $j \leq k$,

$$X_j X_k - X_{j-1} X_{k+1} \in \mathbb{N}[x_1, \dots, x_v].$$

Proof of Lemma 4.1. With the usual convention that, when the starting index of a product is greater than the ending index, as in $\prod_{i=3}^{2}$, the product is empty and equals 1, we have for $j \leq k$,

$$X_{j}X_{k} - X_{j-1}X_{k+1} = \left(\prod_{i=1}^{v} (1+x_{i})^{\min(i,j-1)}\right) \left(\prod_{i=1}^{v} (1+x_{i})^{\min(i,k)}\right) \left(\prod_{i=j}^{v} (1+x_{i}) - \prod_{i=k+1}^{v} (1+x_{i})\right)$$

and

$$\left(\prod_{i=j}^{v} (1+x_i) - \prod_{i=k+1}^{v} (1+x_i)\right) = \left(\prod_{i=k+1}^{v} (1+x_i)\right) \left(\prod_{i=j}^{\min(k,v)} (1+x_i) - 1\right).$$

We are now ready to proceed with the main proof of this section.

Proof of (1.7). The case m = 1 requires a separate argument. Since $P_{1,v}$ can be considered the weight enumerator for all permutations of the singleton set $\{n + 1\}$, it follows that $P_{n+1,v} - P_{1,v}P_{n,v}$ is the weight enumerator for all permutations in $M\Sigma_{n+1}$ for which $\{n + 1\}$ is not a 1-cycle. To complete the proof of (1.7) for m = 1, note that $P_{0,v} = 1$.

Let $\hat{\sigma} \in M\Sigma_n$ be a marked permutation. We say that $\hat{\sigma}$ is maximally marked if the cycle containing *n* carries one or more of the marks $M_{j,j}, M_{j,j+1}, \ldots, M_{j,v}$, where *j* is the length of the cycle. Let $M^*\Sigma_n \subseteq M\Sigma_n$ be the set of marked permutations $\hat{\sigma}$ which are not maximally marked. If $\hat{\sigma} \in M^*\Sigma_n$, then removal of *n* from the cycle containing it produces a marked permutation in $M\Sigma_{n-1}$ and all elements of $M\Sigma_{n-1}$ are obtained exactly *n* times by this procedure. Hence

$$\sum_{\hat{\sigma} \in \mathcal{M}^* \Sigma_n} \operatorname{Wt}(\hat{\sigma}) = n P_{n-1,v}$$
(4.1)

and so

$$\left(\sum_{\hat{\sigma}\in\mathcal{M}^*\Sigma_m} \operatorname{Wt}(\hat{\sigma})\right) \times P_{n,v} = P_{m-1,v} \times \left(\sum_{\hat{\sigma}\in\mathcal{M}^*\Sigma_{n+1}} \operatorname{Wt}(\hat{\sigma}) - (n+1-m)P_{n,v}\right).$$
(4.2)

We next find a different formula for the sum on the left of (4.1). Each $\hat{\sigma} \in M\Sigma_n$ in which element *n* does reside in a maximally marked cycle is created once and only once by the following procedure: (a) choose a length *j* for the cycle containing *n*, (b) complete that cycle, (c) choose a maximal marking for that cycle and (d) choose a marked permutation on the remaining n-j elements. A maximal marking for a *j*-cycle is one that includes at least one mark from the set $\{M_{j,j}, M_{j,j+1}, \ldots, M_{j,v}\}$. Define the polynomial $Q_{j,v}$ to be the sum of all possible maximal markings for a *j*-cycle. It is not hard to give an explicit formula for $Q_{j,v}$, but we require only the obvious facts that it has positive coefficients and that $Q_{j,v}$ is 0 when j > v. By the above construction of marked permutations in which *n* resides in a maximally marked cycle, we have

$$\sum_{\hat{\sigma} \in \mathcal{M}^* \Sigma_n} Wt(\hat{\sigma}) = P_{n,v} - \sum_{j=0}^{v-1} (n-1)_j Q_{j+1,v} P_{n-1-j,v}.$$
(4.3)

By using (4.3) to replace the sums in (4.2) and rearranging, we have proven the following for all integers $n \ge 1$, m > 1 and $v \ge 0$:

$$P_{m-1,v}P_{n+1,v} - P_{m,v}P_{n,v} = (n+1-m)P_{m-1,v}P_{n,v} + \sum_{j=0}^{v-1} Q_{j+1,v}\Omega'$$
(4.4)

where

$$\Omega' = (n)_j P_{m-1,v} P_{n-j,v} - (m-1)_j P_{m-1-j,v} P_{n,v}$$

We can use (3.4), (3.5) with n, μ, j, k replaced by n, m, 1, j+1 respectively to conclude

$$(n)_j P_{m-1} P_{n-j} - (m-1)_j P_{m-1-j} P_n \in \mathbb{N}[\mathcal{Y}] \text{ for } 1 < m \le n.$$

Since Ω' is obtained from the latter by the substitutions (1.6), and since Lemma 4.1 shows that $X_j X_{k-1} - X_{j-1} X_k \in \mathbb{N}[x_1, \ldots, x_v]$ after these same substitutions, it follows that $\Omega' \in \mathbb{N}[x_1, \ldots, x_v]$. From (4.4) we obtain the desired (1.7).

Section 5. Proof of Theorem 3

If d = 1 we have $P_n = c_1^n$ and we may take $n_0 = 1$. Henceforth we assume d > 1. We shall prove, uniformly for h = O(1) as $n \to \infty$,

$$P_{n+h} = \frac{(n+h)!}{r^{n+h}} \times \frac{\exp\{P(r)\}}{(2\pi B)^{1/2}} \times \left(1 + \frac{R_0 + hR_1 + h^2R_2}{B} + O(r^{-2d})\right)$$
(5.1)

using the familiar circle method as presented by Hayman [4] and described in [10, p. 152]. The positive quantity r in (5.1) is determined by the equation

$$rP'(r) = n, (5.2)$$

B is given by

$$B = rP'(r) + r^2 P''(r), (5.3)$$

and the R_i are rational functions of r, bounded as $r \to \infty$, with $R_2 = -1/2$. Using (5.2) and (5.3), we find $n = dc_d r^d (1 + O(r^{-1}))$ and $B = d^2 c_d r^d (1 + O(r^{-1}))$. It is now easy to compute

$$(n+1)P_n^2 - nP_{n-1}P_{n+1} = \frac{(n+1)!n!}{r^{2n}} \frac{\exp\{2P(r)\}}{2\pi B^2} \left(1 + O(r^{-d})\right)$$

and

$$P_{n-1}P_{n+1} - P_n^2 = \frac{(n+1)!\,n!}{r^{2\,n}} \; \frac{\exp\{2P(r)\}}{2\pi B^2} \; \frac{d-1}{n} \; \left(1 + O(r^{-1})\right)$$

from (5.1). It remains to prove (5.1).

In what follows, the C_i are positive constants which depend only on P(u). Let $S = \{j : c_j \neq 0\}$ and let

$$P(re^{i\theta}) = P(r) + Ai\theta - \frac{1}{2}B\theta^2 + \cdots$$

be the Taylor series expansion about $\theta = 0$; we find that A = A(r) = rP'(r) and that *B* is given by (5.3). Choose *r* by (5.2) to satisfy A(r) = n, and apply Cauchy's integral formula with the circle |z| = r to find

$$\frac{P_{n+h}r^{n+h}}{(n+h)!} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \exp\{P(re^{i\theta}) - i(n+h)\theta\} \, d\theta.$$
(5.4)

Let $\delta = r^{(1-d)/2}$ and partition the interval of integration into $|\theta| < \delta$ and $\delta \le |\theta| \le \pi$. We now show that the integral over $\delta \le |\theta| \le \pi$ in (5.4) is negligible by using

$$\left| \exp \left\{ P(re^{i\theta}) \right\} \right| = \exp \left\{ \operatorname{Re} P(re^{i\theta}) \right\}$$

First, if $\delta \leq |\theta| \leq \pi/d$ then $\cos d\theta - 1 \leq -2d^2\delta^2/\pi^2$ and since $r^d\delta^2 = r$

$$\operatorname{Re} P(re^{i\theta}) = P(r) + \sum_{j \in S} c_j r^j (\cos j\theta - 1) \le P(r) - C_1 r.$$
(5.5)

To handle $\pi/d \leq \theta \leq \pi$ we need the gcd condition which implies the existence of integers N_j , $j \in \mathcal{S}$, such that $\sum_{j \in S} jN_j = 1$. Set $M = \sum_{j \in S} |N_j|$ and for $j \in S$ define λ_j by the two conditions $e^{ij\theta} = e^{i\lambda_j}$ and $|\lambda_j| \leq \pi$. At least one λ_j , $j \in \mathcal{S}$, satisfies $|\lambda_j| \geq \pi/M(d+1)$ for otherwise

$$e^{i\theta} = \exp\left\{\theta \sum j N_j\right\} = \exp\left\{i \sum \lambda_j N_j\right\} = e^{i\lambda},$$

with $|\lambda| \leq (\max_j |\lambda_j|) (\sum_j |N_j|) \leq \pi/(d+1)$, a contradiction. Thus, for at least one $j \in S$ we have $\cos j\theta - 1 \leq -2/M^2(d+1)^2$ and so

$$\operatorname{Re} P(re^{i\theta}) = P(r) + \sum_{j \in \mathcal{S}} c_j r^j (\cos j\theta - 1) \le P(r) - C_2 r.$$
(5.6)

Together inequalities (5.5) and (5.6) imply

$$\left| \int_{\delta \le |\theta| \le \pi} \exp\left\{ P(re^{i\theta}) - i(n+h)\theta \right\} d\theta \right| \le 2\pi \exp\left\{ P(r) - C_3 r \right\}.$$

This concludes the demonstration that this part of the integral (5.4) is negligible.

Now suppose $|\theta| \leq \delta$. We use Taylor's theorem with remainder to write

$$P(re^{i\theta}) - i(n+h)\theta = P(r) - \frac{1}{2}B\theta^2 + \left[-hi\theta + \ldots + O(r^d\theta^6)\right]$$

For typographical simplicity we omit explicit statement of the terms involving third, fourth, and fifth powers of θ , although of course these are needed for the exact determination of the rational functions R_0, R_1, R_2 in (5.1). We then integrate as follows

$$\int_{-\delta}^{+\delta} \exp\{P(re^{i\theta}) - i(n+h)\theta\} d\theta$$
$$= e^{P(r)} \int_{-\delta}^{+\delta} e^{-B\theta^2/2} \left(1 + [-hi\theta + \dots] + \frac{1}{2}[-hi\theta + \dots]^2 + \dots\right) d\theta,$$

with a careful analysis of the remainder. Terms up to the fourth power in h are needed, but only up to the second power of the others. To carry out the term-by-term integration, we make the following standard estimate.

Since $\delta \to 0$ and $\sqrt{B}\delta \to \infty$ we have for sufficiently large n

$$\begin{split} \int_{\theta \ge \delta} \theta^{2m} e^{-B\theta^2/2} d\theta &= B^{-m-1/2} \int_{\psi \ge \sqrt{B}\delta} \psi^{2m} e^{-\psi^2/2} d\psi \\ &\le B^{-m-1/2} \int_{\psi \ge \sqrt{B}\delta} (\psi^{2m+1} - 2m\psi^{2m-1}) e^{-\psi^2/2} d\psi \\ &= -B^{-m-1/2} \psi^{2m} e^{-\psi^2/2} \Big|_{\sqrt{B}\delta}^{\infty} \\ &= -B^{-1/2} \delta^{2m} e^{-B\delta^2/2} = O(e^{-C_4 r}). \end{split}$$

Hence we have

$$\begin{split} \int_{|\theta| \le \delta} \theta^{2m} e^{-B\theta^2/2} d\theta &= B^{-m-1/2} \int_{-\infty}^{+\infty} \theta^{2m} e^{-\theta^2/2} d\theta + O(e^{-C_4 r}), \\ &= \sqrt{\frac{2\pi}{B}} \left(\frac{(2m-1)\cdots(3)(1)}{B^m} + O(e^{-C_5 r}) \right), \end{split}$$

and this accounts for the various terms appearing in (5.1).

References

- 1. F. Brenti, Unimodality, log-concave and Pólya frequency sequences in combinatorics, Amer. Math. Soc., 1989.
- 2. E. R. Canfield, Central and local limit theorems for the coefficients of polynomials of binomial type, J. Combin. Theory Ser. A 23 (1977) 275-290.
- 3. E. R. Canfield, NOTE: Engel's inequality for Bell numbers, J. Combin. Theory Ser. A, to appear.
- W. K. Hayman, A generalisation of Stirling's formula, J. Reine Angew. Math. 196 (1956) 67-95.
- 5. S. Karlin, Total Positivity, Stanford University Press, 1968.
- 6. A. Odlyzko, B. Richmond, On the unimodality of high convolutions of discrete distributions, Ann. Probab. 13 (1985) 299-306.
- 7. G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68 (1937) 145–253.
- J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math. 49 (1927) 433-455.
- 9. R. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989) 500-535.
- 10. H. S. Wilf, generatingfunctionology, Academic Press, New York, 1990.