An upper bound for the size of the largest antichain in the poset of partitions of an integer

E. Rodney Canfield
Department of Computer Science
University of Georgia
Athens, GA 30602, USA
erc@cs.uga.edu
Konrad Engel
Fachbereich Mathematik
Universität Rostock
18051 Rostock, Germany
konrad.engel@mathematik.uni-rostock.de

January 1998

Abstract

Let $P i_{n}$ be the poset of partitions of an integer n, ordered by refinement. Let $b\left(P i_{n}\right)$ be the largest size of a level and $d\left(P i_{n}\right)$ be the largest size of an antichain of $P i_{n}$. We prove that $$
\frac{d\left(P i_{n}\right)}{b\left(P i_{n}\right)} \leq e+o(1) \text { as } n \rightarrow \infty
$$

The denominator is determined asymptotically. In addition, we show that the incidence matrices in the lower half of $P i_{n}$ have full rank, and we prove a tight upper bound for the ratio from above if $P i_{n}$ is replaced by any graded poset P.

Proposed running head:

Antichains of integer partitions

Send proofs to:
Prof. Konrad Engel
Universität Rostock
FB Mathematik
18051 Rostock
Germany

1 Introduction

Let P be a graded poset, i.e. a partially ordered set which can be partitioned into levels $N_{0}, \ldots, N_{r(P)}$ such that $N_{0}\left(\right.$ resp. $\left.N_{r(P)}\right)$ is the set of all minimal (resp. maximal) elements of P and $p \in N_{i}, p 1 q$ imply $q \in N_{i+1}$. Here $p 1 q$ means that $p<q$ and there is no element q^{\prime} with $p<q^{\prime}<q$. We say that in this case q covers p. Note that the partition of P into levels is unique if it exists. The number $r(P)$ is called the rank of P.

Let $b(P)$ be the largest size of a level of the graded poset P. An antichain in P is a set of pairwise incomparable elements of P. Let $d(P)$ be the largest size of an antichain in P. Obviously, for each graded poset P,

$$
\frac{d(P)}{b(P)} \geq 1
$$

After Sperner [9], it was proven for many interesting classes of graded posets that the inequality is in fact an equality, cf. [5].

Figure 1
But there exist graded posets where the ratio is arbitrarily large. E.g., for the class of graded posets which is illustrated in Figure 1 for $r(P)=5$ we have

$$
\frac{d(P)}{b(P)}=\frac{|P|}{8}+\frac{1}{2} .
$$

We will show that there is no graded poset with a larger ratio if $|P| \geq 12$.

Theorem 1 Let P be a graded poset. Then

$$
\frac{d(P)}{b(P)} \leq \max \left\{\frac{|P|}{8}+\frac{1}{2}, 2\right\}
$$

Some similar results have been obtained in [6].
Let Π_{n} be the (graded) poset (lattice) of partitions of $[n]:=\{1, \ldots, n\}$, ordered by refinement. From [2] and [4] we know (all logarithms are natural):

Theorem 2 Let $a:=(2-e \log 2) / 4$. Then for suitable constants c_{1}, c_{2}, and $n>1$

$$
c_{1} n^{a}(\log n)^{-a-1 / 4} \leq \frac{d\left(\Pi_{n}\right)}{b\left(\Pi_{n}\right)} \leq c_{2} n^{a}(\log n)^{-a-1 / 4}
$$

Moreover, corresponding limit theorems (cf. [5, p. 316]) imply:

Theorem 3 We have

$$
b\left(\Pi_{n}\right) \sim \frac{\sqrt{\log n}}{\sqrt{2 \pi}} \frac{\left|\Pi_{n}\right|}{\sqrt{n}} \text { as } n \rightarrow \infty
$$

In this paper we will study a quotient of the partition lattice Π_{n}, namely the poset $P i_{n}$ of unordered partitions of an integer n : A partition of the integer n into k parts, $k=1, \ldots, n$, is an integral solution to the system

$$
n=x_{1}+\cdots+x_{k}, x_{1} \geq \cdots \geq x_{k}>0
$$

We obtain all partitions in $P i_{n}$ which are covered by this partition by taking one summand $x_{l}(1 \leq l \leq k)$ and partitioning x_{l} into exactly two parts and finally ordering the two new parts together with the old unpartitioned parts in a nonincreasing way. The Hasse diagram of the poset $P i_{7}$ is illustrated in Figure 2. The main result of the paper is the following:

Theorem 4 We have

$$
1 \leq \frac{d\left(P i_{n}\right)}{b\left(P i_{n}\right)} \leq e+o(1) \text { as } n \rightarrow \infty
$$

We will give a proof of the following theorem, since it follows by the same method we use to prove Theorem 9 ; it was first shown by Auluck, Chowla, and Gupta [1].

Figure 2

Theorem 5 We have

$$
b\left(P i_{n}\right) \sim \frac{\pi}{e \sqrt{6}} \frac{\left|P i_{n}\right|}{\sqrt{n}} \text { as } n \rightarrow \infty
$$

For a graded poset P, the incidence matrix $M_{k}, k=0, \ldots, r(P)-1$, is an $\left(\left|N_{k}\right| \times\left|N_{k+1}\right|\right) 0-1$-matrix whose rows and columns are indexed by the elements of N_{k} and N_{k+1}, respectively, and whose element in row $p \in N_{k}$ and column $q \in N_{k+1}$ equals 1 iff $p 1 q$. The following result is due to Kung [8] (see also [8] for further background):

Theorem 6 Let $P=\Pi_{n}$ and $k<\frac{n-1}{2}$. Then

$$
\operatorname{rank}\left(M_{k}\right)=\left|N_{k}\right|
$$

We will prove that the theorem remains true for the poset of partitions of an integer:

Theorem 7 Let $P=P i_{n}$ and $k<\frac{n-1}{2}$. Then

$$
\operatorname{rank}\left(M_{k}\right)=\left|N_{k}\right|
$$

2 Proof of the general ratio bound

Proof of Theorem 1. We proceed by induction on $r(P)$. The case $r(P)=$ 0 is trivial, thus consider the step $<r(P) \rightarrow r(P)$. Let briefly $b:=b(P)$ and let A be a maximum antichain in P.

Case 1. There is some $k \in\{0, \ldots, r(P)\}$ such that $\left|A \cap N_{k}\right|=\left|N_{k}\right|$. Since P is graded, we have $A=N_{k}$ and thus

$$
\frac{d(P)}{b(P)}=1 \leq \max \left\{\frac{|P|}{8}+\frac{1}{2}, 2\right\}
$$

Case 2. There is some $k \in\{1, \ldots, r(P)-1\}$ such that $\left|A \cap N_{k}\right|=\left|N_{k}\right|-1$. Let

$$
A_{l}:=\bigcup_{i=0}^{k-1}\left(A \cap N_{i}\right) \text { and } A_{u}:=\bigcup_{i=k+1}^{r(P)}\left(A \cap N_{i}\right)
$$

Let p be the (unique) element of $N_{k} \backslash A$. Since P is graded, all elements of A_{l} and A_{u} are comparable with p, hence $A_{l}=\emptyset$ or $A_{u}=\emptyset$. Let w.l.o.g. $A_{u}=\emptyset$. Let

$$
P^{\prime}:=\bigcup_{i=0}^{k} N_{i}
$$

Clearly, P^{\prime} is also graded and

$$
\begin{aligned}
d(P) & =|A| \leq d\left(P^{\prime}\right) \leq d(P) \\
b\left(P^{\prime}\right) & \leq b(P)
\end{aligned}
$$

Consequently, by the induction hypothesis

$$
\frac{d(P)}{b(P)} \leq \frac{d\left(P^{\prime}\right)}{b\left(P^{\prime}\right)} \leq \max \left\{\frac{\left|P^{\prime}\right|}{8}+\frac{1}{2}, 2\right\} \leq \max \left\{\frac{|P|}{8}+\frac{1}{2}, 2\right\}
$$

Case 3. Not Case 1 and not Case 2. Then

$$
d(P)=|A| \leq|P|-2(r(P)-1)-2=|P|-2(r(P)+1)+2
$$

Obviously,

$$
|P| \leq b(r(P)+1), \text { i.e., } r(P)+1 \geq \frac{|P|}{b}
$$

Hence

$$
d(P) \leq|P|-2 \frac{|P|}{b}+2=|P| \frac{b-2}{b}+2
$$

and consequently (since $\frac{b-2}{b^{2}}$ attains its maximum at $b=4$)

$$
\frac{d(P)}{b(P)} \leq \frac{b-2}{b^{2}}|P|+\frac{2}{b} \leq \max \left\{\frac{|P|}{8}+\frac{1}{2}, 2\right\} .
$$

3 Estimation of the size of the largest antichain in $P i_{n}$

Let $P i_{2, n}$ be the set of all unordered partitions of n into parts which are all greater than 1 .

Theorem 8 We have

$$
d\left(P i_{n}\right) \leq\left|P i_{2, n}\right| .
$$

Proof. Let $\varphi: P i_{n} \backslash P i_{2, n} \rightarrow P i_{n}$ be the mapping that assigns to the partition p (having a summand 1) the partition p^{\prime} that can be obtained from p by combining a summand 1 and the largest summand of p. Clearly, for all $p \in P i_{n} \backslash P i_{2, n}$

$$
p 1 \varphi(p) .
$$

The mapping φ is injective since p can be recovered from $\varphi(p)$ (partition the largest summand s of $\varphi(p)$ into $(s-1)+1)$. Let $l(p)$ be the first natural number for which $\varphi^{l(p)}(p) \in P i_{2, n}$. In addition, let for $p \in P i_{2, n}, \varphi^{0}(p):=p$. If p and q are incomparable elements in $P i_{n}$, then

$$
\varphi^{l(p)}(p) \neq \varphi^{l(q)}(q)
$$

since otherwise (say for $l(p) \geq l(q)$) by the injectivity of φ

$$
\varphi^{l(p)-l(q)}(p)=q,
$$

i.e., $p \leq q$. Hence, for any antichain A in $P i_{n}$,

$$
|A|=\left|\left\{\varphi^{l(p)}(p): p \in A\right\}\right| \leq\left|P i_{2, n}\right| .
$$

Theorem 9 We have

$$
\left|P i_{2, n}\right| \sim \frac{\pi}{\sqrt{6}} \frac{\left|P i_{n}\right|}{\sqrt{n}} \text { as } n \rightarrow \infty .
$$

Note that Theorem 4 follows from Theorems 5, 8, and 9. Thus it remains to prove Theorems 5 and 9 . We will prove them almost simultaneously. Let $P(n, k)$ (resp. $p(n, k))$ be the number of partitions of n into k or fewer (resp. into exactly k) parts and let $p(n):=P(n, n)=\left|P i_{n}\right|$. We need the following result of Szekeres [10, 11] which was reproved in [3] with a new recursion method in a more or less elementary way:

Theorem 10 Let $\epsilon>0$ be given. Then, uniformly for $k \geq n^{1 / 6}$

$$
P(n, k)=\frac{f(u)}{n} e^{\sqrt{n} g(u)+O\left(n^{-1 / 6+\epsilon}\right)} .
$$

Here, $u=k / \sqrt{n}$, and the functions $f(u), g(u)$ are:

$$
\begin{align*}
& f(u)=\frac{v}{\sqrt{8} \pi u}\left(1-e^{-v}-\frac{1}{2} u^{2} e^{-v}\right)^{-1 / 2}, \tag{1}\\
& g(u)=\frac{2 v}{u}-u \log \left(1-e^{-v}\right) \tag{2}
\end{align*}
$$

where $v(=v(u))$ is determined implicitly by

$$
\begin{equation*}
u^{2}=v^{2} / \int_{0}^{v} \frac{t}{e^{t}-1} d t \tag{3}
\end{equation*}
$$

With standard calculus one may verify that the RHS of (3), and thus also u is an increasing (continuous) function of v, hence the inverse function exists. We know from [3] (using $\left(e^{t}-1\right)^{-1}=\sum_{m=1}^{\infty} e^{-m t}$ and $\left.\sum_{m=1}^{\infty} m^{-2}=\pi^{2} / 6\right)$ that, with $C:=\frac{\pi}{\sqrt{6}}$,

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t}{e^{t}-1} d t=C^{2} \tag{4}
\end{equation*}
$$

which implies that with u also v tends to infinity (and vice versa) and that

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{v}{u}=C . \tag{5}
\end{equation*}
$$

Lemma 1 We have for $u \rightarrow \infty$ (or $v \rightarrow \infty$)

$$
\frac{v}{u}=C-\frac{v+1}{2 C} e^{-v}+O\left(v^{2} e^{-2 v}\right) .
$$

Proof. It is easy to verify that for $t \geq 1$

$$
t e^{-t} \leq \frac{t}{e^{t}-1} \leq t e^{-t}+2 t e^{-2 t}
$$

Taking the integral from $v \geq 1$ to infinity yields

$$
(v+1) e^{-v} \leq \int_{v}^{\infty} \frac{t}{e^{t}-1} d t=C^{2}-\left(\frac{v}{u}\right)^{2} \leq(v+1) e^{-v}+\frac{e^{-2 v}(2 v+1)}{2}
$$

and hence

$$
\left(\frac{v}{u}\right)^{2}=C^{2}-(v+1) e^{-v}+O\left(v e^{-2 v}\right)
$$

Consequently,

$$
\begin{aligned}
\frac{v}{u} & =C\left(1-\frac{v+1}{C^{2}} e^{-v}+O\left(v e^{-2 v}\right)\right)^{1 / 2} \\
& =C-\frac{v+1}{2 C} e^{-v}+O\left(v^{2} e^{-2 v}\right)
\end{aligned}
$$

Lemma 2 We have for $u \rightarrow \infty$ (or $v \rightarrow \infty$)

$$
g(u)=2 C-\frac{1}{C} e^{-v}+O\left(v^{2} e^{-2 v}\right) .
$$

Proof. We have

$$
-u \log \left(1-e^{-v}\right)=u e^{-v}+O\left(u e^{-2 v}\right)
$$

and consequently by (2) and Lemma 1

$$
g(u)=2 C-\frac{v+1}{C} e^{-v}+O\left(v^{2} e^{-2 v}\right)+u e^{-v}+O\left(u e^{-2 v}\right) .
$$

Moreover, by Lemma 1

$$
v=C u+O\left(u v e^{-v}\right)
$$

Hence

$$
\frac{v}{C} e^{-v}=u e^{-v}+O\left(v^{2} e^{-2 v}\right),
$$

and finally

$$
g(u)=2 C-\frac{1}{C} e^{-v}+O\left(v^{2} e^{-2 v}\right) .
$$

Lemma 3 Let $0<\delta<\frac{1}{4 C}$ and $I=\left[\left(\frac{1}{2 C}-\delta\right) \sqrt{n} \log n,\left(\frac{1}{2 C}+\delta\right) \sqrt{n} \log n\right]$. Then, uniformly for $k \in I$ as $n \rightarrow \infty$

$$
\begin{aligned}
P(n, k) & \sim p(n) e^{-\frac{\sqrt{n}}{C} e^{-C u}}, \\
p(n, k) & \sim p(n) e^{-C u-\frac{\sqrt{n}}{C} e^{-C u}}, \\
p(n-k, k) & \sim p(n) e^{-2 C u-\frac{\sqrt{n}}{C} e^{-C u}} .
\end{aligned}
$$

Here $u:=k / \sqrt{n}$.

Proof. Obviously (subtract from each part a one)

$$
\begin{align*}
p(n, k) & =P(n-k, k) \tag{6}\\
p(n-k, k) & =P(n-2 k, k) . \tag{7}
\end{align*}
$$

All the following estimates are uniform for $k \in I$ and taken for $n \rightarrow \infty$. Let $i \in\{0,1,2\}$. Let $u_{i}:=k / \sqrt{n-i k}$. Since $u_{i} \rightarrow \infty$ we have

$$
f\left(u_{i}\right) \sim \frac{C}{\sqrt{8} \pi} .
$$

Moreover, by Theorem 10

$$
\begin{equation*}
P(n-i k, k) \sim \frac{C}{\sqrt{8} \pi n} e^{\sqrt{n-i k g}\left(u_{i}\right)} . \tag{8}
\end{equation*}
$$

We have

$$
\begin{align*}
\sqrt{n-i k} & =\sqrt{n}\left(1-\frac{i k}{n}\right)^{1 / 2}=\sqrt{n}-\frac{i u}{2}+o(1) \tag{9}\\
u_{i} & =u\left(1-\frac{i k}{n}\right)^{-1 / 2}=u+O\left(\log ^{2} n / \sqrt{n}\right) . \tag{10}
\end{align*}
$$

Let $\delta<\delta_{1}<\delta_{2}<\frac{1}{4 C}$. Then, for large n,

$$
\left(\frac{1}{2 C}-\delta_{1}\right) \log n<u_{i}<\left(\frac{1}{2 C}+\delta_{1}\right) \log n .
$$

Let $v_{i}:=v\left(u_{i}\right)$. From (5) it follows

$$
\left(\frac{1}{2}-C \delta_{2}\right) \log n<v_{i}<\left(\frac{1}{2}+C \delta_{2}\right) \log n .
$$

Consequently,

$$
e^{-v_{i}}<\frac{1}{n^{1 / 2-C \delta_{2}}} .
$$

From Lemma 1 we obtain (noting (10))

$$
\begin{aligned}
v_{i} & =C u_{i}+O\left(\frac{\log ^{2} n}{n^{1 / 2-C \delta_{2}}}\right)=C u+O\left(\frac{\log ^{2} n}{n^{1 / 2-C \delta_{2}}}\right), \\
e^{-v_{i}} & =e^{-C u}\left(1+O\left(\frac{\log ^{2} n}{n^{1 / 2-C \delta_{2}}}\right)\right)
\end{aligned}
$$

Obviously,

$$
e^{-C u}=O\left(\frac{1}{n^{1 / 2-C \delta}}\right),
$$

and thus

$$
e^{-v_{i}}=e^{-C u}+O\left(\frac{\log ^{2} n}{n^{1-C\left(\delta+\delta_{2}\right)}}\right)=e^{-C u}+o(1 / \sqrt{n}) .
$$

Lemma 2 yields

$$
g\left(u_{i}\right)=2 C-\frac{1}{C} e^{-C u}+o(1 / \sqrt{n}),
$$

and from (9) we derive

$$
\sqrt{n-i k} g\left(u_{i}\right)=\left(\sqrt{n}-\frac{i u}{2}\right)\left(2 C-\frac{1}{C} e^{-C u}\right)+o(1) .
$$

Note that by the Hardy-Ramanujan formula [7] (put in Theorem $10 u:=$ $\sqrt{n})$

$$
\begin{equation*}
p(n) \sim \frac{C}{\sqrt{8} \pi n} e^{\sqrt{n} 2 C} . \tag{11}
\end{equation*}
$$

Now we obtain from (8) - (11)

$$
P(n-i k, k) \sim p(n) e^{-i C u-\frac{\sqrt{n}}{C} e^{-C u}+o(1)},
$$

and the assertion follows from (6) and (7).
In the following let only $i \in\{1,2\}$. Note that

$$
U_{i}:=\frac{1}{2 C} \log n-\frac{1}{C} \log i C
$$

is the unique point at which the function

$$
h_{i}(u):=-i C u-\frac{\sqrt{n}}{C} e^{-C u}
$$

achieves its maximum. For $u=U_{i}+t$ we have

$$
\begin{equation*}
e^{h_{i}(u)}=\frac{(i C)^{i}}{n^{i / 2}} e^{-i C t-i e^{-C t}} . \tag{12}
\end{equation*}
$$

Let $0<\delta<\frac{1}{4 C}$ and let $\underline{U}_{i}:=U_{i}-\delta \log n, \bar{U}_{i}:=U_{i}+\delta \log n$. Further let $\underline{k}_{i}:=\left\lfloor\underline{U}_{i} \sqrt{n}\right\rfloor, \bar{k}_{i}:=\left\lfloor\bar{U}_{i} \sqrt{n}\right\rfloor, k_{i}^{*}=\left\lfloor U_{i} \sqrt{n}\right\rfloor$ and $\underline{u}_{i}:=\underline{k}_{i} / \sqrt{n}, \underline{v}_{i}:=v\left(\underline{u}_{i}\right)$.

Lemma 4 We have for $i \in\{1,2\}$

$$
P\left(n, \underline{k}_{i}\right)=o(p(n) / \sqrt{n}) .
$$

Proof. Since

$$
\underline{u}_{i}=\left(\frac{1}{2 C}-\delta\right) \log n+O(1),
$$

we have

$$
e^{-\frac{\sqrt{n}}{C} e^{-C \underline{u}_{i}}}=e^{-n^{\delta C} e^{O(1)} / C}=o(1 / \sqrt{n}) .
$$

The assertion follows from Lemma 3.

Lemma 5 We have for $i \in\{1,2\}$

$$
p\left(n-\bar{k}_{i}\right)=o(p(n) / \sqrt{n}) .
$$

Proof. Let $0<\delta_{1}<\delta$. Then, for large n,

$$
\begin{aligned}
n-\bar{k}_{1} & \leq n-\left(\frac{1}{2 C}+\delta_{1}\right) \sqrt{n} \log n, \\
\sqrt{n-\bar{k}_{1}} & \leq \sqrt{n}\left(1-\left(\frac{1}{2 C}+\delta_{1}\right) \frac{\log n}{\sqrt{n}}\right)^{1 / 2}=\sqrt{n}-\left(\frac{1}{4 C}+\frac{\delta_{1}}{2}\right) \log n+o(1) .
\end{aligned}
$$

From (11) we derive

$$
p\left(n-\bar{k}_{i}\right) \cdot p(n) e^{2 C\left(-\left(\frac{1}{4 C}+\frac{\delta_{1}}{2}\right) \log n\right)}=\frac{p(n)}{\sqrt{n}} n^{-C \delta_{1}}=o(p(n) / \sqrt{n}) .
$$

Proof of Theorem 5. By Lemma 3 and (12) (note $t=o(1)$)

$$
p\left(n, k_{1}^{*}\right) \sim \frac{C}{e \sqrt{n}} p(n) .
$$

Because $h_{1}\left(U_{1}\right)$ is the maximum of $h_{1}(u)$ and again in view of Lemma 3 we have for $k \in\left[\underline{k}_{1}+1, \bar{k}_{1}-1\right]$

$$
p(n, k) \cdot p\left(n, k_{1}^{*}\right) .
$$

For $k \leq \underline{k}_{1}$ Lemma 4 implies, for large n,

$$
p(n, k) \leq P\left(n, \underline{k}_{1}\right)=o(p(n) / \sqrt{n})<p\left(n, k_{1}^{*}\right) .
$$

For $k \geq \bar{k}_{1}$ we have by Lemma 5 , for large n,

$$
p(n, k)=P(n-k, k) \leq p\left(n-\bar{k}_{1}\right)=o(p(n) / \sqrt{n})<p\left(n, k_{1}^{*}\right) .
$$

Proof of Theorem 9. Obviously (subtract from each part of a member of $P i_{2, n}$ a one)

$$
\begin{equation*}
\left|P i_{2, n}\right|=\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} p(n-k, k) . \tag{13}
\end{equation*}
$$

We divide the sum into 3 parts:

$$
\sum=\sum_{k=1}^{k_{2}}+\sum_{k=\underline{k}_{2}+1}^{\bar{k}_{2}-1}+\sum_{k=\bar{k}_{2}}^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

By Lemma 3 and (12)

$$
\sum_{k=\underline{k}_{2}+1}^{\bar{k}_{2}-1} p(n-k, k) \sim \frac{4 C^{2}}{n} p(n) \sum_{k=\underline{k}_{2}+1}^{\bar{k}_{2}-1} e^{-2 C\left(k / \sqrt{n}-U_{2}\right)-2 e^{-C\left(k / \sqrt{n}-U_{2}\right)}} .
$$

The sum on the RHS can be considered as an integral approximation with step size $n^{-1 / 2}$. Since $\underline{k}_{2} \rightarrow-\infty$ and $\bar{k}_{2} \rightarrow \infty$ this sum multiplied by \sqrt{n} converges for $n \rightarrow \infty$ to

$$
\int_{-\infty}^{\infty} e^{-2 C t-2 e^{-C t}} d t=\left.\frac{1}{4 C}\left(2 e^{-2 e^{-C t}-C t}+e^{-2 e^{-C t}}\right)\right|_{-\infty} ^{\infty}=\frac{1}{4 C} .
$$

Consequently,

$$
\begin{equation*}
\sum_{k=\underline{k}_{2}+1}^{\bar{k}_{2}-1} p(n-k, k) \sim \frac{C}{\sqrt{n}} p(n) . \tag{14}
\end{equation*}
$$

Moreover, by Lemma 4

$$
\begin{equation*}
\sum_{k=1}^{\underline{k}_{2}} p(n-k, k) \leq P\left(n, \underline{k}_{2}\right)=o(p(n) / \sqrt{n}) . \tag{15}
\end{equation*}
$$

Finally, by Lemma 5

$$
\begin{equation*}
\sum_{k=\bar{k}_{2}}^{\left\lfloor\frac{n}{2}\right\rfloor} p(n-k, k) \leq p\left(n-\bar{k}_{2}\right)=o(p(n) / \sqrt{n}) \tag{16}
\end{equation*}
$$

With (13)-(16) the assertion is proved.

4 The proof of the incidence matrix result

We represent the elements of $P i_{n}$ as n-tuples of natural numbers $\boldsymbol{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ where $\sum_{i=1}^{n} i a_{i}=n\left(a_{i}\right.$ counts the number of summands $\left.i\right)$. We have $\boldsymbol{a} 1 \boldsymbol{b}$ iff there are $i, j \in[n]$ such that $b_{i+j}=a_{i+j}+1$ as well as $b_{i}=a_{i}-1, b_{j}=a_{j}-1$ if $i \neq j$ and $b_{i}=a_{i}-2$ if $i=j$. The k th level of $P i_{n}$ is given by

$$
N_{k}=\left\{\boldsymbol{a} \in P i_{n}: a_{1}+\cdots+a_{n}=n-k\right\}, k=0, \ldots, n-1 .
$$

Proof of Theorem 7. First note that for $\boldsymbol{a} \in N_{k}$ with $k<\frac{n-1}{2}$ necessarily $a_{1} \geq 2$. Indeed:

$$
\begin{aligned}
n=a_{1}+2 a_{2}+\cdots+n a_{n} & \geq a_{1}+2\left(a_{2}+\cdots+a_{n}\right) \geq 2\left(a_{1}+\cdots+a_{n}\right)-a_{1} \\
n & \geq 2(n-k)-a_{1} \\
a_{1} & \geq n-2 k>1 .
\end{aligned}
$$

Now order the elements of N_{k} lexicographically: Let for $\boldsymbol{a}, \boldsymbol{b} \in N_{k}, \boldsymbol{a} \prec \boldsymbol{b}$ if $a_{i}>b_{i}$ for the smallest index i for which $a_{i} \neq b_{i}$. Define $\psi: N_{k} \rightarrow N_{k+1}, k<$ $\frac{n-1}{2}$, by

$$
\psi(\boldsymbol{a}):=\left(a_{1}-2, a_{2}+1, \ldots, a_{n}\right) .
$$

In contrast to the proof of Theorem 8 we do not combine here one summand 1 and the largest summand, but two summands 1 . Obviously, $\boldsymbol{a} 1 \psi(\boldsymbol{a})$ for every \boldsymbol{a}, and ψ is injective. Moreover, if $\boldsymbol{a} \prec \boldsymbol{b}$ then $\psi(\boldsymbol{a}) \prec \psi(\boldsymbol{b})$. Let $S:=\left\{\psi(\boldsymbol{a}): \boldsymbol{a} \in N_{k}\right\}$ and consider the minor A of M_{k} which is determined by all rows of M_{k} and those columns of M_{k} which are indexed by elements of S. Here we suppose that the rows and columns are ordered w.r.t. \prec. From above we know that A is square and that the diagonal elements of A are equal to 1 . It is enough to show that A is lower triangular. Assume that there are elements $\boldsymbol{a}, \boldsymbol{b} \in N_{k}$ with $\boldsymbol{a} \prec \boldsymbol{b}$ and $\boldsymbol{a} 1 \psi(\boldsymbol{b})$. It is easy to see that $\psi(\boldsymbol{a})$ is the greatest element w.r.t. \prec which covers \boldsymbol{a} (for all other such elements the first coordinate is greater since at most one 1 is combined with another summand). Consequently,

$$
\psi(\boldsymbol{b}) \prec \psi(\boldsymbol{a}) \prec \psi(\boldsymbol{b}),
$$

a contradiction.

References

[1] F. C. Auluck, S. Chowla, and H. Gupta, On the maximum value of the number of partitions of n into k parts, J. Indian Math. Soc. (N.S.) 6 (1942) 105-112.
[2] E.R. Canfield, The size of the largest antichain in the partition lattice, J. Combin. Theory, Ser. A, to appear.
[3] E. R. Canfield, From recursions to asymptotics: on Szekeres' formula for the number of partitions, Electron. J. Combin., 4 (2) (1997) R6.
[4] E.R. Canfield and L.H. Harper, Large antichains in the partition lattice, Random Structures Algorithms 6 (1995) 89-104.
[5] K. Engel, Sperner Theory, Cambridge University Press, Cambridge, New York, 1997.
[6] K. Engel and N.N. Kuzjurin, About the ratio of the size of a maximum antichain to the size of a maximum level in finite partially ordered sets, Combinatorica 5 (1985) 301-309.
[7] G.G. Hardy and S. Ramanujan, Asymptotic formulae in combinatorial analysis, J. London Math. Society 17 (1918) 75-115.
[8] J.P.S. Kung, The Radon transforms of the combinatorial geometry. II. Partition lattices, Adv. Math. 101 (1993) 114-132.
[9] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544-548.
[10] G. Szekeres, An asymptotic formula in the theory of partitions, Quart. J. Math. Oxford, Ser. (2), 2 (1951) 85-108.
[11] G. Szekeres, Some asymptotic formulae in the theory of partitions (II), Quart. J. Math. Oxford, Ser. (2) 4 (1953) 96-111.

