Homework 5. Due Tue 10/2.

1. 5.13 (some Poisson estimates)

2. 5.17. Here is a hint leading to a four-line proof, which is modeled on the proof of Theorem 5.17. Let \mathcal{E} be an event, and by $\text{Pr}(\mathcal{E})$ we mean the probability in the model $G_{n,p}$. First line: Write $\text{Pr}(\mathcal{E})$ as a sum for $0 \leq k \leq \binom{n}{2}$, where we condition on $k =$ number of edges. Second line: extract one term from the sum; now we have a lower bound. Third line: replace $\text{Pr}(\mathcal{E} \mid N$ edges) by its equivalent, which is the probability of the event \mathcal{E} in the model $G_{n,N}$; also, replace $\text{Pr}(N$ edges) by its equivalent,

$$\binom{n}{2} p^N (1 - p)^{\binom{n}{2} - N}. \tag{*}$$

Fourth line: lower bound $(*)$ by $\binom{n}{2}^{-1}$.

3. 5.18. The graph is disconnected iff there is a set S such that all the edges between S and its complement are missing. Since both S and its complement are involved, there is no loss in saying there is an S whose size is at most $n/2$.

Step 1. Let S be a particular set of size k, $1 \leq k \leq n/2$. The number of edges between S and its complement is $k(n-k) \geq kn/2$. The probability that all these edges are missing from $G_{n,N}$ is bounded above by

$$\left(1 - \frac{k(n-k)}{\binom{n}{2}}\right)^N \leq \left(1 - \frac{k}{n-1}\right)^N.$$

By considering all possible ways to partition the vertices, argue that the probability of disconnectedness is bounded above by

$$\sum_{1 \leq k \leq n/2} \binom{n}{k} \left(1 - \frac{k}{n-1}\right)^N.$$
Why does the latter go to zero with \(n \) for \(N = cn \log n \)?

Midterm 1. Exercise 5.20. You can work in teams of size two if you like. Turn in source, plus runs \(n = 100(100)1000, 100 \) trials, for each of \(f(n), g(n) \).

Sixth week recap

Tue 9/18. Talked about threshold phenomena. For example, \(\log n/n \) is a sharp threshold for connectivity. This means, for any \(\epsilon > 0 \), the probability that \(G_{n,(1-\epsilon)\log n/n} \) is connected goes to zero as \(n \) goes to infinity; while the probability that \(G_{n,(1+\epsilon)\log n/n} \) is connected goes to one as \(n \) goes to infinity. We mentioned that threshold phenomena are of interest in SAT, too, although much less is known. It is conjectured, but not proven, that for each \(k \) there is a constant \(C_k \) such that the probability that a random \(k \)-SAT problem on \(n \) variables with \((C_k - \epsilon)n \) clauses is solvable goes to 1; while the probability that a random \(k \)-SAT problem on \(n \) variables with \((C_k + \epsilon)n \) clauses is solvable goes to 0. We made ourselves familiar with the randomized algorithms given in the text for finding a Hamilton cycle in a random graph.

Wed 9/19. We went over the proof that the randomized Hamilton cycle finder works properly. We did not prove the key lemma: that at each iteration, assuming the unused-list to be nonempty, the probability that any given vertex ends up at the head of the path is \(1/n \).

Thu 9/20. Started Chapter 6, on the Probabilistic Method. Talked about Shannon’s contribution for Boolean formulas, defined \(R(k,k) \), proved \(R(3,3) = 6 \), and mentioned that \(R(4,4) = 18 \). We proved this formula from the book: if

\[
\binom{n}{k} 2^{-\left(\frac{k}{2}\right) + 1} < 1
\]

then there exists a graph on \(n \) vertices which has neither a clique of size \(k \) nor an independent set of size \(k \). Beware of a typo in the statement of the theorem, where \(\binom{n}{k} \) is miswritten as \(\binom{n}{2} \).