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Outline of Talk
| o

What is a quantum computer
Aspects of parallelism

The role of probability

The killer ap

The complexity zoo
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Definition

-

A quantum computer is a peripheral device (black box)
attached to your (non-quantum) computer which is capable
of executing four commands:

=

1. Reset

2. Apply U on bit ¢

3. ( to-be-revealed )

4. Read output (used once only, at the end of the
computation)

o -
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Mental picture

-

Conceptually, the black-box stores an array of N = 2"
complex numbers

=

ap,dl,---,AN-1

o -
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Array

index contents

000 ao
001 al
010 ao
011 as
100 a4
101 as
110 ae
111 ar

n IS the number of bits in an address; N = 2" Is the size of
the array
Each stored value a; is a complex number

o -
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Array — Pairing O

index contents pairing 0

000 a ap, aq
001 al
010 a9 az, as
011 as
100 a4 a4, as5
101 as
110 ag ag, a7
111 ar

-
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Array — Pairing 1

index contents pairing 1

000 a ap, ag
001 a1 ai,as
010 ao
011 as
100 a4 a4, ag
101 as as, a7y
110 ae
111 ar

-
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Array — Pairing 2

index contents pairing 2

000 ao ag, a4
001 a1 ai, as
010 a9 az, ag
011 as as, ay
100 a4
101 as
110 ae
111 ar

-
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Meaning of Command 1
.

‘Reset” means to initialize the array:

ap:=1, and a; :=0, for0 <2< N



Meaning of Command 2
.

‘Apply U on bit ;" means to apply the 2 x 2 matrix U to each

of the pairs
[“0] [ . ]
a/27: 7 ajzi—i_l e o o

For example, when n = 3, “Apply U on bit 1” causes

1 Rl B ) B 4 R G Y

1 B3 1 ) B P R B |
L ae v 0| |as az v o |ar J

=



Meaning of Command 4
.

‘Read output” means for the black box to return to the
master computer an integer i in the range 0 < i < N,

(that is, an index)

chosen according to the probabilities

]a()]?, ]a1]2, L \aN_llz

o -
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The importance of being unitary

-

When the “Read output” command is executed, we would
like

=

N-1
> ail? = L
1=0

This can be assured by requiring each 2 x 2 matrix U used
In Command 2 to be a unitary matrix

o -
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What s a; ?
-

We never “see” any of the complex numbers q;

The device is“storing” them for the ultimate purpose of
making a random choice

o -
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Quantum Pretender

=

fIf we stick with only commands 1, 2, and 4 then fairly large
arrays can be simulated efficiently.

Namely, for each i in the range 0 < i < N we keep up with

p; = Prob{bit i =1}

and, when asked to make a final report by “Read output”
we return the bit string b,,_1 - - - b1bg With probability

Pn—1 X -+ X @1 X @

where
¢.:{pi Ibe:1
\— 1 —p; Ifb, =0 J
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The Pretender’s Method
-

Maintain 2n pairs of complex numbers
(UJ(), ZO)) I (wn—b Zn—l)

On “Reset”, set (w;, z;) to (1,0) for all ¢
On “Apply U on bit ",

MR

On “Read output”, generate b; independently using

pi = |z|?

o
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Why it Works
=

As long as only commands of type 1, 2, or 4 are used,
the 2™ complex numbers ag, a1,...,an_1
can be remembered by symbolic expansion of the product

=

(wn-1]0) + zn-1|1)) ® - -- @ (wo|0) + 20[1))

o -
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Command 3

-

Apply NOT on bit 7 under control of bit j
0<i,j<ni#j
NOT is the 2 x 2 unitary

This command is called “Controlled NOT”
denoted CNOT

o -
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Command 3, continued

-

Specifying two bits, ¢ and j, partitions

the 2" complex numbers into 2" /4 quadruples.
For example, n =4, {i,5} = {1, 2}

binary
0 * x0
0% *x1
1 * x0
1 % %]

quadruple
agp, a2, a4, ag
ai, as, as, ar
ag, aio, d12, ai4
a9, a11, a13, di1s

Quantum Computation:
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W

Command 3, continued

ithin each quadruple, swap the two numbers whose

control bit is 1. n = 4 target bit 2, control bit 1:

etc.

ao
a2
a4

ag _

ai |
as

as

o OO =

ay |

o OO =

_—o O O

_o O O

S = O O

S = O O

0"

ao
a2
a4

ae _

ai |
as

as

ay |

ao
ae
a4
a2 _

ai
ar
as
as |

Quantum Computation:
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o

Net effect

or n = 4, target bit 2, control bit 1:

ao
ai
a2
as
a4
as
ae
az
as
ag
a10
ail
a12
ai13

1 7714 4 1

ai
ae
ay
a4
as
a2
as

ag
a14
ais
a12
ai13

1 71J1n |

-
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Quantum Program

-

Reset, sequence of type 2 & type 3 commands, read result

=

The effect of the interior sequence is a 2" x 2™ unitary matrix

Can every unitary matrix be fabricated ?

o -
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Fourier Transform

|7The N x N ET. T

= N2 . exp(2mijk/N)

z) = NTYZ N ely)

yeq{0,1}

1805, Carl Friedrich Gauss, asteroids Pallas and Juno
1965, J. W. Cooley and John W. Tukey, reinvention &
computerization

o -
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Boolean Functions

- .

f:10,1;" —{0,1}

Yy — f(x()a"' 73371—1)
Example

1 If # ones > # zeros
MAJ(zo, ... 2 :{ 'S 2
(7o Tn-1) 0 otherwise
Fabrication

Every Boolean function can be fabricated from the
elementary operations AND, OR, NOT

o -
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Assoclated Unitary Operator
. o

et f:{0,1}" — {0,1}
be a Boolean function. The operator U acts on
the computational basis by the rule

def
Uflxn—l T L1200, y> = ’In—l L1120, Y D f(il?(), - 7$n—1)>

Uyris a 2"t x 271 matrix

Operator U, can be fabricated by a number of

guantum gates that is proportional to the number
of AND’s, OR’s, NOT’s needed for f

o -
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Parallelism

.

* Obtain state

1
/2

=

Familiar hypercube architecture (see Graphic 1)

Z ‘xn—l "'CCliU(),f(iU(),... 7$n—1)>

xe{0,1}n

In time n + BitComplexity( f).

o -
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Hypercube obsolete?

fSICORTEX at Argonne T
Our system has: 972 nodes
* - 6 cores per node
* - 4 GB/memory per node
* - 1300 MB/s interconnect bandwidth per node

* -1 us of latency
* - the system has a novel network topology, described at:

http://en.wikipedia.org/wiki/Kautz_graph

o -
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Student Comment/Question
.

‘Why doesn’t this stuff look anything like what
| did in my quantum mechanics class last semester ?”

=



Probabilistic Aspects

=

fRandomized algorithms can be compared to
exponential-sized search spaces with good “odds”

Very popular example within Computer Science is primality
testing (see Graphic 2)

Solovay, Robert M. and Strassen, Volker
"A fast Monte-Carlo test for primality"
SIAM Journal on Computing (1977).

o -
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Derandomization

-

Very active subfield of theory of computation T
Major success recently. Lovasz Local Lemma

In the case of primes:

Manindra Agrawal, Neeraj Kayal, Nitin Saxena
"PRIMES is in P"

Annals of Mathematics (2004)

o -

Quantum Computation: a computational perspective — p. 29/t



Probabillistic Algorithms
i

940s, physicists in Los Alamos

Buffon’s needle problem

Georges-Louis Leclerc, Comte de Buffon

Essai d'arithmetique morale

Vol. 4 of the Suppléement a I'Histoire Naturelle (1777)

o -
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Artificial Randomness

. .

seudo-random number generators

Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin.
- V. Neumann

A.M. Ferrenberg, D.P. Landau and K. Binder,
"Statistical and Systematic Errors

In Monte Carlo Simulations,"
J. Stat. Phys. (1991).

o -
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Probabllity in Q. Algorithms
-

fo nature, each program is a probabillistic algorithm
With a quantum computer, we have a “true” random number
generator



Killer Ap
. o

actoring
The basis of the algorithm is number theoretic

There is some non-trivial classical computing
There is an essential guantum core

o -
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The Order
fFactor: 1007 T

Need base « and even exponent r such that
1007 divides (a" — 1)

and no smaller positive exponent works.

o -
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It's Not Even
fFa(:tor: 1007 T

Try a = 16
1007 divides (167 — 1)

and no smaller positive exponent works.

o -
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OK, Even, but - - -
fFa(:tor: 1007 T

Try a = 29
1007 divides (29%%* — 1)

and no smaller positive exponent works.

GCD(1007,29M7 — 1) =1

o -
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JACKPOT!!
-

Try a =11

1007 divides 117 — 1
and no smaller positive exponent works.

GCD(1007,11°? — 1) =19

1007 = 19 x 53



The Quantum Core

-

The quantum computer enables us to find the order

=



Example: 15
U

sing 11 qubits

xr 01 2 3 4 --- 15
™17 4 13 1 --- 13

0)[1) + D7) + [2)[4) + -

2)[4) + [6)[4) + [10)[4) + ---

FFT: [0) — |512) + [1024) — |1536)

o -
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Factoring 15
- o

(For real)

Letters to Nature

Nature 414, 883-887 (20 December 2001)
Experimental realization of Shor’s guantum factoring
algorithm using nuclear magnetic resonance
Vandersypen, Steffen, Breyta, Yannoni, Sherwood, &
Chuang

o -
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Why Factoring?
-

Secure data transmission requires that the two parties
share a key (Example: AES)

=

Diffie-Hellman key exchange 1976
Rivest-Shamir-Adelman 1978

Bob and Alice choose prime p, base g
Alice to Bob: ¢* mod p, a secret

Bob to Alice: ¢ mod p, b secret
Now they share ¢* mod p, listeners bewildered

o -
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Turing Machines

-

Provides a way to define complexity
(see Graphic 3)

Two complexity classes: P and PSPACE

o -
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Non-deterministic Computation

- .

n the TM’s program, for a given state, symbol
pair, there are some finite number of moves

Models two important concepts
e parallelism
e it's easier to check than to find

One more complexity class: NP

o -
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Complexity Zoo
fh

ttp://qwiki.stanford.edu/index.php/Complexity Zoo
494 classes

originally established by Scott Aaronson,
2004 doctoral thesis:
Limits on Efficient Computation in the Physical World

o -
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Known Containments

- .

PCNP

. . ?
Is the inclusion proper, P = NP
one of the Clay institute’s Millennium Prize Problems

o -
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Known Containments

PCNPCPSPACE

PC BPPCQPPC PSPACE



Quantum vs NP-c

=

fNo NP-complete problem has a known polynomial-time
guantum algorithm (presently)

o -
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Complexity of Factoring

fDecember 12, 2009 T
T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé,
J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A.
Osvik, H. te Riele, A. Timofeev, P. ZImmermann plus
researchers from the CWI, the EPFL, INRIA and NTT
factored RSA-768, a 232-digit semiprime using the
equivalent of almost 2000 years of computing on a
single core 2.2 GHz AMD Opteron.

b-bit number:

exp ((1 +o(1)) (%b)é (log b) )

LGNFS, Generalized number field sieve J

Quantum Computation: a computational perspective — p. 48/~
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Summary

-

e Based on reliable quantum-mechanical principles, we can
envision a model of quantum computation

=

e The envisioned model can factor integers surprisingly fast
as measured by complexity theory and practice

e The integer factorisation problem lies at the heart of
a number of secure communication protocols

o -
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