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Outline of Talk

What is a quantum computer

Aspects of parallelism

The role of probability

The killer ap

The complexity zoo
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Definition

A quantum computer is a peripheral device (black box)
attached to your (non-quantum) computer which is capable
of executing four commands:

1. Reset
2. Apply U on bit i
3. 〈 to-be-revealed 〉
4. Read output (used once only, at the end of the
computation)
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Mental picture

Conceptually, the black-box stores an array of N = 2n

complex numbers

a0, a1, . . . , aN−1
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Array

index contents
000 a0

001 a1

010 a2

011 a3

100 a4

101 a5

110 a6

111 a7

n is the number of bits in an address; N = 2n is the size of
the array
Each stored value ai is a complex number
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Array – Pairing 0

index contents pairing 0
000 a0 a0, a1

001 a1

010 a2 a2, a3

011 a3

100 a4 a4, a5

101 a5

110 a6 a6, a7

111 a7
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Array – Pairing 1

index contents pairing 1
000 a0 a0, a2

001 a1 a1, a3

010 a2

011 a3

100 a4 a4, a6

101 a5 a5, a7

110 a6

111 a7
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Array – Pairing 2

index contents pairing 2
000 a0 a0, a4

001 a1 a1, a5

010 a2 a2, a6

011 a3 a3, a7

100 a4

101 a5

110 a6

111 a7

Quantum Computation: a computational perspective – p. 8/50



Meaning of Command 1

“Reset” means to initialize the array:

a0 := 1, and ai := 0, for 0 < i < N
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Meaning of Command 2

“Apply U on bit i” means to apply the 2× 2 matrix U to each
of the pairs

[

a0

a2i

]

,

[

a1

a2i+1

]

. . .

For example, when n = 3, “Apply U on bit 1” causes

[

a0

a2

]

←

[

α β
γ δ

] [

a0

a2

] [

a1

a3

]

←

[

α β
γ δ

] [

a1

a3

]

[

a4

a6

]

←

[

α β
γ δ

] [

a4

a6

] [

a5

a7

]

←

[

α β
γ δ

] [

a5

a7

]
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Meaning of Command 4

“Read output” means for the black box to return to the
master computer an integer i in the range 0 ≤ i < N ,

(that is, an index)

chosen according to the probabilities

|a0|
2, |a1|

2, . . . |aN−1|
2
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The importance of being unitary

When the “Read output” command is executed, we would
like

N−1
∑

i=0

|ai|
2 = 1.

This can be assured by requiring each 2× 2 matrix U used
in Command 2 to be a unitary matrix
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What is ai ?

We never “see” any of the complex numbers ai

The device is“storing” them for the ultimate purpose of
making a random choice
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Quantum Pretender

If we stick with only commands 1, 2, and 4 then fairly large
arrays can be simulated efficiently.

Namely, for each i in the range 0 ≤ i < N we keep up with

pi = Prob{bit i = 1}

and, when asked to make a final report by “Read output”
we return the bit string bn−1 · · · b1b0 with probability

φn−1 × · · · × φ1 × φ0

where

φi =

{

pi if bi = 1
1− pi if bi = 0
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The Pretender’s Method

Maintain 2n pairs of complex numbers

(w0, z0), . . . , (wn−1, zn−1)

On “Reset”, set (wi, zi) to (1, 0) for all i

On “Apply U on bit i”,
[

wi

zi

]

←

[

α β
γ δ

] [

wi

zi

]

On “Read output”, generate bi independently using

pi = |zi|
2
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Why it Works

As long as only commands of type 1, 2, or 4 are used,
the 2n complex numbers a0, a1, . . . , aN−1

can be remembered by symbolic expansion of the product

(wn−1|0〉+ zn−1|1〉)⊗ · · · ⊗ (w0|0〉+ z0|1〉)
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Why it Works

As long as only commands of type 1, 2, or 4 are used,
the 2n complex numbers a0, a1, . . . , aN−1

can be remembered by symbolic expansion of the product

(wn−1|0〉+ zn−1|1〉)⊗ · · · ⊗ (w0|0〉+ z0|1〉)

= · · · + wn−1zn−2 · · · z1w0 |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 + · · ·
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Why it Works

As long as only commands of type 1, 2, or 4 are used,
the 2n complex numbers a0, a1, . . . , aN−1

can be remembered by symbolic expansion of the product

(wn−1|0〉+ zn−1|1〉)⊗ · · · ⊗ (w0|0〉+ z0|1〉)

= · · · + wn−1zn−2 · · · z1w0 |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 + · · ·

= · · · + wn−1zn−2 · · · z1w0 |01 · · · 10〉 + · · ·
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Command 3

Apply NOT on bit i under control of bit j

0 ≤ i, j < n, i 6= j

NOT is the 2× 2 unitary
[

0 1
1 0

] [

w
z

]

=

[

z
w

]

This command is called “Controlled NOT”
denoted CNOT
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Command 3, continued

Specifying two bits, i and j, partitions
the 2n complex numbers into 2n/4 quadruples.
For example, n = 4, {i, j} = {1, 2}

binary quadruple
0 ∗ ∗0 a0, a2, a4, a6

0 ∗ ∗1 a1, a3, a5, a7

1 ∗ ∗0 a8, a10, a12, a14

1 ∗ ∗1 a9, a11, a13, a15
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Command 3, continued

Within each quadruple, swap the two numbers whose
control bit is 1. n = 4 target bit 2, control bit 1:







a0

a2

a4

a6






←







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0













a0

a2

a4

a6






=







a0

a6

a4

a2






,







a1

a3

a5

a7






←







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0













a1

a3

a5

a7






=







a1

a7

a5

a3






,

etc.
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Net effect

For n = 4, target bit 2, control bit 1:






















































a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a























































7→























































a0

a1

a6

a7

a4

a5

a2

a3

a8

a9

a14

a15

a12

a13

a10

a






















































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Quantum Program

Reset, sequence of type 2 & type 3 commands, read result

The effect of the interior sequence is a 2n× 2n unitary matrix

Can every unitary matrix be fabricated ?
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Fourier Transform

The N ×N F.T.




A0

...
AN−1



 =
1

N1/2





· · ·
... exp(2πijk/N)

...
· · ·









a0

...
aN−1





|x〉 7→ N−1/2
∑

y∈{0,1}n

e|y〉

1805, Carl Friedrich Gauss, asteroids Pallas and Juno
1965, J. W. Cooley and John W. Tukey, reinvention &
computerization
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Boolean Functions

f : {0, 1}n → {0, 1}

y = f(x0, . . . , xn−1)

Example

MAJ(x0, . . . , xn−1) =
{

1 if # ones ≥ # zeros
0 otherwise

Fabrication
Every Boolean function can be fabricated from the
elementary operations AND, OR, NOT
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Associated Unitary Operator

Let f : {0, 1}n → {0, 1}
be a Boolean function. The operator Uf acts on
the computational basis by the rule

Uf |xn−1 · · · x1x0, y〉
def
= |xn−1 · · · x1x0, y ⊕ f(x0, . . . , xn−1)〉

Uf is a 2n+1 × 2n+1 matrix

Operator Uf can be fabricated by a number of
quantum gates that is proportional to the number
of AND’s, OR’s, NOT’s needed for f
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Parallelism

* Familiar hypercube architecture (see Graphic 1)

* Obtain state

1

2n/2

∑

x∈{0,1}n

|xn−1 · · · x1x0, f(x0, . . . , xn−1)〉

in time n + BitComplexity(f).
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Hypercube obsolete?

SICORTEX at Argonne
Our system has: 972 nodes
* - 6 cores per node
* - 4 GB/memory per node
* - 1300 MB/s interconnect bandwidth per node
* - 1 us of latency
* - the system has a novel network topology, described at:
http://en.wikipedia.org/wiki/Kautz_graph

Quantum Computation: a computational perspective – p. 26/50



Student Comment/Question

“Why doesn’t this stuff look anything like what
I did in my quantum mechanics class last semester ?”
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Probabilistic Aspects

Randomized algorithms can be compared to
exponential-sized search spaces with good “odds”

Very popular example within Computer Science is primality
testing (see Graphic 2)

Solovay, Robert M. and Strassen, Volker
"A fast Monte-Carlo test for primality"
SIAM Journal on Computing (1977).
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Derandomization

Very active subfield of theory of computation

Major success recently: Lovasz Local Lemma

In the case of primes:
Manindra Agrawal, Neeraj Kayal, Nitin Saxena
"PRIMES is in P"
Annals of Mathematics (2004)
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Probabilistic Algorithms

1940s, physicists in Los Alamos

Buffon’s needle problem
Georges-Louis Leclerc, Comte de Buffon
Essai d’arithmétique morale
Vol. 4 of the Supplément ã l’Histoire Naturelle (1777)
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Artificial Randomness

Pseudo-random number generators

Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

- v. Neumann

A.M. Ferrenberg, D.P. Landau and K. Binder,
"Statistical and Systematic Errors
in Monte Carlo Simulations,"
J. Stat. Phys. (1991).
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Probability in Q. Algorithms

By nature, each program is a probabilistic algorithm
With a quantum computer, we have a “true” random number
generator
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Killer Ap

Factoring

The basis of the algorithm is number theoretic

There is some non-trivial classical computing

There is an essential quantum core
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The Order

Factor: 1007

Need base a and even exponent r such that

1007 divides (ar − 1)

and no smaller positive exponent works.
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It’s Not Even

Factor: 1007

Try a = 16

1007 divides (16117 − 1)

and no smaller positive exponent works.
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OK, Even, but · · ·

Factor: 1007

Try a = 29

1007 divides (29234 − 1)

and no smaller positive exponent works.

GCD(1007, 29117 − 1) = 1
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JACKPOT!!

Try a = 11

1007 divides 1178 − 1

and no smaller positive exponent works.

GCD(1007, 1139 − 1) = 19

1007 = 19× 53
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The Quantum Core

The quantum computer enables us to find the order
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Example: 15

Using 11 qubits

x 0 1 2 3 4 · · · 15

7x 1 7 4 13 1 · · · 13

|0〉|1〉 + |1〉|7〉 + |2〉|4〉 + · · ·

|2〉|4〉 + |6〉|4〉 + |10〉|4〉 + · · ·

FFT: |0〉 − |512〉+ |1024〉 − |1536〉
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Factoring 15

(For real)
Letters to Nature
Nature 414, 883-887 (20 December 2001)
Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance
Vandersypen, Steffen, Breyta, Yannoni, Sherwood, &
Chuang
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Why Factoring?

Secure data transmission requires that the two parties
share a key (Example: AES)

Diffie-Hellman key exchange 1976
Rivest-Shamir-Adelman 1978

Bob and Alice choose prime p, base g
Alice to Bob: ga mod p, a secret
Bob to Alice: gb mod p, b secret
Now they share gab mod p, listeners bewildered
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Turing Machines

Provides a way to define complexity

(see Graphic 3)

Two complexity classes: P and PSPACE
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Non-deterministic Computation

In the TM’s program, for a given state, symbol
pair, there are some finite number of moves

Models two important concepts
• parallelism
• it’s easier to check than to find

One more complexity class: NP
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Complexity Zoo

http://qwiki.stanford.edu/index.php/Complexity_Zoo

494 classes

originally established by Scott Aaronson,
2004 doctoral thesis:
Limits on Efficient Computation in the Physical World
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Known Containments

P ⊆ NP

Is the inclusion proper, P ?
= NP

one of the Clay institute’s Millennium Prize Problems
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Known Containments

P ⊆ NP ⊆ PSPACE

P ⊆ BPP ⊆ QPP ⊆ PSPACE
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Quantum vs NP-c

No NP-complete problem has a known polynomial-time
quantum algorithm (presently)
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Complexity of Factoring

December 12, 2009
T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé,
J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A.
Osvik, H. te Riele, A. Timofeev, P. Zimmermann plus
researchers from the CWI, the EPFL, INRIA and NTT
factored RSA-768, a 232-digit semiprime using the
equivalent of almost 2000 years of computing on a
single core 2.2 GHz AMD Opteron.

b-bit number:

exp

(

(1 + o(1))

(

64

9
b

)
1

3

(log b)
2

3

)

GNFS, Generalized number field sieve
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Summary

• Based on reliable quantum-mechanical principles, we can
envision a model of quantum computation

• The envisioned model can factor integers surprisingly fast
as measured by complexity theory and practice

• The integer factorisation problem lies at the heart of
a number of secure communication protocols
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