
Designing an XML Database Engine:
API and Performance
Sudhanshu Sipani, Kunal Verma,

Senthilanand Chandrasekaran, Xiao-Qing Zeng, Jianping
Zhu, Dongsheng Che, Kai Wong

Advisor : Dr. John A. Miller

Department of Computer Science
University of Georgia, Athens, GA

jam@cs.uga.edu

Abstract

XML (eXtensible Markup Language) is fast

becoming the common electronic data interchange
language between applications. In this paper we describe
a query processing engine called �Db4XML�.
�Db4XML� provides storage for XML documents in
native format. �Db4XML is a high performance, main
memory resident database engine. The key features of
the �Db4XML� engine is its simplified storage and
indexing scheme. This paper explores different query
evaluation techniques and discusses concurrency control
issues for XML databases. �Db4XML� supports
transactions and provides atomicity at granularity of
transactions. We describe the engine�s API, architecture,
storage, concurrency control and recovery scheme.

1. Introduction

XML is the language of the Web. Several
strategies have been proposed to store XML data viz.
files, relational database, object manager. An XML
document can be stored in a relational database by
splitting it into number of tables. This leads to
inefficiency in querying and storing XML data [11].
Simple queries may require multiple joins. In contrast, a
native XML database stores the hierarchical structure of
an XML document in native format. This leads to more
efficient querying and storing of data.

A database engine is a part of the query
processing system of a database. An engine evaluates
the optimized query plan. The �Db4XML� engine is a
general-purpose database engine that can work with
multiple languages, e.g., XQuery and other alternatives.
The key components of a database engine are storage
structure, query evaluation system, indices, concurrency
control and recovery. The database engine discussed in
this paper is part of the �Db4XML� project underway at
the University of Georgia.

A native XML database may contain
documents, which conform to a DTD (Document Type
Definition). The �Db4XML� engine uses DTD
information to evaluate queries. Indexing scheme for a
native XML database relies on the storage structures

used. The storage structure used in �Db4XML� allows us to
use simple and efficient indexing schemes for query
evaluation. Because of the nature of storage and indexing
schemes in �Db4XML�, a path index is almost always used
to evaluate queries. Little work has been done on
concurrency control for native XML databases [4,5].
�Db4XML� supports transactions and provides atomicity at
the granularity of transactions. This paper discusses different
problems encountered while using locks on data with a
DOM (Document Object Model) structure. Most of the
work on native XML databases has been done on disk-
resident databases. �Db4XML� is a memory resident
database, which allows us to use main memory optimization
techniques [3].

2. Related work

Several projects have been undertaken for storing
and managing the XML data. Lore (Light weight Object
REpository), developed at Stanford, is a DBMS for storing
and managing semi-structured data [4]. QuiXote [5] is an
XML query processing system developed by IBM. QuiXote
[5] consists of two parts, the preprocessor and the query
processor. The Preprocessor extracts schema for documents
and computes structural relationship sets from them, which
are used extensively to reduce the query execution time.
Xset [6] is a main memory database and search engine,
which uses XML as the data storage language. It is a high
performance XML database with partial ACID (Atomicity,
Consistency, Isolation, Durability) database transcation
properties.

Design of a native XML database starts with a data
model. Lore [4] uses the OEM model. The OEM (Object
Exchange Model) is designed for semi-structured data,
which can be seen as a labeled directed graph. The QNX
data model used by QuiXote [5] views an XML repository
as a set of <schema, setOfData> pairs, where every schema
has a set of documents that conform to it. Experiments have
been done on storing the XML document as set of tables in
relational database [8,9,17]. Lore [10] uses four types of
indices viz. value index, text index, link index and a path
index. The link index provides �parent pointers� since they
are not supported by its object manager. QuiXote [5] uses
three kinds of indices for each document, i.e., value index,
structure index and link index corresponding to the link
relationships.

The �Db4XML� engine is also a main memory
resident database[1][2]. Xset [6], which is a memory
resident database, provides atomicity at the granularity of
operations and has a simple recovery scheme. Dali [1]
discusses a general architecture of a main memory storage
manager. System-M is a transaction processing test-bed for
evaluating various check-pointing and recovery strategies
with different types of logging for immediate update
strategy [2].

3. Components

The figure below shows the key components of
�Db4XML� engine. The Query Evaluation system
provides an interface to the Query Parser for evaluating
an optimized query plan.

Fig 3.1 Components of �Db4XML� engine

Query evaluation is supported by two types of

index structures. The hierarchical (DOM) structure of the
XML documents allows for use of a path index. A value
index also supports query evaluation. The engine
supports multiple transactions. The engine stores XML
data as a hash table of objects keyed by a unique
identifier. The engine also stores DTD / schema
information. The engine provides concurrency control
and uses a recovery strategy to go along with a deferred
update strategy to ensure persistence of data. �Db4XML�
has a graphical user interface for performing queries.
The GUI provides tools such as adding a schema to the
engine�s meta-data catalog, adding XML documents to
the engine�s data repository and performing queries.

4. Storage and Index Structures

XML documents can be stored in the form of
relational tables, objects, attributes and B-Tree [8,9].
Results show that the object approach outperforms the
relational DTD approach for fixed point queries [8].
Presence of schema and optimizations made on the basis
of it can improve performance considerably [5,9].
�Db4XML� stores DTD / schema [section 4.2] and uses
type information generated in the storage of DTD /
schema in storing XML document [section 4.3] for
query evaluation.

4.1 Data Model

An XML document can be viewed as a directed
graph. A DOM (Document Object Model) for an XML
document without references is a tree structure, which
details the hierarchical information and parent-child
relationship between various elements of the document.
If links are added to an XML document the document
can be modeled as a graph.

A DTD (Document Type Definition) for XML
schema provides information about various types of
elements contained in an XML document. Consider the
�employees� DTD (employees.dtd) which we will use as an
example in the rest of this paper.
 <!ELEMENT employees (employee+)>
 <!ELEMENT employee (name, salary, department)>
 <!ATTLIST employee id CDATA #IMPLIED>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT salary (#PCDATA)>
 <!ATTLIST salary payperiod CDATA #IMPLIED>
 <!ELEMENT department (title+)>
 <!ELEMENT title (#PCDATA)>

Consider an �employees� XML document which conforms
to the DTD mentioned above
<!DOCTYPE employees SYSTEM "employees.dtd">
<employees>
 <employee id="001">

<name>Greg</name>
<salary payperiod="weekly">1500</salary>
<department>

 <title>Developer</title>
</department>

 </employee>
 <employee id="002">

<name>Mark</name>
<salary payperiod="weekly">2000</salary>

 <department>
 <title>Manager</title>
 </department>

 </employee>
 <employee id="003">

<name>John</name>
<salary payperiod="weekly">2000</salary>
 <department>

<title>Manager</title>
 </department>

 </employee>
</employees>

The document mentioned above can be represented as a
graph shown in Fig 5.1

4.2 Meta-Data

A DTD for XML schema in �Db4XML� system is
stored in the form of ElementTypes, which is at the lowest
level of granularity for storing meta-data for XML
documents. Each ElementType has a unique identifier
(elementTypeId). To account for hierarchical storage of data
in a DTD, each ElementType has an identifier of its parent
denoted as parentTypeId and a collection of identifiers of all
its children.

Fig 4.2.1 ElementType is at the lowest level of granularity

for �Db4XML� meta-data

The Children collection is an ordered list and hence
this scheme supports order queries. ElementType stores
attribute information in a hash map, which maps attribute
name to its order (the position of attribute in its DTD
definition for an ElementType). All ElementTypes for a DTD

are stored in a hash map, which maps each
elementTypeId (identifier) to its type information (meta-
data). ElementType also stores the tag name of the DTD
node and cardinality of its children. The cardinality of
each child (represented using ? / * / +) is stored in an
array as show in Fig 4.2.2.

The XML 1.0 specification allows element
attributes to have reference types (IDREF, IDREFS, etc.)
[12]. This information is also stored in the hash table,
which maps the attribute name to the order of the
attribute using separators. The �employees� DTD shown
previously can be represented as in the following map

Fig 4.2.2 �employees� DTD stored as a table

4.3 XML Document Storage in Native Format

The data in the �Db4XML� system are stored in
form of Elements, which is the lowest level of
granularity for the XML data. Each Element node in the
DOM tree maps to an Element object in Db4XML.
Each element is identified by a unique identifier
(elementId). To account for hierarchical storage of data
in any native XML database, each element has a
parentId and a collection of elementId�s of all its
children.

Fig 4.3.1 Element is at the lowest level of granularity for
�Db4XML� storage

Each element is associated with a type

identifier. A type identifier is a unique identifier for type
associated with that particular element, which is derived
from the DTD, to which the document conforms. For this
reason �Db4XML� does not store tag names with the
data, which leads to considerable saving in terms of
space. Each element has an ordered list of attribute
values and CDATA value. The list of attributes can also
contain inter document references as per the XML 1.0
specification. Data in �Db4XML� is a hash table, which
maps each element identifier (elementId) to an element.
The �employees� XML document can be represented as
below.

Fig 4.3.2 �employees� XML document stored in a native

format

4.4 Index structures in �Db4XML�
Relational databases are traditionally queried with

associative queries, retrieving tuples based on values of
some attributes. In object-oriented databases, the concept of
Path index is specified to relate attributes to objects. A Path
index is an index on the path expressions (e.g.
/employees/employee) of the XML document. Path index is
used in Db4XML because of the nature of XML data.
Several data structures can be used to answer path queries in
XML, e.g., Hash table, Trie, etc. �Db4XML� uses a Patricia
trie[9]. The Patricia trie helps in efficient evaluation of
queries with generalized path expression.A Patricia Trie
node can store list of the elements, according to their
particular path. Alternatively a hash table could be used to
implement a path index, but our tests have shown that it is
inefficient to evaluate queries with generalized path
expressions using just a hash index.

5. Query Evaluation

The �Db4XML� engine provides an API for
evaluating queries. The engine uses path and value indices
and can evaluate queries using different techniques.

Consider the XQuery
FOR $e IN /employees/employee
WHERE $e/salary < 2000
RETURN

<employee eid = {$e/@id}>
{<name> { $e/name } </name>}
{<salary>{$e/salary } </salary>}

</employee>

The engine can take one of the following
approaches towards evaluating the above query :
1. A recursive approach can be used to evaluate a query. In
this approach tag names of the elements can be matched
with the path expression in the query at each successive
step. This can be inefficient for larger documents.
2. Another approach could be to get a list of all the elements
having the path �/employees/employee� using the path
index(Fig 5.1). The conditions are evaluated by recursively
going down the DOM tree for the XML document, starting
from the �/employees/employee� node and finding the
�/employees/employee/salary� nodes and checking whether

the conditions are satisfied. Alternatively,
�/employees/employee/salary� elements can be located
first using the path index. Then parent pointers can be
followed to get their parent information.

Fig 5.1 Using Path index to evaluate query.

3. The approach mentioned above can still be costly if
we have an XML document with 50,000 employee
elements. In this case, a Value index can be used. The
value index can return a list of elements with their
CDATA / attribute values as given in the predicate (2000
in the example query above). We can traverse up the tree
from the �/employees/employee/salary� element, until
we find out to which �/employees/employee� element it
belongs.

Fig 5.2 Using Value index to evaluate query

6 Engine Architecture and Implementation

In this section, we discuss the engine�s API.
�Db4XML� is a memory resident database. Fig 6.1
shows the various data structures in the main memory at
run time. This includes XML data, meta-data, indices
(path and value), information about acquired locks

(LockTable) and information about active transactions
(Active Transaction Table).

Fig 6.1 Data structures at runtime.

6.1 UML Design

The main class in our system is the ElementBag,
which provides a remote API for the Query Processing
module. ElementBag has references to all other objects in
the system and depending on the remote method invocation,
the appropriate method of the appropriate object is called. It
also has a hash table, which contains all the elements in the
database. An Element is a representation of an element
node in an XML document and the meta-data for it is
defined in a corresponding ElementType.
ElementType objects are stored in a hash table called
ElementTypeBag.

Fig 6.1.2 UML diagram of all the classes.

In order to control concurrency, there is a

TransactionManager class that maintains the
identifiers of all transactions and a list of all the operations
performed by them. Along with that there are two other
classes that maintain locking information - LockTable and
LockInfo. Every time a transaction waits, the waitsfor
graph is updated in WaitsFor to check for deadlock.

There are two main classes for indexing, ValueIndex
and PathIndexTable.

6.2 Sequence of Events

Here is a description of the sequence of events
for a select operation . Since the remote interface is

Fig 6.2.1 Sequence diagram.

provided by ElementBag, the processing module,
which has a remote reference to the ElementBag
object calls the ElementBag�s
startTransaction() method to get a transaction
identifier for that transaction. All subsequent method
invocations by the transaction must have that transaction
identifier in them.

The find() method is then invoked on
PathIndexTable, which returns element identifiers
(elementIds) of all the Elements having a particular
path. Then an appropriate select() method is called
and during the execution of select shared locks are
requested from the LockTable for all elements being
read. Either a lock is granted or the transaction waits to
acquire that lock. If a transaction waits, the WaitsFor
graph is updated and a depth first search is performed to
check for deadlocks. In case of a deadlock the
transaction will be aborted. In order to improve
concurrency, read locks are requested on all elements
being read, however, the locks are only kept if the
element satisfies all the select conditions (conjunctive).
After that all the selected element identifiers
(elementIds) are returned to the query processor. The
query processor can invoke commit() to end the
transaction. The commit() method of ElementBag in
turn calls the commit() method of the
TransactionManager.

7. Transaction Management in Db4XML
7.1 Concurrency Control

In relational databases all tuples being read or
written by a transaction are locked along with index

structure. The hierarchical structure of DOM and the parent-
child relationships in the structure of the XML document
presents a different problem.
Consider the following Xquery command,

FOR $e IN /employees/employee
WHERE $e/salary < 2000 and $e/@id < 005
RETURN

<employee >
{<name> { $e/name } </name>}
</employee>

This query checks for elements having path
�/employees/employee/salary� and id of the
�employees/employee� element and returns
�/employees/employee/name� element. Suppose a transaction
T1 runs the query on the engine and obtains write locks on
all �/employees/employee/name� elements selected. At this
point, any transaction T2 can do any of the operations
mentioned below and commit before the transaction T1
commits. This can violate the ACID properties of
transactions. 1) T2 can delete the �/employees/employee�
element to which �/employees/employee /name� element
belongs (ancestor). 2) T2 can alter the id attribute of the
�/employees/employee� element to which the
�/employees/employee/name� element belongs. 3) T2 can
alter the CDATA of the �/employees/employee/salary�
element in hierarchy which is associated with the
�employees/employee/name� element.

Figure 7.1.1 Problems while locking DOM tree.

Following approaches can be used for locking elements of
XML documents:
1. Whenever a transaction reads elements in a top down
fashion, it acquires read locks for element nodes being
traversed (top down approach)
2. All elements read/written are locked and the locks are
released for those elements which do not satisfy the
predicate. Locks on all the elements which are read and
satisfy the WHERE clause are retained. As in the example
above, locks on element �employees/employee/salary� and
�employees/employee/@id� will be maintained, for all the

elements in the employee substructure which satisfy both
conditions.
3. If a transaction deletes an element node, it has to
acquire write locks on all the descendants of that
element node. This gains significance when a value
index or path index is used to answer queries.

7.2 Implementation Overview

A transaction is a sequence of operations. A
transaction gets a unique identifier from the engine and
all the further operations in the transaction invoke
methods on the engine using that unique identifier
(transactionId). A transaction has to obtain read/write
locks on indices, elements and ancestors, which are
being read or written. If all the operations are
successful, the transaction commits. We have used
rigourous-2PL as the locking scheme, as a result of
which a transaction releases all its locks only during its
commit operation. The engine uses a deferred update
scheme, as a result of which elements are not updated
until commit point. Instead an image of the updated
element, along with the type of operation is stored in an
ATT (Active Transaction Table) for every operation.
The engine also maintains a graph of waiting transaction
and uses a depth first search algorithm for deadlock
detection. During commit all the operations in the ATT
for the transaction are written to the disk resident log, all
the locks are released and all the instances of the
transaction from deadlock detection graph are removed.
When a transaction is aborted all the locks are released,
all the instances of the transaction are removed from the
deadlock detection graph and the operation history of
the transaction from the ATT is removed.

7.3 Recovery

 �Db4XML� engine uses a deferred update
strategy. Using the deferred update strategy simplifies
the recovery scheme and procedure. The �Db4XML�
engine uses a log on disk, which contains a sequence of
operations for all the committed transactions. The log is
the database. If operations are being added to the log, the
log could be infinitely growing. Hence, only the most
recent updates or inserts (on elements) are recorded in
the log .

During the recovery process the log can be read
sequentially and all the operations redone. To account
for failure during commit, the log need to be scanned
once to find the list of committed transactions. The log
then can be read serially and all the operations can be
redone only for the committed transactions. This method
is under implementation.

8 Conclusions and Future Work

In this paper, we have described the key
components of the �Db4XML� database engine and their
functionality. We have used an efficient data model for
storage of XML documents. The data model allows simpler
and fewer index structures. Our storage and indexing
structure is less complicated than that of QuiXote and Lore.
While Lore uses value indices, link indices, text indices and
path indices, we have used path indices and value indices.
Empirical studies on using different type of indices and
different query evaluation strategies are currently underway.
We also need to provide text indices. Little work has been
done on concurrency control issues for XML databases.
While the techniques used are variations of the traditional
concurrency control and recovery methods, applying them to
an XML storage model (DOM) requires added care. We
have also implemented a recovery scheme based on deferred
update strategy. In the future we plan to incorporate other
techniques for checkpointing, concurrency control and
recovery.

References
[1] P. Bohannon, R. Rastogi, D. Lieuwen, S. Seshadri, A.
Silberschatz and S. Sudarshan. The architecture of the Dali
main-memory storage manager. In Journal of Multimedia
Tools and Applications, 1997.
[2] H. Garcia-Molina, K. Salem: System M: A Transaction
Processing Testbed for Memory Resident Data. In IEEE
Transactions on Knowledge and Data Engineering, March
1990, Vol. 2, number 1161#172.
[3] H. Garcia-Mollina and K. Salem, Main memory database
system: An overview. In IEEE Transactions on Knowledge
and Data Engineering, Volume 4, Number 6, 1992.
[4] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J.
Widom. Lore: A Database Management System for
Semistructured Data. In SIGMOD Record, September 1997.
[5] M . Mani and N. Sundaresan , Query Processing using
QuiXote. IBM research report.
[6] Ben. Y. Zhao, Anthony.D.Joseph :Xset: A lightweight
database for Internet Applications. Master�s thesis.
Computer Science Division, UCLA, Berkeley.
[7] R.Malhotra, XML database engine. Master�s thesis,
University of Georgia.
http://chief.cs.uga.edu/~jam/home/theses/rakesh_thesis/rakeshthesis.ps
[8] Feng Tian, David J. DeWitt, Jianjun Chen, and Chun
Zhang. Submitted. The Design and performance evaluation
of alternative XML storage strategies.
http://www.cs.wisc.edu/niagara/papers/xmlstore.pdf
[9] Brian F. Cooper, Neal Sample, Michael J. Franklin, Gisli
R. Hjaltason and Moshe Shadmon. A fast index for
semistructured data. In VLDB, 2001
[10] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A.
Rajaraman. Indexing Semistructured Data. Technical
Report, January 1998
[11] Relational Databases for Querying XML Documents:
Limitations and Opportunities. Jayavel Shanmugasundaram,

H. Gang, Kristin Tufte, Chun Zhang, David DeWitt, and
Jeffrey F. Naughton. In VLDB, 1999.
[12] eXtensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation, 6 October 2000,
http://www.w3.org/TR/REC-xml

