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A novel, scalable, quantitative, discrete-event simulator of metabolic and more general reaction pathwayss
DiMSimshas been developed. Rather than being modeled by systems of differential equations, metabolic
pathways are viewed as bipartite graphs consisting of metabolites and reactions, linked by unidirectional or
bidirectional arcs, and fluxes of metabolites emerge as the product of flows of the metabolites through the
individual reactions. If required, DiMSim is able to model reactions involving single molecules up to molar
concentrations so it is able to cope with the special characteristics of biochemical systems, including reversible
reactions and discontinuous behavior, e.g. due to competition between reactions for limited quantities of
reactants, product or allosteric inhibition and highly nonlinear behavior, e.g. due to cascades. It is also able
to model membrane-bound compartments and the channels used to transport metabolites between them
(both passive diffusion and active transport). While Michaelis-Menten kinetics is supported, DiMSim makes
almost no assumptions other than each reaction having a fixed stoichiometry and that each reaction takes
a stated amount of time.

INTRODUCTION

Simulation is widely used to model the dynamics of
systems and to predict system behaviors. At one level, cells
of organisms can be viewed as mechanisms driven by
metabolic pathways which are finely regulated by feedback
mechanisms. Regulation is probably the most significant
feature of metabolic pathways, compared to other chemical
reactions, allowing the cells to maintain stability under a
range of different situations (orhomeostasis).

A considerable body of knowledge about metabolic
pathways has been published over the years, and there now
are a number of databases of enzymes, proteins, and
pathways, such as KEGG,9 EcoCyc,11 MetaCyc,10 and
EMP.19 However, such information is only static; the user
cannot easily visualize the dynamics of a metabolic system.
One way to study the dynamics of a system is to simulate
it.

As mentioned in Sauro,18 computer simulation of metabolic
and chemical systems has a history almost as long as the
history of the computer itself. Since the earliest simulations,
which were done using analogue computers, there has been
a stream of projects to model metabolic pathways. These
efforts have resulted in a number of systems based on
Ordinary Differential Equations (ODE). Recent examples are
E-Cell,21 Metatool,15 Gepasi3,13 MIST,2 and SCAMP.18

However, simulation systems based on differential equations
face a number of problems when applied to this problem
domain. Apart from the problem of scalability as the number
of equations grows and the problem of “stiffness”, there is
the cost of determining the parameters for the equations and
their sensitivity to change.4 There is also a problem of
interpretation by users. Systems of differential equations have
a number of parameters that must be fitted from experimental
data. However, the parameters may have no meaning to the

biologists, who are therefore unable to gauge whether the
values are appropriate. These factors led Raczynski to
conclude that “the ODE models, perhaps good while describ-
ing the radioactive decay or electrical circuits with concen-
trated parameters, may not work in models as complex as
the social systems and living organisms” and therefore that
object-oriented, “behavioral” simulation can be the solution
in many cases.16

Finally, “...the existing information on some of the
metabolic pathways is not complete, for example there may
be unknown catalyzing components, uncertainty about the
role of known components, unreliable experimental data,
etc.”.17 This analysis led Reddy et al. to employ Petri nets14

as a tool for modeling and reasoning about metabolic
pathways, e.g. to detect bottlenecks. In other words, the Petri
net approach eschews simulation and instead deals with the
analytic properties of the graphs. A very different approach,
but one still aimed at reducing the impact of variable data
quality, has been to use knowledge-based systems ap-
proaches, particularly qualitative reasoning, to model net-
works of metabolic reactions.7 These analyses are unduly
pessimistic. In this paper, we describe a scalable, quantitative,
discrete-event simulation system based on modeling meta-
bolic pathways as a network of reactions. The system requires
only a few, well understood constants with which it is able
to emulate in-silico reaction pathways which are close to or
far from equilibrium.

THE BASIC MODEL: DATA-FLOW COMPUTATION

The data-flow computation model was widely investigated
in the 1970s and 1980s and provides the basic intuitions
underlying the current system. (For a review of the data-
flow computation model see, for example, ref 22.) As a
simple example to illustrate the application of data-flow
computation in metabolic pathway simulations consider a
compartment containing two reactions (Figure 1). There are* Corresponding author e-mail: mw263@cam.ac.uk.
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six reactants (substrates and products, represented as circles)
and two reactions (R1 and R2), shown as rectangles.

Two time concepts are used in the simulations. The
principal one,simulation time, is the time taken by the
sequence of reactions followed by downstream reactions;
running time is the real time spent by the computer as it
undertakes the simulation. For example, assume that the
enzymes required by the two reactions are present in suitable
concentrations and the environmental conditions for the
reactions are favorable. Assume also that at the outset there
60 000 molecules of A, 40 000 of B, and 30 000 of E, but
no molecules of C, D, and F.

When the simulation is launched, the system searches for
reactions which may fire, i.e., can take place. Clearly R1
may fire, since its substrates (A and B) are present while
R2 may not fire, because one of its substrates, D, is not
present in the compartment. R1 then begins to transform A
and B into C and D. The numbers of products are determined
by B, the substrate with the fewest molecules, so 40 000
molecules of C and 40 000 molecules of D are produced,
while B is consumed completely, and A has 20 000
molecules remaining.

At the second time point, the system continues to search
for fireable reactions. This time, R2 is found instead of R1.
The reaction results in 30 000 molecules of F, while the
number of E is reduced to zero and D has 10 000 molecules
remaining. The system will not stop the cycle of searching
for fireable reactions and triggering them until no reaction
can fire or a specified running time or simulation time has
elapsed.

Under this model, rather than being modeled directly, the
flux of any metabolite is an emergent property, being the
sum of molecules produced or consumed by reactions
involving the metabolite. In addition, each reaction can be
viewed as a primitive numerical integrator.

REFINEMENTS

The rather simplistic model provided by data-flow com-
putation fails to reflect biological realities in a number of
important ways and is therefore amended in DiMSim.

1. Reversible Reactions and Irreversible Reactions.
While some reactions can be treated as being one-ways
specifically those which involve energy expendituresmost
metabolic reactions are reversible. For example, in the first
three steps of the glycolysis pathway

where G, G6P, F6P, and FBP are respectivelyD-glucose,
D-glucose 6-phosphate,D-fructose 6-phosphate, andD-fruc-

tose 1,6-bisphosphate in brief. Which direction a reversible
reaction will go depends on the equilibrium constant (Keq)
and the valueΠ[P]/Π[S], in which [P] and [S] are the
concentrations of products and substrates at equilibrium. [In
a compartment of known size, [x] is equivalent to the number
of molecules ofx, so concentration and number of molecules
are here used interchangeably.] When the ratio of the
concentrations equalsKeq the reaction is in equilibrium, and
there is no net reaction. However, if at any time the value
Π[P]/Π[S] is less thanKeq, the reaction will go forward; the
reaction go in the reverse direction whenΠ[P]/Π[S] is larger
than Keq. In the case of irreversible reactions, the reaction
will go in the forward direction if the ratio is less thanKeq

but will not proceed in the reverse direction even if the ratio
is greater thanKeq.

Having determined the direction of a reaction, the quanti-
ties of molecules to be produced in the reaction are
determined by the minimum input metabolite count (so B
in the example above) and by the need to restore the balance
of the substrates versus products corresponding toKeq.
Addressing the second requirement involves solving the
equation

where ∆P is the increase in the product and∆S is the
corresponding decrease in the substrate that are required to
restore equilibrium. This equation can be easily converted
to a polynomial form, so it can be calculated by formulas
(when the power is no more than three) or numerical methods
such as Newton-Raphson method and binary chop method,
both of which are used in the system. GMP (the GNU
multiprecision library) can be used to ensure accurate results.

2. Fireable Reactions.Whether a reaction can fire or not
depends on the state of its reactants and enzymes. First of
all, all the substrates and enzyme must be available. For
reasons of computational efficiency, it is possible for the
user to set a minimum number input molecules for each
reaction; if insufficient are present, the reaction will not be
launched. However, even if all the reactants are present, their
concentrations must meet thermodynamics requirements. In
other words, for a net reaction to proceed the reactants must
not be in equilibrium, i.e., the valueΠ[P]/Π[S] must less
thanKeq for an irreversible reaction or not equal toKeq for
a reversible reaction. In addition, for reasons of computa-
tional efficiency, the user can set a value,ε so that if the
value Π[P]/Π[S] lies in the range [Keq-ε, Keq+ε], the
reaction is considered in equilibrium and will not fire.

3. Inhibition and Activation. Regulation and feedback
are significant features of metabolic pathways. One important
regulatory mechanism is inhibition, which falls into two main
types: reversible inhibition and irreversible inhibition.
Reversible inhibition has several subtypes: competitive,
noncompetitive, mixed, and uncompetitive. All the inhibition
are considered as pure inhibition, i.e., inhibitors are able to
inactivate enzymes completely.

A competitive inhibitor competes for an enzyme with a
substrate; it does not influence enzyme by reducing its the
turnover numberktnv, which is defined as the maximum
number of substrate molecules that an enzyme molecule can
catalyze in 1 s. [ktnv, labeled MAsor Molecular Activitysin

Figure 1. A simple pathway consisting of two successive reactions.

ATP + G f ADP + G6P

G6PT F6P

ATP + F6Pf ADP + FBP

∏([P] + ∆P)

∏([S] - ∆S)
) Keq (1)
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the EMP database, may be contrasted withkcat, which is
labeled as KC, or Catalytic Constant. The latter is the
maximum number of substrate molecules catalyzed per
second per active site of an enzyme molecule.ktnv andkcat

are generally the same, but may differ, e.g. phosphofruc-
tokinase fromD. discoideum, where ktnv is 4 timeskcat.]
Rather, the enzyme molecules are distributed between the
substrate and the inhibitor. In other words, we can simulate
competitive inhibition simply by reducing the number of
enzyme molecules available for the substrate, which depends
on the number of substrate molecules and their binding
affinity with enzyme molecules. One indirect measure of the
binding affinity of a substrate with an enzyme is the inverse
of the Michaelis constant,Km. The inhibition constant,KI,
plays an analogous role toKm in the competition between
the normal substrates of a reaction and competitive inhibitors.
Therefore, if [I] is the number of molecules of an inhibitor
which competes with substrate S for enzyme E, the apparent
number of enzyme molecules available to substrate S is [E]app

) [E] × [S]/Km/[S]/Km + [I]/KI.
Noncompetitive inhibition, mixed inhibition and uncom-

petitive inhibition do not involve competition for the enzyme
between the substrates and the inhibitor but instead change
the apparent Michaelis constant and/or the apparent maxi-
mum velocity of enzymes.6 The relationships are summarized
in Table 1.

It is also possible to simulate compulsory activation, in
which the free enzyme without an activator bound to it does
not bind substrate. Correspondingly, the activation constant
KA, the dissociation constant between activator and enzyme,
is used to determine the apparentKm:Km

app ) Km*(1+KA/
[A]), in which [A] is the concentration of the activator.

4. Reaction Velocity. Tracking the velocity of a reaction
is perhaps the most important and challenging task in
metabolic simulation. While the well-known Michaelis-
Menten equation

provides a simplified and idealized model for the dynamic
behavior of an enzymatic reaction, enzymatic reaction
velocity can be influenced by a number of factors, such as
reactants, coenzymes, ions, pH, temperature, and activators/
inhibitors. Secondary mechanisms may also play roles in
determining reaction velocity, e.g. the order in which
different substrates bind with an enzyme, substrate protection,
and substrate/product inhibition.1 Furthermore these factors
will inevitably interact and result in complicated behaviors.
It is not feasible to include all possible factors in a single
rate equation so most rate equations encompass only a few

factors and are subject to various conditions. Typically, an
equation for a multisubstrate reaction is bound to a particular
reaction mechanism, such as compulsory-order mechanism,
random-order mechanism, double-displacement mechanism,
etc.,1 and requires a series of rate constants that are usually
not available in current databases or from the literature.
Furthermore, the available rate equations, which are usually
derived theoretically or deduced in vitro, may not fit the
cellular environment well because the cell is a far more
crowded environment than a solution and molecular crowd-
ing has a complex effect on reaction rates in a cell.3

Therefore, to make simulations possible we have created a
rate equation that considers some of the most common factors
and uses relatively few parameters. The equation is neces-
sarily incomplete. We begin with an equation for a reaction
involving a single substrate and a single product. Since most
biochemical reactions are reversible, product inhibition is
likely to be of the competitive type, so the rate equation can
be written as5

in whichKm,SandKm,Pare respectively the Michaelis constant
of enzyme with substrate and product.V is the limiting rate
in the forward direction- either the maximum velocity (Vmax

) [E] × ktnv) or the apparent maximum velocity (Vmax
app )

[E]app × ktnv
app) if there are modifiers, typically inhibitors.

Equation 3 can be rewritten as

Equation 4 is the product of three terms:V is the actual
or apparent maximum velocity; the second term, (1- [P]/[S]/
Keq), represents the distance of the reaction from equilibrium,
and can be replaced by (1- Π[P]/Π[S]/Keq) for a reaction
with more than one substrate or product. The last term
[S]/Km,S/1 + [S]/Km,S + [P]/Km,P, may be roughly viewed as
the fractional saturation or concentration effects of reactants
on the velocity of the reaction or the fraction of enzyme
bound by substrates. Its extension to multiple substrates and
products is∑i([S]/Km,S)/1 + ∑i([S]/Km,S) + ∑j([P]/Km,P). If
the reaction is irreversible, the term∑j([P]/Km,P) can be
omitted. In the presence of modifiers, the rate equation
becomes

5. Allosteric and Cooperative Effects.Regulatory en-
zymes are usually allosteric proteins, which generate sigmoid
dynamic behaviors. The sigmoid curve is due to the
cooperative effects of substrates binding with the enzyme,
which means that binding substrate molecules facilitates
further substrate molecules being bound. The Hill equation

Table 1. Effect of Inhibitors on ApparentKm and Apparentktnv
a

inhibition type Km
app ktnv

app

noncompetitive Km ktnv/(1 + [I]/KIU)
mixed Km(1 + [I]/KIC)/(1 + [I]/KIU) ktnv/(1 + [I]/KIU)
uncompetitive Km/(1 + [I]/KIU) ktnv/(1 + [I]/KIU)

a KIU is defined as the enzyme-substrate-complex:inhibitor dissocia-
tion constantKIU ) [ES][ I]/[ESI], while KIC is the enzyme:inhibitor
dissociation constantKIC ) [E][ I]/[EI].

V )
Vmax × [S]

[S] + Km

)
Vmax

1 +
Km

[S]

(2)

V )
(V/Km,S) × ([S] - [P]/Keq)

1 + [S]/Km,S + [P]/Km,P

(3)

V ) V × (1 -
[P]/[S]

Keq
) × [S]/Km,S

1 + [S]/Km,S + [P]/Km,P

(4)

V ) Vmax
app × (1 -

∏[P]/∏[S]

Keq
) ×

∑
i

([S]/Km,S
app)

1+∑
i

([S]/Km,S
app)+∑

j

([P]/Km,P
app)

(5)
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addresses this behavior. The fractional saturation, i.e., the
proportion of enzyme bound with substrate S is

in whichH is the Hill constant andK0.5 is the half saturation
concentration (known as SO5 in EMP database). Like the
Michaelis constant,Km, K0.5 is the value of the substrate
concentration at whichV ) 0.5V. If H ) 1, K0.5 is equal to
Michaelis constant. The rate equation can be written as

For an allosteric inhibitor I, the apparent maximum
velocity is proportional to the enzyme that remains unbound,
i.e.

where theK0.5 is actuallyI0.5, the half inhibiting concentra-
tion.

To some degree the ratio between concentration andK0.5

reflects the state of fractional saturation of an enzyme by a
substrate or inhibitor. By comparing eq 7 with eqs 2 and 8
with the equations in Table 1 it is evident that the rate
equations can model cooperative effects if the ratios are
raised to the powerH. So a simple way to address
cooperative effects is to replace all the terms of the ratios of
concentration value andKm or KI with the same concentration
value andK0.5, raised to powerH. However, for reasons of
availability of data,Km andKI may still be used as a substitute
for K0.5.

6. Competition between Reactions for Inputs.Equation
5 together with the equations forVmax or Vmax

app reveal that
concentration of enzyme,ktnv, Km, and many other factors
have an impact on reaction velocity, reflecting the ability of
a reaction to garner substrates and to make products. Where
a metabolite acts as the common substrate for more than
one reaction, competing reactions share the common me-
tabolite in proportion to their velocities. The proportion of
the substrate available for theith reaction isVi /∑ jVj.

ALGORITHMS AND OBJECTS

1. Basic Algorithm. As discussed above in the data-flow
computation model, the computation is organized as cycles
of searching for fireable reactions and triggering them.
However, unlike the atemporal data-flow computation model,
a reaction takes a finite amount of time which will be called
its transition time,Tt ) 1/kcat, which is the time required by
a reaction at a given active site to transform a set of substrates
into a set of products. Furthermore, although the DiMSim
model is able to deal with single molecules a reaction usually

involves a large number of molecules, bearing in mind that
1 M concentration of any substance in a 1-L compartment
contains Avogadro’s number (6.0221× 1023) of molecules.
Therefore, while all the reactions in a real system such as a
cell are taking place simultaneously and the state variables
change continuously, it is assumed in the simulation that all
the reactions that are fireable will proceed in parallel, and
in particular that all the transformations for given reaction
inputs will proceed lock-step. The justification is that, while
in reality some molecules will arrive sooner and are
processed sooner and some will arrive later, the transition
time represents the expected value of a probability distribu-
tion. In other words, a single cycle for a given reaction will
takeTt.

Fireable reactions are placed in a min-heap20 ordered by
increasing completion time, i.e., the reaction at the top of
the heap is the next to complete. The processes can be written
in pseudocode as follows:

So if a reaction is always fireable, the transition time is
also the interval for the reaction to be triggered. This may
cause an apparent waste of catalytic ability, i.e., if a reaction
has a relatively long transition time, its substrates may
accumulate to an improbably high concentration during the
long interval even though there is sufficient enzyme available
for the reaction to fire. On the other hand, we have observed
that in these situations it is also the case that the reactions
will be near equilibrium so the numbers of molecules
required to restore equilibrium will be small. The system
has therefore been altered so as to allow the user to set a
maximum transition time (MT); reactions with a transition

Yhs )
[S]H

K0.5
H + [S]H

) 1

1 + (K0.5

[S] )H
(6)

V ) Vmax
app × Yhs )

Vmax
app

1 + (K0.5

[S] )H
(7)

Vmax
app ) Vmax × (1 - Yhs)

)
Vmax × K0.5

H

K0.5
H + [I]H

)
Vmax

1 + ( [I]
K0.5

)H
(8)
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time longer than MT will use MT as their transition time
and will produce proportionally fewer product molecules but
will then be available to process another tranche. Viewed
another way, if each reaction is seen as a primitive numerical
integrator, specifying a maximum transition time has the
effect of setting a maximum step size.

2. Simulation of Channels.Reactions occur in compart-
ments that are surrounded by membranes so channels exist
to permit flows of specific metabolites across the otherwise
impermeable membranes. There are three types of channel
models, corresponding to the three types of transport in
organisms: passive diffusion, facilitated transport, and active
transport. These are treated in two ways. If a channel is
driven by transporter protein, it is dealt with the same way
as a common enzymatic reaction. If no transporter protein
is used, the process is viewed as diffusion and a permeability
coefficient P with unit cm/s is needed. The velocity of a
diffusion is calculated asV ) P × A × ([S]-[P]), whereA
is the surface area of the compartment membrane across
which the channel is located, and [S] and [P] are, as usual,
the concentrations of substrate and product.

The thickness of membrane divided by the permeability
coefficient is used to calculateTt. Diffusion-type channels
may compete for substrates with other reactions so another
parameter, half-saturation substrate concentration, is used as
the equivalent ofKm.

3. Objects in the Model. Abstracting from the biology,
there are two material concepts and two process concepts
involved in the metabolic pathways of living cells. The
material concepts includemetabolites(the molecules in-
volved in reactions) andcompartments(the membrane-bound
spaces containing molecules, starting with the cell mem-
branes). The process concepts arereactions, which transform
metabolites, andchannels, which exist in membranes to
facilitate the transfer of metabolites between compartments,
sometimes with the assistance of enzymes or other proteins.
Mirroring these abstractions, the classes involved in the
system fall into four types: metabolite, compartment, reac-
tion, and channel.

Metabolite. This class is used to represent any kind of
molecule, so the attributes include molecule number/
concentration, the compartment in which it is located, and
dictionaries containing references to the reactions particular
instances may be involved in. The typical access to an object
of this class is through the method to change its number/
concentration. Metabolites include not only substrates and
products but also enzymes and which may also be the
substrates or products of metabolic pathways. However,
because the activity of enzymes can be modified by inhibi-
tors, both enzyme objects and inhibitor objects can contain
references to other metabolite objects.

Compartment. This class is a container for lists of
metabolites, reactions, channels, and subcompartments which
are located in this compartment. It also offers a place for
reactions to occur, so volume is a basic attribute of a
compartment object. This object also offers methods and
logic to organize the reactions and launch a simulation. As
an aid to the modeling process, a complex pathway in one
compartment may also be divided into virtual units called
subsystems. There is no physical boundary between a
subsystem instance and its enclosing compartment, and
nearly all the methods and many of the parameters of the

enclosing compartment are available to the subsystem. The
purpose of subsystems is to allow users to hide the details
of whole subnetworks, e.g. TCA cycle, and thus treat them
as if they are a single “reaction”.

Reaction. This class defines the basic parameters and
behaviors of a biochemical reaction. Its attributes consist of
reaction type (reversible/irreversible), equilibrium constant,
and some biochemical reaction constants and dictionaries
with references to its enzymes, substrates, products, and other
metabolites. A basic method decides how to transform the
molecule numbers of its reactants. In essence, a reaction
never moves metabolite molecules; it can only reduce the
molecule numbers/concentrations of some metabolites and
correspondingly increase the numbers/concentrations of some
other metabolite object, all of which are located in the same
compartment as the reaction object. The behavior of a
reaction is determined by both its own parameters and the
properties of its enzymes whose activities are regulated by
other environmental factors, mainly inhibitors.

Channel. This class, derived from the reaction class, is
modified to deal with metabolites in different (usually
adjacent) compartments. It is generally used to transfer
metabolites from one compartment to another compartment
by changing the molecule numbers/concentrations in the
participating compartments. If no product is specified orKeq

is set by the user to zero, a channel will act as a sink reaction,
which simply fires in the forward direction without consider-
ing whether its substrates and products are in equilibrium
or not. Sink reactions are useful at the boundaries of a
simulation to model the flow of products out of the system
under investigation.

FEATURES OF THE SYSTEM

Figure 2 is a screen capture of the graphical user interface.
Every object involved in a pathway is shown as an icon in
the graph. Relationships among objects are represented by
arrows. Different colors are applied to arrows to express
different relationships, i.e., black arrows start from substrates,
violet arrows point to products, blue arrows are from
enzymes to reactions, and red arrows from inhibitors to
enzymes. Unidirectional arrows are used for irreversible
reactions, while bidirectional arrows mean reactions are
reversible.

To simulate a metabolic pathway in DiMSim, the tools
offered in the tool-bar are used to generate all the objects
involved in the pathway and to define the relationships
among these objects. Then some necessary attributes of each
object, for example, concentration and turnover number, have
to be set through a pop up menu appeared after double-
clicking the mouse on the object icon. The simulation can
then be started.

Figure 2 depicts a number of interconnected pathways
including the Glycolytic Pathway subsystem and four
compartments, i.e., C1, C2, C3, and the outermost compart-
ment(OC) that contains all other objects. M1 is transferred
from C1, to C2 by Channel_1, and to OC by Channel_2,
then to C3. G (Glucose) is then transferred from C3 to OC
and then used by glycolytic pathway which is enclosed as a
subsystem. The two products of glycolytic pathway, ATP
and Pyr, are eventually moved into C2 by two sinks (Sink_1
and Sink_2).
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DiMSim has features to simplify the construction of
simulations. In particular, a compartment/subsystem can be
iconified if a detailed view is not required (see Compart-
ment_3 in Figure 2). In addition, a simulation run involving
a pathway in a compartment/subsystem can be started
separately. Finally, one can modify the structure of the graph

even when a simulation is being carried out and view the
effects of the modification.

EXAMPLES

To show the performance of DiMSim, some examples are
given below. These experiments are carried out on a
PentiumIII PC (1 GHz clock, 512MB RAM.)

1. Michaelis-Menten Dynamics. By setting suitable
values, DiMSim can model a typical Michaelis-Menten
dynamics behavior described by eq 2. For a simple reaction
S f P, the initial concentrations of S, P, and the enzyme
are 1.0 mM, 0 mM, and 0.001 mM,Km is 0.1 mM,Keq is
1023, and bothktnv andkcat are 1000/min. The dynamics of
velocity vs concentration of substrate is shown by the first
curve named Michaelis in Figure 3.

2. Simple Competitive Behavior. The dynamics of
reversible reactions can be illustrated by a pathway consists
of two reactions: R1 (AT B) and R2 (AT C). Assume
the initial concentrations of A, B, and C are 1 mM, 0 mM,
and 0.5 mM, while the enzymes are each 0.1 mM; the
constants for the both reactions and their enzymes areKeq

1.0, Km 0.1 mM, ktnv 1000/min, andkcat 1000/min. The
reactions reach equilibrium state after in about 10 s. For this
simple pathway, at the beginning, both R1 and R2 will go
forward, this causes [A] to drop quickly while [B] and [C]
are increasing. Since R1 and R2 have the same parameters
and [C] has a initial value higher than [B], [A] approaches
[C] first. When [A] decreases to a value equal to [C], R2
will stop. But R1 keeps consuming A, and [A] drops below
[C], this causes R2 to reverse and [C] decreases. This state
lasts till the system falls into equilibrium, i.e., [A], [B], and
[C] converge to 0.5 mM. This dynamical behavior is
perfectly reproduced by DiMSim (see curves named A, B,
and C in Figure 3).

Figure 2. An example of the user interface.

Figure 3. Dynamics of metabolites.
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3. Glycolytic Pathway.A classical example of a metabolic
pathway is the glycolytic pathway, which consists of the
following 10 reactions (also shown in Figure 2):

where DHAP, G3P, Pi, BPG, 3PG, 2PG, PEP, and Pyr are
respectively dihydroxyacetone phosphate, D-glyceraldehyde
3-phosphate, orthophosphate, 1,3-bisphosphoglycerate phos-
phate, 3-phospho-D-glycerate, 2-phospho-D-glycerate, phos-
phoenolpyruvate, and pyruvate in brief. Among the 10
reactions, three are treated as irreversible (shown by one-
direction arrows in Figure 2 and the equations above), and
their enzymes are inhibited by ATP (R_3 and R_10) or G6P
(R_1). The first reaction and the third reaction use ATP as
a substrate, while the sixth reaction and the last reaction
produce ATP. Eventually two ATP molecules will be
produced from the breakdown of one molecule ofD-glucose,
and the overall pathway can be written as G+ 2ADP + 2Pi
+ 2NAD f 2Pyr + 2ATP + 2NADH.

Assume that the volume of the compartment is 1× 10-9

mL, the surface area of the compartment membrane is 6×
10-6 cm2, and the thickness of membrane is 6 nm. Assume
also that the initial concentrations ofD-glucose, ATP, ADP,
NAD, NADH, and Pi are set according to the data from
human red cell,8 0.0004 mM, 1.60 mM, 0.29 mM, 1 mM,
0.0023 mM, and 1 mM, respectively. Considering these
metabolites may play roles in many other pathways, their
concentrations except ATP’s are kept constant during the
course of the simulation. All other metabolites which can
be produced in the pathway are initially empty (0 mM). The
concentrations of enzymes are also from ref 8, while other
parameters of corresponding enzymes are from EMP (http://
emp.mcs.anl.gov) (Table 2). Michaelis constants between
substrates/products and enzymes are also from EMP. Pa-
rameters of inhibitors are adopted arbitrarily but with
reference to data from EMP (Table 3). The half-saturation
substrate concentration of Sink_1 or Sink_2 is 0.0003 cm/

min and 0.01 mM, and their permeability coefficients are
respectively 0.000333 cm/min and 0.00333 cm/min.

After running for a few minutes, the system reaches
steady-state. The steady-state concentrations are listed in
Table 4.

The steady-state concentrations are close to expected
values. We also noted that the three reactions controlled by
inhibitors are far from equilibrium, while all other reactions
are very near to equilibrium. Considering many of these
intermediate products also involved in many pathways in
living red cells other than just the glycolytic pathway
modelled in this simulation, the results are plausible.

The simulation indicates that the pathway is robust enough
to resist considerable disturbance. If started with the expected
concentrations, the intermediates will reach 90% of the
steady-state level in 3 min. After steady state has been
reached, it can be quickly recovered even if we change the
concentration of an intermediate product to zero. The time
needed to recover G6P, F6P, FBP, DHAP, G3P, BPG, 3PG,
2PG, or PEP from 0 to 90% of the steady level is
correspondingly 2.5 min, 1.5 min, 0.5 min, 1.5 min, 1 s, 0.5
s, 3 min, 10 s, and 1 min, obviously related to their
concentrations.

4. Uncatalyzed, Cyclic Pathways.While Michaelis-
Menten kinetics has been implemented for enzymatic
reactionssas embodied in the equations described aboves

Table 2. Parameters of Enzymes Used in the Simulation

enzyme
catalytic
constant

turnover
number

equilibrium
constant

concn
(mM)

hexokinase (HK) 6450 12900 850.0 0.0001
phosphoglucose isomerase (PGI) 399000 798000 0.51 0.002
phosphofructokinase-1 (PFK) 7030 28100 310.0 0.001
aldolase (ALD) 667 2670 6.43e-005 0.002
triose-phosphate isomerase (TPI) 227000 454000 0.0472 0.002
glyceraldehyde-3-phosphate dehydrogenase (G3PDH) 5340 21400 0.0786 0.02
phosphoglycerate kinase (PGK) 102950 102950 2060.0 0.006
phosphoglycerate mutase (PGM) 52000 104000 0.169 0.004
enolase (ENO) 6000 48000 2.5 0.003
pyruvate kinase (PK) 2840 11400 363000.0 0.007

1. ATP+ G f ADP + G6P

2. G6PT F6P

3. ATP+ F6Pf ADP + FBP

4. FBPT DHAP + G3P

5. DHAPT G3P

6. G3P+ Pi + NAD T BPG+ NADH

7. ADP+ BPGT ATP + 3PG

8. 3PGT 2PG

9. 2PGT PEP

10. ADP+ PEPf ATP + Pyr

Table 3. Inhibition Constants and Hill Constants of Inhibitors

HK PFK PK

inhibitor KI H KI H KI H

G6P 0.02 2.0
FBP 0.0014 2.0 0.01414 2.0
3PG 0.07071 2.0
Pyr 0.0037 2.0
ATP 1.414 2.0 1.387 2.12 1.4142 2.0

Table 4. Concentrations at 5 min, 24 h, and the Expected
Concentrations of Some Metabolites

metabolites 10 min 24 h expecteda

G6P 0.0485 0.0494 0.0486
F6P 0.0242 0.0247 0.0198
FBP 0.0189 0.019 0.0146
DHAP 0.158 0.159 0.16
G3P 0.0073 0.0073 0.00728
BPG 0.0002 0.0002 0.000243
3PG 0.0708 0.0712 0.0773
2PG 0.0113 0.0113 0.0113
PEP 0.0278 0.0279 0.0192
Pyr 0.06 0.0601 0.06

a The expected concentrations are from ref 8.
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DiMSim is able to model uncatalyzed reactions. It is also
able to model pathways which give rise to cyclic flux graphs
of the sort predicted by Lotka-Voltera12 systems of reactions
such as

Figure 4 shows three graphs resulting from one simulation
of this system: [X] and [Y], each versus time, and [Y] versus
[X]. After an initial, transient response the system settles
into a cyclic behavior that persists over time; while the graphs
show the state after 10.623 min of simulated time the heights
of the peaks remain unaltered across much longer simulation
runs, thus also demonstrating that there is no loss in accuracy
which would otherwise cause the peaks to steadily decrease
and with them the amplitude of the cycle.

DISCUSSION

Although the metabolic networks of DiMSim are similar
to Petri nets, there are significant differences between them;
the DiMSim networks are by now also very different from
the graphs used in the data-flow computation model. For
example, in DiMSim arcs are used to define relationships
between objects, e.g. inhibitors/activators to enzymes, or from
enzymes to reactions. They can connect metabolites (the
equivalent of places in Petri nets) or be bidirectional when
connecting metabolites with reversible reactions (the equiva-
lent of transitions in Petri nets). Arcs are colored to
distinguish different kinds of relationships. Since arcs
represent relations, they no longer necessarily specify fixed
inputs or outputs. Reddy et al.17 uses self-loops to represent
enzymes; DiMSim, on the other hand, denotes an enzyme
by a blue arc pointing from the enzyme to a reaction. Petri
nets only use two kinds of nodes (places and transitions)
and one kind of directed edges (arcs); by contrast, DiMSim
offers these and other objects, such as Compartment and
Subsystem, to model metabolic pathways.

Using an ODE-based system to simulate metabolic path-
ways requires an often complex set of equations, which
means a number of parameters have to be determined
experimentally or set arbitrarily. More importantly, these
parameters may have little biological significance so biologi-
cal insight will not be able guide parameter choice. This
problem is exacerbated for complex networks of pathways.
Furthermore, the parameters need to be recalculated if there
are any significant changes in the environment. By contrast,
DiMSim uses a per-reaction rate equation which is based

on a few basic constants in common use by biologists, e.g.
equilibrium constant, Michaelis constant, and turnover
number, which makes it understandable to users and predict-
able when the constants are adjusted. The outputs of the
system are concentrations of metabolites of interest, generally
viewed as a chart.

Another benefit is scalability, i.e., the computational cost
of increasing the size of the networks being modeled grows
proportionally because each added node (reaction) only
impacts a limited number of other nodes and hence the
number of reactions that must be checked when a reaction
completes. Furthermore, because reactions operate in a
manner similar to primitive numerical integrators we believe
that the DiMSim model is also more numerically stable and
able to tolerate errors in the input data than ODE-based
systems.

One other thing is worth noting. DiMSim makes almost
no assumptions about the kinetics of the system being
modeled. As noted above, while Michaelis-Menten kinetics
has been implemented for enzymatic reactions, Lotka-Voltera
systems of uncatalyzed reactions can also be modeled. What
makes this possible is the fact that the only assumptions built
into DiMSim are that each reaction has a fixed stoichiometry
(fan-in and fan-out, in graph-theoretical terms) and that each
reaction takes a specified, finite amount of time.

DiMSim promises to be particularly effecting in helping
users understand (and though that intervene) in complex
biological systems involving multiple interacting pathways.
Once comprehensive models for pathways of interest have
been built, simulation experiments can be carried out which
may not even be possible in the physical system. For
example, if multiple reactions produce a metabolite into a
single pool, with other reactions consuming that metabolite,
it is well nigh impossible to determine the relative impact
of each reaction by examining the flux of the metabolite in
the pool. In DiMSim, this can be done quite easily. Similarly,
to model how metabolites on different pathways react to a
particular condition, multiple charts can be set up to track
each metabolite versus time, or pairwise, each against a
common-denominator metabolite, as in the Lotka-Voltera
example above.

Another situation is where one or more intermediate
reactions are not known. In this case one possibility would
be to create a notional reaction in that place and then tune
the parameters via comparisons with experimental data as
they become available. (The subsystem facility may be useful
here. In the larger pathway the will appears as a single
reaction, but internally it can grow from a single notional
reaction to a subpathway as more data is available and the
model is refined.) Extending this methodology, where a

Figure 4. Lotka-Voltera system outputs.

X + A f 2A

X + Y f 2Y

Y f B
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pathway is suspected via data from the literature (or sources
such as EcoCyc/MetaCyc or Kegg), or via mRNA expres-
sion-array data, a framework-pathway can be created and
then refined as kinetic data becomes available, most impor-
tantly turnover numbers andKeq.

AVAILABILITY

DiMSim will soon be available under academic and
nonacademic licenses. For further information, e-mail the
corresponding author.
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