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Abstract

The purpose of this paper is to describe a method for
the simulation of the recently introduced fluid stochas-
tic Petri nets. Since such nets result in rather complex
system of partial differential equations, numerical so-
lution becomes a formidable task. Because of a mixed
(discrete and continuous) state space, simulative solu-
tion also poses some interesting challenges, which are
addressed in the paper.

Keywords: Discrete-event simulation, continuous
system simulation, stochastic Petri nets.

1 Introduction

Discrete-event dynamic systems are commonplace,
and discrete-state models are normally used to study
their behavior. Ordinary and stochastic Petri nets, for
example, provide a convenient and concise method of
describing these systems [4, 8, 11, 22, 25]. However,
the underlying state space of these models tends to
be extremely large in practical modeling applications,
often forcing us to seek approximate solution meth-
ods. An example is the fluid flow approximations in
performance analysis of queueing systems [5, 15, 21],
where a large number of discrete entities is modeled
as a single continuous variable.

On the other hand, hybrid systems, that is, systems
having both discrete and continuous components that
evolve over time, have received increasing attention in
the last few years, due to the ubiquitous trend of em-
ploying digital controllers in traditionally analog envi-
ronments such as power generators, chemical plants,
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or water distribution systems.

Thus, it is natural to extend Petri nets so that they
can have a hybrid state-space that enables the study
of both otherwise discrete systems through fluid ap-
proximations, and of truly hybrid systems. In addi-
tion, the behavior of such models can be deterministic
or stochastic. Various formalisms falling in this cat-
egory have appeared. Timed continuous Petri nets,
whose places are marked in a continuous way, and,
more recently, hybrid Petri nets, which also contain
ordinary places containing an integral number of to-
kens, have been introduced by David [14, 13]. Fluid
stochastic Petri nets (FSPNs) have been introduced by
Trivedi and Kulkarni [24], and considerably enhanced
in [18]; these included immediate and exponentially
distributed firing times for the transitions, as in the
Generalized Stochastic Petri Nets GSPNs [3].

In FSPNs, as in hybrid Petri nets, the places of the
Petri net are partitioned into two classes, one contain-
ing a nonnegative (integer) number of tokens, just as
in ordinary Petri nets, the other containing a nonneg-
ative (real) level of fluid. However, initial definitions
of FSPNs posed severe restrictions on the semantic
behavior of these nets, to make the models analyt-
ically tractable. The numerical solution algorithms
proposed in [24, 18] are applicable only when the in-
teractions between the discrete and continuous portion
of the net satisfy fairly strong assumptions.

We observe that, even before performing a numer-
ical study of the performance or reliability of a sys-
tem, answers to various “logical” questions are often
required, such as “is the system bounded?”, or “does
it have a home state?”. Unfortunately, the decidabil-
ity of one of the most natural and important analysis
questions, “can a particular state be reached start-
ing from a given initial state?” depends on the type
of model. For example, reachability is decidable for
ordinary Petri nets [6], but not for Turing-equivalent
formalisms, such as Petri nets with transition priori-



ties or inhibitor arcs [1, 17]. For hybrid models, hence
for our FSPNs, it has been shown that reachability is
decidable only in the one- and two-dimensional case
[7], even under the assumptions that the number of
possible discrete states is finite and that the equations
describing the evolution of the continuous components
have piecewise-constant derivatives.

In this paper, thus, we take a radically differ-
ent approach. By not seeking a numerical solution
of the models, but, rather, accepting to employ a
distribution-driven simulation, we are free from many
of the previous restrictions. We can then define a
very general FSPN formalism, and proceed to investi-
gate efficient simulation algorithms, according to the
characteristics of the model under study. Admittedly,
this prevents us from performing any general type of
reachability study but such shortcoming is shared by
all simulation-based approaches. On the other hand,
avoiding the generation of the (discrete projection of)
the state space altogether is also an advantage, be-
cause this is a very memory-intensive step.

The extensions to the FSPN formalism we propose
include:

o fluid impulses associated with both immediate
and timed transition firings,

e guards for both immediate and timed transitions,
dependent on both fluid levels and on the discrete
marking.

These extensions are quite natural and useful, given
the type of systems we intend to address. Fluid im-
pulses are the continuous analogue of ordinary token
movements for ordinary Petri nets, while complete de-
pendency of any behavior (including the guards of im-
mediate transitions) on the entire state of the system
(including the current fluid levels) is certainly a desir-
able orthogonality goal. Indeed, one could argue that
these are not really “extensions”, but rather that the
initial definitions of FSPNs were “restrictions” moti-
vated by the desire of allowing a numerical solution.

Using simulation as a solution method frees us from
these restrictions. It should be noted that our ex-
tended FSPN formalism is not any more difficult to
simulate than the restricted type initially proposed in
[18, 24]. However, we do not mean to suggest that
its simulation is straightforward. In fact, several in-
novations are needed, because the simulation of the
resulting hybrid models is greatly complicated by the
complex dependencies that the behavior of the net can
have on the discrete, and even more on the continuous,
evolution of the state.

In this regard, the contributions of this paper in-
clude:

e Generation of random deviates based on a non-
homogeneous Poisson process, using the “thin-
ning” technique [20].

o Interleaving of ODE solution for fluid places with
simulation of discrete events in the FSPN.

e Definition of restrictions under which one can
more efficiently integrate the change of fluid levels
using built-in closed-form results, such as decou-
pled behavior and special classes of functions for
the fluid rates.

It should also be noted that simulation of hy-
brid models suffers from the same problems affecting
discrete-event simulation. If we are interested in a rare
event, long run times will be required to obtain useful
confidence intervals, regardless of whether the event is
defined as a condition on the discrete marking or on
the continuous fluid levels. If we are interested in long-
term behavior, deciding when the transient effect of
the particular initial state chosen becomes statistically
negligible is a difficult problem. Hybrid models further
complicate these issues. A logical condition affecting
the behavior of the model might be formally defined
as “places a and b have the same fluid level”, but, in
a practical implementation using floating point repre-
sentation, such a test is seldom appropriate; a better
approach is to define some relative range within which
we can consider two levels to be equal. A related issue
is that of regenerative simulation for hybrid models.
While a discrete model can have specific regeneration
points (discrete markings), requiring the same of a
hybrid model might be excessive, since the continuous
levels of various places might never return to exactly
the same point at the same time; of course, the float-
ing point roundoff errors only make things worse. In
this paper, we only discuss how to perform a transient
simulation, that is, up to a given finite time 7; as in
the simulation of discrete-state models, one can hope
to approximate stationary behavior by using a large 7
(in comparison to the timing of the net’s transitions),
but we do not claim that this is indeed the case in
general.

Before concluding this introduction, we stress that
methods proposing a mixed discrete-continuous ap-
proach to simulation are widely used in industrial
applications. Indeed, many of the major simulation
tools (including SIMAN, ProModel, and Arena) sup-
port the development of general mixed models. There
is also a literature on optimizations for managing the



execution of such models (e.g., [19]). Work in this
area either attempts to optimize general, models, at
the price of ignoring optimizations that are formalism
specific, or develop optimizations for a certain formal-
ism. Our work is of the latter type, by wedding of the
SPN paradigm—which is essentially stochastic and es-
sentially discrete—with continuous components. Our
contribution lies in exploring the interaction of this
specialized SPN paradigm with continuous simulation.
Not only is this combination of characteristics unusual
in the more general mixed simulation context, it is
particularly important to develop these notions in the
context of the SPN/GSPN community. Ours is a step
towards identifying a modeling framework in which
analytic, simulated, discrete, and continuous solutions
of submodels might be seamlessly joined.

After introducing the FSPN model in the next sec-
tion, we describe the method of simulation for the
most general case in Section 3. Section 4 considers
various subclasses of FSPNs that can be studied using
faster simulation algorithms. Examples are provided
in Section 5. Section 6 concludes the presentation.

2 Fluid stochastic Petri nets

In the following, we denote sets by upper case calli-
graphic letters. In particular, N, R, and Ry indicate
the natural, real, and nonnegative numbers, respec-
tively.

For simplicity, we only address exponentially dis-
tributed firing times, but we discuss the profound im-
plications of allowing the distributional parameters
(the firing rates) to depend on the fluid levels. Gener-
ally distributed firing times are clearly useful, and, in
connection with discrete-event simulation, do not add
much complexity to the solution if their distributional
parameters are independent of the fluid levels. Indeed,
our prototype SPNP implementation [12] includes sev-
eral other distributions: constant, uniform, geometric,
Weibull, truncated normal, and lognormal. However,
the definition of the interruption policies (what hap-
pens to the remaining firing times of transitions when
one of them fires) requires complex descriptions in full
generality [10, 23]; this is not the case with the expo-
nential distribution, due to its memoryless property.

A fluid stochastic Petri net (FSPN) is a tuple
(PDa PC: 7-T7 TI; a, f7 g9, /\7 w, b7 mOJ X0)7 Where:

o PD = {pla R 7p|'PD|} and PC = {qu .- -7(I|’Pc|}
are two disjoint and finite sets of places. Let
P = PP UPC. A (discrete) place p € PP is
drawn with a single circle and can contain a num-
ber of tokens m, € N. A (continuous) place

g € PC is drawn with two concentric circles and
can contain a level of fluid x, € Ro. The mark-
ing, or state, of the FSPN is given by a pair
of vectors describing the contents of each place,
(m,x) € & = NP”I x Ro/P°l. We call S the
“potential state space”, as opposed to the “actual
state space” S C S , the set of markings actually
reachable during the evolution of the FSPN. The
marking (m,x) evolves in time, which we indi-
cate by 7, so, formally, we can think of it as a
stochastic process {(m(7),x(7)),7 > 0}.

TT = {t17"'7t\7—T|} and TI = {ul,...,u|7—1|}
are two disjoint and finite sets of transitions. Let
T =TTUT! A (timed) transition t € T7 is
drawn as a rectangle and has an exponentially
distributed firing time. An (immediate) transi-
tion u € 77T is drawn as a thin bar and has a
constant zero firing time.

a : (PPxT)U(TxPP)) x§ — N and
a : (PCxTHU(TxPY) xS = Ry de-
scribe the marking-dependent cardinality (for dis-
crete places) or the fluid impulse (for continuous
places) of the input and output arcs connecting
transitions and places. We use the same symbol
for both, and we draw them as thin arcs with
an arrowhead on their destination, since the type
of place eliminates any possibility of confusion.
Graphically, the arcs is drawn only if the func-
tion is not identically equal zero; the function de-
scribing a is written on the arc, with a missing
inscription indicating the constant value 1.

F: (POXTTYUTT xPY) x § = Ro de-
scribes the marking-dependent fluid rate of the in-
put and output arcs connecting timed transitions
and continuous places. These fluid arcs are drawn
with a thick line, and an arrowhead on their des-
tination. Also in this case the arc is omitted if
function is identically equal zero and the function
is written on the arc, with a default value 1.

g : T x8 — {0,1} describes the marking-
dependent guard of each transition.

A:TT xS 5 Roandw : TI xS —» Ry
describe the marking-dependent firing rates (for
timed transitions) and weights (for immediate
transitions).

b:PY x NP°l - Ro U {oo} describe the fluid
bounds on each continuous place. This bound
has no effect when it is set to infinity. Note that



b depends only on the discrete part of the state
space, N ‘pD|, not on S, to avoid the possibility
of circular definitions.

e (m%x% € S is the initial marking. We re-
quire that, for any continuous place ¢ € PC,
x, < by(mP). Graphically, the initial marking
is represented by writing the value of m , Or xO
inside the corresponding place. A mlssmg Value
indicates zero. For discrete places, it is also com-
mon to draw mg tokens inside the place, if this
number is small.

The meaning of these quantities is given by the en-
abling and firing rules. We say that a transition ¢t € T
has concession in marking (m,x) iff

Vpe PP apy(m,x) <m, and g;(m,x)=1.
If any immediate transition has concession in (m, x),
it is said to be enabled and the marking is said to
be vanishing. Otherwise, the marking is said to be
tangible and any timed transition with concession is
enabled in it. In other words, a timed transition is not
enabled in a vanishing marking even if it has conces-
sion.

Some definitions of SPNs allow one to disable a
transition ¢ with concession in a marking by speci-
fying a zero rate or weight for it, or by introducing
inhibitor arcs, drawn with a circle instead of an ar-
rowhead. Since we can represent these behaviors by
an appropriate definition of the input arc cardinalities
or the guards, we assume, without loss of generality,
that rates and weights are positive for an enabled tran-
sition. Inhibitor arcs can then be considered merely
as a shorthand®.

Let £(m, x) denote the set of enabled transitions in
marking (m, x). Enabled transitions may change the
marking in two ways. First, a transition ¢t € 7 enabled
in marking (m,x) yields a (possibly) new marking
(m',x"), when it fires. We then write (m, x)i,(m’, x'),
where

Vp e PP,
Vg € P,

my, = my, + a;,,(m, X) — a,(m, x)
"), max{0,x,

— ag,¢(m,x)}}

x;, = min{b,(m

+ ataq (m7 X)

(the min and max operator are used to ensure that the
new fluid level x| is between zero and the bound for

'If, in (m,x), an inhibitor arc from p € PP (¢ € PC) to
t € T has cardinality ¢ € N (¢ € R?), t is disabled if ¢ > m,
(¢ > xq). The same behavior can be modeled by ensuring that
the guard g; evaluates to 0 in (m,x).

place ¢ evaluated in the new discrete marking). Sec-
ond, if marking (m, x) is tangible, fluid flows continu-
ously through the arcs f of enabled timed transitions
connected to continuous places. The potential rate of
change of fluid level for the continuous place ¢ € P¢
in tangible marking (m,x) is

Z fi,q(m, x)

te€E(m,x)

5”” (m, x)

fq,t(max)'

However, the fluid level can never become negative or
exceed the bound by(m), so the (actual) rate of change
over time, 7, while in marking (m, x), is

dx
6Q(m7 X) = d—Tq =
0 if (x, = 0 and 67°'(m,x) <0

)o
(x4 = by(m) and 6{1"’t(m, x) > 0)
62°(m,x) otherwise

(1)
The stochastic evolution of the FSPN in a tangible
marking is governed by a race [2]: the timed transi-
tion ¢ with the shortest firing time is the one chosen
to fire next, unless some fluid levels reach particular
values and cause t to become disabled prior to its fir-
ing. In a vanishing marking, instead, the weights are
used to decide which transition should fire: an imme-
diate transition u enabled in marking (m, x) fires with

probability
wy (m, x)

Z Wy (ma X) -

u/ €€ (m,x)

2)

3 General case

The FSPN definition we just gave is very powerful, but
it allows one to describe models whose solution can be
quite difficult, even with discrete-event simulation.

3.1 Unstable behavior

It is unfortunately possible to define FSPNs that have
an “unstable” behavior, that is, the simulation would
have to process an infinite number of discrete events
in a finite amount of time. It should be noted that
these unstable behaviors were already possible in the
original definitions of FSPNs, and that they presented
the same difficulties and had to be treated as errors in
the same way.
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Figure 1: FSPNs exhibiting unstable behaviors.

3.1.1 Infinite number of discrete events

Consider the FSPNs in Fig. 1 on the left. Immediate
transitions u; and ws alternatively put and remove a
unit impulse instantaneously. Thus, without advanc-
ing time, an infinite number of events can occur.

This is analogous to the so-called “vanishing-loop”
in GSPNs [9] and, in particular, to the “absorbing”
type, which, once encountered, will keep reoccurring
with probability one. With few exceptions [16], such a
behavior has been considered a modeling error in the
literature on discrete-state models, hence we do the
same for FSPNs.

Another well-known type of instability involves ac-
tual time advances between change of markings, but
increasingly faster, so that an infinite number of events
can occurs in a finite (although nonzero) time. One
can just think of the classical example of nonregular
continuous-time Markov chain, where the rate of go-
ing from state i to state i + 1 is 2!. This is always
considered an error.

3.1.2 Infinite number of infinitesimal events

The instability of the model in the middle of Fig. 1 is
instead exclusive to models with a state having a con-
tinuous component, such as our FSPNs. When xg =0,
timed transition ¢; is enabled and timed transition ¢
is disabled. However, as soon as the fluid arc starts
adding fluid to g, the situation is reversed, ¢; becomes
disabled, while 2 becomes enabled and starts empty-
ing q. It could be argued that, in such a situation, ¢
will always be empty, but any model where an infinite
number of events occurs in a finite time (e.g., transi-
tions ¢; and t3 become enabled and disabled an infinite
number of times) cannot be managed by conventional
discrete-event simulation techniques. Hence, we will
consider such behavior illegal.

The model on the right, with constant fluid rates F;
and F5, could also be considered unstable if Fy > Fj.
Both t; and t; are always enabled, hence there is a
continuous flow into ¢ at rate F; due to t;. However,
the outgoing flow due to t2 cannot be F3. Our def-

inition simply states that J, is identically equal 0 in
this case, implying that the outgoing flow is effectively
reduced to be Fi, instead of F>. In other words, the
arc from ¢ to t2 can be thought to have effect only a
fraction Fy/F» of the time. Since this type of behav-
ior can be easily managed by examining all the flows
incident to a continuous place, we do not regard it as
an error.

We stress that detection of instability might be ac-
complished “on-the-fly” while running the simulation,
provided we keep a stack of markings visited without
advancing the simulation clock. However, this is pos-
sible only when the instability causes the FSPN to
return to the same marking with probability one. If,
on the other hand, the markings visited in zero time
are nonrepeating, the stack will simply grow without
limit until the simulation program runs out of mem-
ory. Again, this is not a new problem: one can simply
think of a GSPN with an immediate transition ¢ that,
once enabled, keeps adding a token at a time to a place
p that does not affect the enabling of t.

Unfortunately, these situations cannot be detected
in general even for GSPNs, since this formalism is
Turing-equivalent, so we have no hope to devise and
algorithm to detect them in general for FSPNs either.
Hence, in practice, we can implement checks to dis-
cover only the simple cases of instability, but we must
assume that no other instability exist in the model.

3.2 Stable behavior

We now describe how a model with no unstable behav-
iors can be studied. Assume that we have just entered
tangible marking (m,x). If there is any enabled tran-
sition, each continuous component x, might vary in a
very general way over time. In a marking (m,x(0)),
we can apply Eq. 1 to each ¢ € P¢ and obtain the
system of ordinary differential equations

BT = S foalm x(7)) e m, (7))

€€ (m,x(0))

Vg € PC,

with given initial condition x(0),  (3)
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Figure 2: Sampling the NHPP process underlying a FSPN.

which is valid in any interval [0,7) during which the
set of enabled transitions does not change, that is,
E(m,x(1)) = £(m,x(0)). We can then consider two
cases, based on whether the set £(m, x(7)) is indepen-
dent or not on the continuous component x.

3.2.1 Enabling independent of the fluid levels

In the simpler case, the cardinality of the arcs con-
nected to discrete places and the guards do not de-
pend on x. Even so, the firing times behave as a
nonhomogeneous Poisson process (NHPP) whose rate
depends on the continuous marking, and so some care
is required in sampling the firing instants. We as-
sume that the firing rate of each timed transition ¢ can
be bounded from above by Af(m), given our knowl-
edge of its dependence on the fluid marking. That is,
when the discrete marking is m, the rate of ¢ satisfies
At(m,x) < Af(m), for any value of x that might be
reached in conjunction with m. We can therefore sam-
ple from the NHPP using the technique of “thinning”
[20], where we sample “potential firing instants” in ac-
cordance with a homogeneous Poisson arrival process
with rate

A*(m)= )" X(m).

te€(m,x)

From this process, we can define a sequence of increas-
ing time instants (71, 72,...). Starting from ¢ = 1, we
“accept” T, that is, we declare that a firing occurred

at time 7;, with probability A(m,x(7;))/A*(m), where

Am,x(r)) = > A(m,x(r)).

teE(m,x)

In other words, we use the actual firing rates at time
T; as a weight, to determine whether the event corre-
sponds to a true firing or not. This requires us to solve
for the value of x(71), by integrating the system of or-
dinary differential equations (3). If 7; is accepted, we
stop. Otherwise, we integrate until 72, compute x(73),
and decide whether to accept 75 or not, and so on.
Eventually, this process stops at some step i, giving
us a sampling 7/ = 7; of the actual firing time.

For example, Fig. 2 illustrates the case where
four transitions are enabled in (m,x): #, t2, t3,
and t4. The sequence of labeled arrows shows the
random deviates that must be generated, in order.
First, we generate 7, (a) according to the distribu-
tion Expo(A*(m)). Then we generate a random de-
viate (b) ~Unif(0,A*(m)). In the figure, this hap-
pens to fall in the interval corresponding to the “do
not accept” case. Thus, we need to generate another
potential firing time (c¢) by sampling the distribution
Expo(A*(m)) again and summing the sampled value
to 71, obtaining 5. We also need another random de-
viate (d) ~Unif(0, A*(m)), which also, in the figure,
happens to cause a rejection. Finally, we generate a
third potential firing time and we add it to 7, result-
ing in 73 (e). When we sample (f) ~Unif(0, A*(m))
again, we finally obtain a value falling in the interval



corresponding to t2, hence we schedule the firing of ¢,
at time 73.

It is then apparent that the expected number or
random deviates that need to be generated to decide
which transition to fire is larger when the bounds
At(m, x) for the enabled transitions are less tight,
since this increase the likelihood of rejections when
performing the thinning. On the other hand, if the
rates of the enabled transitions in marking m are a
function of x, but their total, }=;c ¢ (y x) At(m, x) is a
known constant independent of x, A*(m) can be set to
this value, and no rejection will occur. Then, only two
deviates are needed: the first one to decide the value
of 71 and the second one to decide which transition to
fire among the enabled ones.

3.2.2 Enabling dependent on the fluid levels

If, instead, the set of enabled transitions can change as
x evolves, we also need to consider an “enabling event”
at the time 7¢ when the first change in £(m, x) occurs.
The method to compute 7¢ depends on the nature of
the dependencies.

In principle, we should know the value of x(7) over
the entire horizon 7 € [0, 7/]. We can still use integra-
tion but, in full generality, we have to check whether
the set £(m, x) has changed, at each integration step.
These additional checks can be quite expensive, since
they potentially imply reevaluating many marking-
dependent functions.

If we find no value 7° € [0,7/] for which the set of
enabled transitions changes, the next event to schedule
is the firing at time 7/. Otherwise, we must schedule
an “enabling event” at time 7°¢, the time of the first
change in £(m, x). Of course, in this case, we can stop
the integration at time 7¢, without having to reach
time 7.

We stress that, regardless of whether the enabled
set can change or not, the generation of next firing
times is considerably simplified if the firing rates of the
enabled timed transitions are not dependent on fluid
levels, since the machinery of NHPP-based generation
of random deviates can be avoided.

3.2.3 Processing immediate firings

The processing of the scheduled event causes a change
of marking, from (m,x) to (m’,x'), where m' = m if
the event was of the enabling type. Then, in mark-
ing (m',x'), a finite sequence of immediate firings
might take place, just as in ordinary, non-fluid, SPNs,
until the next tangible marking (m",x") is reached.

Thanks to the memoryless property of the exponen-
tial distribution, the evolution of the FSPN from this
point on is analogous to the evolution from the ini-
tial marking, that is, we do not need to be concerned
about the “remaining firing times” of transitions that
were already enabled prior to reaching this marking.

4 FSPNs with efficient solution

The general behavior just described requires us to
solve the system of ordinary differential equations (3)
at each step of the simulation. This computation can
be quite costly. We now examine various subclasses
of FSPNs which, due to their restricted marking-
dependent behavior, have simpler solution algorithms.

4.1 TUncoupled behavior

A restriction on the type of dependency allows us to
uncouple the system, resulting in a set of ordinary dif-
ferential equations that can be solved independently.
This requires that the fluid rates incident on ¢, hence
04(m, x), depend only on (m,x,), not on the fluid lev-
els in the other continuous places:

V(m,x), (m,x') € S, x, = x|, = 6,(m, x) = §,(m,x).

As in the general case, we can still distinguish
whether the set of enabled transitions can be affected
by x or not, and the NHPP random variate generation
needs to be used only if their firing rates depend on x.

4.2 Predefined classes of behaviors

For particular cases of uncoupled dependencies, we can
even have a built-in closed form solution, which will
avoid the need for numerical integration altogether.

4.2.1 Linear fluid change rate

One such case is when, in a given marking (m,x),

dx, (1)
dr

= A(m) - x,(7) + B(m), A(m) #0
that is, the fluid change rate for a continuous place is
a linear function of the fluid level in the place itself.
In this case, the solution is

xq(T) = ——igﬁ; + (xq(O) + —iggg) eAlm)T

assuming that x, remains between 0 and by(m) during
[0, 7]. This answers the question of how much the fluid



level in a place will change during the firing time 7 of
a timed transition. Inversely, the time 7, when place
g reaches a certain fluid level threshold L, is given by

B(m)

A(r?) )
B(m
x,(0) + m

F T @)

Lq+
In

Ty =

if this quantity is positive (if it is negative, we can
simply define 7, = 00, that is, the threshold L, cannot
be reached in this marking).

If the set of enabled transitions can only change
when some place g reaches a threshold level L,, then
we can simply define the time 7¢ of the next enabling
event as

e .
T¢ = qr&l)nc {7y}

4.2.2 Constant fluid change rate

When A(m) = 0, that is, when the fluid change rate
is a constant, the solution is much simpler,

dx,(7)

4 = B(m) =

X¢(T) = %4(0)+B(m),
again assuming that x, remains between 0 and b, (m)

during [0,7]. The time 7, when place g reaches the
threshold L, is then

L, —x,(0)
= 5
Tq B( ) ’ ( )
if this quantity is positive, infinity otherwise.

4.3 Discretized dependency on x

Complete dependency on the marking (m, x) is desir-
able in principle, but the solution complexity it entails
can be large, and its full power in a model. A simpler
type of dependency is obtained by enforcing a dis-
cretization on the behavior of the FSPN with respect
to the continuous component x. This can be accom-
plished using a finite set £ = {l,,...,1 2} of boolean
threshold-type functions of the marking, where

def

li(m,x) = (I;(m,x) < §(m)), with S(m) € R

and I} (m, x) is a real function of the marking whose
form depends on the nature of the functions §, for the
places involved in its definition. We consider two cases
leading to efficiency improvements for the simulation:

e For any fluid place ¢ € PY with a linear fluid
change rate (Sec. 4.2.1), we can define functions
of the form

I (m, %) = ag,q (m)x,,

where the coeflicient a4 is a real function of the
discrete portion of the marking,

D
Otk,q:./\/'l,P l—)R.

e For any set Q C PY of fluid places with constant
fluid change rates (Sec. 4.2.2), we can define func-
tions of the form

Li(m,x) = ) apq(m)x,,

q€eQ

where the coefficients ay, 4 are, as above, real func-
tions of m alone.

Given a marking (m,x), we can define the “dis-
cretized” marking (m, 1) obtained from (m, x) through
L. If we force a (for discrete places only), g, and A to
be defined on the discretized marking (m,1), rather
than on the original mixed marking (m,x), then the
logical and timing behavior of the FSPN can change
only when the value of one or more of the functions I,
changes its truth value, that is, when the correspond-
ing function 1} crosses the threshold value f;(m), or
when a firing occurs.

Given the way each function I} is defined, however,
it is easy to compute the time 7; at which this can
happen. For a function 1 of the first type, we can
determine 74, by using the right-hand-side of equation
(4), with Ly set to Bk/ak,q. For a function 1; of the
second type, we can determine 75 as follows:

1. compute the overall change rate in the value of
1;(m7 X), Ak(m) = qugak,q(sQ(ma X), a quan-
tity that does not depend on x given our assump-
tion of constant fluid change rate;

2. if Ag(m) is zero, I} (m, x) is constant and will not
hit the threshold, set 7, = o0;

3. otherwise, compute the distance dy from [; to
I;(m,x),

dr, = Br — Z Qf,qXq;

qeEQ

4. if Ag(m) and dj, have the same sign, set
Tk = di/Ar(m),

otherwise set 7, = 0.



Then, the time of the next event to be managed
by the simulator is simply the minimum between the
first hitting of a threshold, min{7 : 1 < k < |£|}, and
the minimum firing time. However, the firing times
are now guaranteed to be constant within a given dis-
cretized marking (m,1). Hence, the entire simulation
can proceed as in a traditional discrete-event simula-
tion, with the exception that the types of events that
need to be scheduled in the event queue are either
transition firings or the hitting of a threshold.

Fortunately, there is no need to place the same re-
striction on the fluid impulses (a for continuous places)
or the weights w, since the simulation always evaluates
the value of impulses and weights only at a specific
and known instant in time, and the identity of the
arcs and transitions for which they need to be eval-
uated is known as well. Applying the restriction to
these quantities as well would prevent us from mod-
eling useful behaviors, such as emptying a continuous
place, or choosing between two immediate transitions
with probability proportional to the level in two con-
tinuous places, but would not simplify the simulation
algorithms.

We stress that this restricted type of discretiza-
tion still allows to model many interesting behaviors,
such as disabling a transition ¢ when a fluid level x,
reaches a given level 3, provided place g has either lin-
ear or constant fluid change rate. With places having
constant fluid change rates, even more general tests
can be performed, such as testing for the condition
Xq, + Xg, < Xgy, which corresponds to the boolean
threshold function 1(m,x) = (x4, + X4, — X43 < 0).
Nonlinear conditions such as xg4,%4, < X4, however,
cannot be captured by the proposed discretization.

We conclude this section on discretized behavior by
observing that an alternative could be to define inte-
ger, instead of boolean, threshold functions, for exam-
ple as

1y (m, x) € 1} (m,x) ] .

This would be more general, since the component 1 of
the discretized marking can now in principle describe
infinite sets, instead of just 2/%! tuples. However, a
simulator using this convention would have to sched-
ule events each time a function 1; crosses an integer
boundary, even if many of these events might not re-
ally affect the net’s behavior.

5 Examples

We illustrate the power of the proposed FSPN formal-
ism with a few examples.

5.1 A queue with impatient customers
and breakdowns

Consider a queue with a server subject to break-
downs and repairs. The customers arrive with a con-
stant rate, and queue in an unbounded waiting room.
They are served in first-come-first-serve order, but,
once their service starts, they can become impatient
and leave before completion (see Fig. 3). Unlike other
system with impatient customers, the amount of time
a customer has been in the queue before his service
begins does not affect his decision to leave. The arcs
from Serving to Busy and from Waiting to Idle are
used to count time into the two places, hence they
have fluid rate one. The arcs from Busy and Idle to
Serving (or Leave) have impulse Xpysy and Xrqze de-
fined on them, respectively. Hence, they are “flushing”
arcs, they have the effect of emptying the two places
immediately after the firing of Serving (or Leave).

The guard of immediate transition Leave specifies
when the customer at the head of the queue decides
to leave. Various policies can be easily modeled.

1. The total amount of time from the moment ser-
vice began exceeds a certain threshold MAX.
Then, we could define the guard gr.eqve to be the
boolean expression (Xpusy + Xrdqie = MAX).

This policy is representative of situations where,
once the server begins operating on a customer,
the operation must complete within a certain
time, for example to avoid spoilage.

2. The total amount of time a customer has not re-
ceived any service from the moment service be-
gan exceeds a certain threshold MAX. Then,
9Leave = (XIdle = MAX)

This could represent a similar situation, where
spoilage occurs only when the customer is not be-
ing served.

3. A customer has waited for an uninterrupted pe-
riod of time MAX without receiving any service.
Then, greqve = (Xrare = MAX), after adding an
impulse arc argie,Repair (M, X) = Xrdie, S0 that
place Idle becomes empty after each repair.

This could represent a situation, where, in ad-
dition to occurring only when the customer is
not being served, any spoilage immediately dis-
appears as soon as service resumes.

4. A customer has spent more time waiting for the
server to be operational than receiving service,
from the moment service began. Then, greqve =
(XIdle > XBusy)-
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Figure 3: The FSPN of a queue with impatient customers and breakdowns.
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Figure 4: Lower and upper limits of the 95% confidence interval for the expected frequency of impatient departures.

A measure of interest is the fraction of jobs that
decides to leave,

number of firings of Leave up to time 7

number of firings of Arrive up to time 7’

Fig. 4 compares the throughput of transition Leave
according to the first two policies, averaged over the
interval [0...10,000], as a function of M AX normal-
ized by the average service time 1/u. Note that a
logarithmic scale is used on the y-axis. The following
parameters are assumed:

e Arrival rate = 1.0/min.

e Service rate g = 5.0/min.

o Failure rate = 1/64min, Repair rate = 1/8min.

e MAX = 2/u,4/u,...,10/u (ie., the customer
becomes impatient after 2, 4, ..., 10 times the
average service time).

o Initial state as shown in Fig. 3.

The results where obtained from our prototype FSPN
simulator implemented in SPNP? [12].

For each choice of M AX , twenty independent repli-
cations were performed. The total runtime to compute

2At the moment, only a subset of the classes of FSPNs satis-
fying the restrictions of Sect. 4.2 and 4.3 have been implemented
in SPNP.
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Figure 5: A dual-tank processing facility.
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Figure 6: The FSPN of the dual-tank processing facility.

all the data shown in Fig. 4 was approximately seven
minutes using an ordinary Unix workstation.

5.2 A dual-tank processing facility

Consider a processing plant where, during normal op-
eration, liquid enters a main tank, One, from an exter-
nal source with rate ;,, and is used by a processing
station, with a (potential) rate y,ut > vin (see Fig. 5).

However, the processing station is subject to break-
downs, during which it cannot process the liquid. In-
terrupting the flow from the external source of liquid
into the main tank is an expensive operation, hence,
a second additional tank, T'wo, is present. When the
processing station is down, the liquid is automatically
routed to tank Two, which has a maximum capac-
ity brwo. Only when the second tank is full, the flow
from the external source is shut down. After a repair,
the processing can resume and the liquid is routed
again from the external source, which is restarted if it
had been shut down, into tank One. In addition, any
liquid in tank Two is pumped into tank Omne, with
rate yo1. If Vi + Y21 > Yout, the level in tank One
will increase while the processing station is working

to catch up after a repair. Since tank One has a max-
imum capacity, bone, the flow from tank Two to tank
One, rather than the flow from the external source,
is slowed down when this limit is reached. The guard
9x fer = (XOne < bone) in the FSPN of Fig. 6 enforces
this behavior.

The main reason for having two tanks, instead of a
single large one, is efficiency. As the liquid needs to be
maintained at a given temperature, tank One is con-
stantly heated, while tank T'wo is heated only when it
contains liquid, because of a breakdown. Indeed, the
two measures we could be interested in computing are:

number of firing of Stop up to time 7
b

T

the frequency at which the external source needs to go
through a start-stop cycle, and

probability that tank T'wo is not empty at time 7.

Fig. 7 reports one of these measures, the ex-
pected frequency of stops, computed over the inter-
val [0...100,000], as a function of 7;,. The following
parameters are assumed:
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Figure 7: Lower and upper limits of the 95% confidence interval for the expected frequency of stops.

® bone = 1, bryo = 2.

® vin =0.5,...,1.0, 721 = 0.1, Yout = 1.0.

e Failure rate = 1/100hr, Repair rate = 1/hr.
e Initial state: mo, =1, my, = 1, Xon = 1.0.

For each choice of v;,, ten independent replications
were performed. The total runtime to compute all the
data shown in Fig. 7 was approximately two minutes
using an ordinary Unix workstation.

6 Conclusion

In this paper we extended the modeling power of re-
cently introduced fluid stochastic Petri nets. Since
equations characterizing the evolution of such FSPNs
constitute a coupled system of partial differential
equations, their generation and solution can be-
come intractable but for small or very well-structured
FSPNs. Hence, discrete-event simulation becomes
an important alternative avenue for the solution of
FSPNs. However, due to the mixed nature of the state
space, with discrete and continuous components and
arbitrary interactions between them, simulation also
poses several challenges that we address. When we
can characterize the type of interactions as belonging
to one of the several restricted classes of models we de-
fine, a better suited, and faster, simulation algorithm
can be employed for the solution.
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