
From Petri Nets to Differential

Equations

- an Integrative Approach
for Biochemical Network Analysis

David Gilbert1 and Monika Heiner2

1 Bioinformatics Research Centre, University of Glasgow

Glasgow G12 8QQ, Scotland, UK

drg@brc.dcs.gla.ac.uk

2 Department of Computer Science, Brandenburg University of

Technology

Postbox 10 13 44, 03013 Cottbus, Germany
monika.heiner@informatik.tu-cottbus.de

 

Department of Computing Science Technical Report

University of Glasgow TR-2005-208

Glasgow G12 8QQ December 2005

UK



From Petri Nets to Differential Equations

- an Integrative Approach

for Biochemical Network Analysis

David Gilbert1 and Monika Heiner2

1 Bioinformatics Research Centre, University of Glasgow
Glasgow G12 8QQ, Scotland, UK

drg@brc.dcs.gla.ac.uk
2 Department of Computer Science, Brandenburg University of Technology

Postbox 10 13 44, 03013 Cottbus, Germany
monika.heiner@informatik.tu-cottbus.de

Abstract. We report on the results of an investigation into the inte-
gration of Petri nets and ordinary differential equations (ODEs) for the
modelling and analysis of biochemical networks, and the application of
our approach to the model of the influence of the Raf Kinase Inhibitor
Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway. We show that analysis based on a discrete Petri net
model of the system can be used to derive the sets of initial concen-
trations required by the corresponding continuous ordinary differential
equation model, and no other initial concentrations produce meaningful
steady states. Altogether, this paper represents a tutorial in step-wise
modelling and analysis of larger models as well as in structured design
of ODEs.

1 Motivation

Classical, i.e. time-less discrete Petri nets combine an intuitive modelling style
with well-founded analysis techniques. It is for this reason that they are widely
used in various application areas, where they have been proven to be useful for a
qualitative verification of technical as well as “natural” systems, i.e. biochemical
networks like metabolic networks, signal transduction networks, or gene regula-
tory networks.

However, any real system behaviour happens in time. Thus the next step
following on from a qualitative analysis typically consists in quantitative analy-
ses taking into account timing information. In the case of biochemical systems,
all atomic actions take place continuously. Moreover, the rates of all the atomic
actions typically depend on the continuous concentration of the involved sub-
stances. Hence systems of ordinary differential equations (ODEs) appear to be
a natural choice for quantitative modelling of biochemical networks.

In this paper we bridge the gap between these two worlds, i.e. the (time-
less) discrete and the (timed) continuous one, and demonstrate by means of
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one of the standard examples used in the systems biology community – the core
model of the influence of the Raf-1 Kinase Inhibitor Protein (RKIP) on the ERK
signalling pathway – how both sides can play together by providing different,
but complementary viewpoints on the same subject.

This paper can be considered as a tutorial in the step-wise modelling and
analysis of larger models as well as in the structured design of ODEs. The discrete
model is introduced as a supplementary intermediate step, at least from the
viewpoint of the biochemist accustomed to ODE modelling only, and serves
mainly for model validation since this cannot be performed on the continuous
level. Having successfully validated the discrete model, the continuous model is
derived from the discrete one by assigning rate equations to all of the atomic
actions in the network. Thus the continuous model preserves the structure of
the discrete one, and the continuous Petri net is nothing else than a structured
description of ODEs.

The approach is presented by a small example, which is however sophisti-
cated enough to highlight the main ideas — it is common sense to practice new
techniques on small examples at first, before attempting larger ones, where the
outcome to be expected tends to be less well-defined.

Moreover we demonstrate how the discrete model can be used to drive the
continuous model by automatically generating sets of biochemically plausible
values for the initial concentrations of protein species.

This paper is organized as follows. The next section provides an overview
on the biochemical context on hand and introduces the running example. Af-
terwards, we demonstrate the step-wise modelling and analysis, where section 3
deals with the contributions by the discrete viewpoint, while section 4 is devoted
to the continuous viewpoint. Having presented our own approach, we discuss
some related work in section 5. We conclude with a summary and outlook on
intended further research directions.

2 Biochemical Context

There are many networks of interacting components known to exist as part
of the machinery of living organisms. Biochemical networks can be metabolic,
regulatory or signal transduction networks. The role of metabolic networks is
to synthesize essential biochemical compounds from basic components, or to
degrade compounds. Regulatory networks are used to control the ways in which
genes are expressed as RNAs or proteins, whereas signal transduction networks
transmit biochemical signals between or within cells.

The two terms “pathway” and “network” tend to be used interchangeably in
the literature, with “pathway” being (implicitly) taken to be a part of a more
general network. In this paper we follow the generally accepted use of the term
“pathway” to refer to the core of a biochemical network, comprising a sequence
of activities, for example a kinase cascade. Thus, for example, we will describe
the ERK pathway as being embedded in a more general signal transduction
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network, and that the ERK pathway is a member of a large family of MAP
Kinase pathways.

In this paper we focus on signal transduction, which is the mechanism which
enables a cell to sense changes in its environment and to make appropriate re-
sponses. The basis of this mechanism is the conversion of one kind of signal into
another. Extracellular signaling molecules are detected at the cell membrane by
being bound to specific trans-membrane receptors that face outwards from the
membrane and trigger intracellular events, which may eventually effect tran-
scriptional activities in the nucleus. The eventual outcome is an alteration in
cellular activity including changes in the gene expression profiles of the respond-
ing cells. These events, and the molecules that they involve, are referred to as
(intracellular) “signalling pathways”; they contribute to the control of processes
such as proliferation, cell growth, movement, apoptosis, and inter-cellular com-
munication. Many signal transduction processes are “signalling cascades” which
comprise a series of enzymatic reactions in which the product of one reaction
acts as the catalytic enzyme for the next. The effect can be amplification of the
original signal, although in some cases, for example the MAP kinase cascade,
the signal gain is modest [1], suggesting that a main purpose is regulation [2]
which may be achieved by positive and negative feedback loops.

The main factor which distinguishes signal transduction pathways from meta-
bolic networks is that in the former the product of an enzymatic reaction becomes
the enzyme for the next step in the pathway, whereas in the latter the product
of one reaction becomes the substrate for the next, see Fig 1. In general, it is
dynamic behaviour which is of interest in a signalling pathway, as opposed to
the steady state in a metabolic network. In gene regulatory networks, on the
other hand, the inputs are proteins such as transcription factors (produced from
signal transduction or metabolic activity), which then influence the expression
of genes – enzymatic activity plays no direct role here. However, the products of
gene regulatory networks can play a part in the transcription of other proteins,
or can act as enzymes in signalling or metabolic pathways.

enzyme1 enzyme2 enzyme3
enzyme2

enzyme1

enzyme3

r1 r2 r3

r1

r2

r3

Fig. 1. The essential structural difference between metabolic networks (left) and signal
transduction networks (right).
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The ERK pathway (also called Ras/Raf, or Raf-1/MEK/ERK pathway) is
a ubiquitous pathway that conveys cell division and differentiation signals from
the cell membrane to the nucleus. Ras is activated by an external stimulus, via
one of many growth factor receptors; it then binds to and activates Raf-1 to
become Raf-1*, or activated Raf, which in turn activates MAPK/ERK Kinase
(MEK) which in turn activates Extracellular signal Regulated Kinase (ERK).
This cascade (Raf-1 → Raf-1* → MEK → ERK) of protein interaction controls
cell differentiation, the effect being dependent upon the activity of ERK. An
important area of experimental scientific investigation is the role that the Raf-1
Kinase Inhibitor Protein (RKIP) plays in the behaviour of this pathway. The
hypothesis is that RKIP can inhibit activation of Raf-1 by binding to it, disrupt-
ing the interaction between Raf-1 and MEK, thus playing a part in regulating
the activity of the ERK pathway.

3 The Discrete Approach

In this section we apply place/transition Petri nets to model the pathway of
interest, and interpret them in the standard way. The reader is assumed to be
familiar with the basic terms; for an introduction see e.g. [3], [4]. However, in
order to make the paper readable for the biochemist, we will revise the most
important key terms which are held to be crucial in the biochemistry context.

The software tools which have been used in this section are: for modelling –
Snoopy [5], and for analysis – the Integrated Net Analyser (INA) [6], and the
Model Checking Kit [7].

3.1 Qualitative Modelling

We apply the well-established modelling principles to represent biochemical net-
works by (various versions of) Petri nets, outlined e.g. in [8], [9].

Definition 1 (place/transition Petri net).
A place/transition Petri net is a quadruple N = 〈P, T, f, m0〉, where

– P and T are finite, non empty, and disjoint sets. P is the set of places (in
the figures represented by cycles). T is the set of transitions (in the figures
represented by rectangles).

– f : (P × T ) ∪ (T × P ) → IN0 defines the set of directed arcs, weighted by
non-negative integer values.

– m0 : P → IN0 gives the initial marking.

Moreover, we introduce the following notations: The preset of a node x ∈
P ∪ T is defined as •x := {y ∈ P ∪ T |f (y, x) 6= 0}, and its postset as x• :=
{y ∈ P ∪ T |f (x, y) 6= 0}. A node x ∈ P ∪T is called a boundary node, iff •x = ∅
or x• = ∅.

According to definition 1 we create a place/transition Petri nets, see Figure
2, of the RKIP pathway, given in [10] in the style of a bichromatic graph. Circles
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Fig. 2. The hierarchical Petri net for the core model of the RKIP pathway. Places
stand for the states of the concentration of a protein; complexes are indicated by an
underscore “ ” between the protein names. Each macro transition (drawn by two centric
squares) stands for a reversible reaction, modelled by two complementary transitions,
which are hidden on the next lower net level. The layout follows the suggestions by the
graphical notation used in [10]. At the bottom the two-lines result vector as produced by
the Integrated Net Analyser [6] is given. The properties of interest in the given context
of biochemical network analysis are explained in the text. The initial marking, not given
in [10], is constructed systematically using standard Petri net analysis techniques.
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(places) stand for the states of a protein or protein complex and are labelled
with the corresponding name; complexes are indicated by an underscore “ ”
between the protein names. For example, Raf-1* and RKIP are proteins, and
Raf-1* RKIP is a protein complex formed from Raf-1* and RKIP. A suffix -P
or -PP denotes a single or double phosphorylated protein, for example RKIP-
P and ERK-PP. In the pathway under consideration there are 11 proteins or
complexes; a discrete concentration m1, m2 etc. is associated with each protein
or complex. In the case of the qualitative model, these concentrations can be
thought of as being ‘high’ or ‘low’ (present or absent).

Rectangles (transitions) stand for reactions, with reversible reactions being
indicated by a rectangle containing an inner rectangle (hierarchical transitions).
In this pathway, reactions comprise protein complexation and decomplexation
events, often accompanied by phosphorylation or dephosphorylation. Reactions
can be one-way, indicated by single-headed arrows, or reversible, indicated by
double-headed arrows on the top level of the net. For example, Raf-1* and RKIP
combine in a forwards reaction to form Raf-1* RKIP which can disassociate in
a backwards reaction into Raf-1* and RKIP, or combine with ERK-PP to form
the complex Raf1* RKIP ERK-PP. In this qualitative model, k1, k2, . . . stand
for reaction labels.

3.2 Qualitative Analysis

The Petri net enjoys all the pleasant general properties a Petri net insider could
dream of: boundedness, liveness, reversibility, which are three orthogonal basic
behavioural net properties [4]. The decision about the first two properties can be
made for our example in a static way, while the last property requires dynamic
analysis techniques. The essential steps of the systematic analysis procedure for
the example are given in more detail as follows.

(1) Structural properties. The following three structural properties reflect
the modelling approach and can be read as preliminary consistency checks.

The net is ordinary, i.e. all arc weights equal to 1. This includes homogene-
ity, i.e. the outgoing arcs of each place have the same multiplicity, which is a
necessary prerequisite for the Deadlock Trap Property (DTP), see step (4) below.

The net is pure, i.e. there are no side-conditions. So, the net structure is fully
represented by the incidence matrix, which is used for the calculation of the P-
and T-invariants, see next step.

The net is strongly connected, which involves the absence of boundary nodes.
So, the net is self-contained, i.e. closed system. Therefore, in order to make the
net live, we have to construct an initial marking, compare step (3).

Moreover, the net belongs to the structural class “extended simple”. Hence,
we know that the net has the ability to be live independent of time, i.e. if it is
live, then it remains live under any duration timing [11].
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(2) Static decision of marking-independent behavioural properties.
Model validation should include a check of all invariants for their biological
plausibility. The following definition recalls the essential basic terms.

Definition 2 (P-invariants, T-invariants).

– The incidence matrix of N is a matrix C : P × T → ZZ, indexed by P and
T , such that C(p, t) = f(t, p) − f(p, t).

– A place vector (transition vector) is a vector x : P → ZZ, indexed by P
(y : T → ZZ, indexed by T).

– A place vector (transition vector) is called a P-invariant (T-invariant), iff it
is a non-trivial non-negative integer solution of the linear equation system
x · C = 0 (C · y = 0).

– The nodes corresponding to an invariant’s non-zero entries are called the
support of this invariant x, written as supp (x).

– An invariant x is called minimal, iff it does not contain any other invariant
z, i.e. ¬∃ invariant z : supp (z) ⊂ supp (x), and the greatest common divisor
of all entries of x is 1.

– A net is covered by P-invariants, shortly CPI, (covered by T-invariants,
shortly CTI), iff every place (transition) participates in a P-invariant (T-
invariant).

A P-invariant stands for a set of places, over which the weighted sum of tokens
is constant and independent of any firing, i.e. for any markings m1, m2, which are
reachable by the firing of transitions, it holds that y ·m1 = y ·m2. So, P-invariants
represent token-preserving sets of places. In the context of metabolic networks, P-
invariants reflect substrate conservations, while in signal transduction networks
P-invariants often correspond to the several states of a given specie (protein or
protein complex). A place belonging to a P-invariant is obviously bounded.

In the net under consideration there are five minimal P-invariants covering
the net (CPI), consequently the net is bounded. All the P-invariants xi contain
only entries of 0 and 1, which allows a short-hand specification by just giving
the names of the places involved.

x1 = (Raf-1*, Raf-1* RKIP, Raf-1* RKIP ERK-PP),
x2 = (MEK-PP, MEK-PP ERK),
x3 = (RP, RKIP-P RP),
x4 = (ERK, ERK-PP, MEK-PP ERK, Raf-1* RKIP ERK-PP),
x5 = (RKIP, Raf-1* RKIP, Raf-1* RKIP ERK-PP, RKIP-P RP, RKIP-P).

Each P-invariant xi stands obviously for a reasonable conservation rule. The
first name given indicates the specie preserved within each P-invariant. Due to
the chosen naming convention, this particular name also appears in all the other
place names of the same P-invariant.

A T-invariant has two interpretations in the given biochemical context. (1)
The entries of a T-invariant represent a multiset of transitions which by their fir-
ing reproduce a given marking in a partially manner, i.e. basically occurring one
after the other. This partial order sequence of the T-invariant’s transition may
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contribute to a deeper understanding of the net behaviour. (2) The entries of a
T-invariant may also be read as the relative transition firing rates of transitions,
all of them occurring permanently and concurrently. This activity level corre-
sponds to the steady state behaviour. Independently of this interpretation, the
net representation of minimal T-invariants (the T-invariant’s transitions plus
their pre- and post-places and all arcs in between) characterize minimal self-
contained subnetworks with an enclosed biological meaning.

The net under consideration is covered by T-Invariants (CTI), which is a
necessary condition for bounded nets to be live. Besides the expected four triv-
ial T-invariants for the four reversible reactions, there is only one non-trivial
minimal T-invariant y = (k1, k3, k5, k6, k8, k9, k11). The net representation of
this T-invariant describes the essential partial order behaviour of the modelled
system, given in text style: (k1; k3; k5; (k6; k8), (k9; k11)), where “;” stands
for “sequentiality” and “,” for “concurrency”. The automatic identification of
non-trivial minimal T-invariants is in general useful as a method to highlight
important parts of a network, and hence aid its comprehension by biochemists,
especially when the entire network is too complex to easily comprehend.

All the properties above relate only to the structure, i.e. they are valid inde-
pendently of the initial marking. In order to proceed we first need to generate
an initial marking.

(3) Initial marking construction. For a systematic construction of the initial
marking, the following criteria have to be taken into consideration.

– Each P-invariant needs at least one token.
– All (non-trivial) T-invariants should be realizable, meaning, the transitions,

making up the T-invariant’s multi-set can be fired in an appropriate order.
– Additionally, it is common sense to look for a minimal marking (as few tokens

as possible), which guarantees the required behaviour.
– Within a P-invariant, choose the specie with the most inactive or the mono-

meric state.

Taking all these criteria together, the initial marking on hand is: Raf-1*,
RKIP, ERK, MEK-PP, RP get each one token, while all remaining places are
empty. With this initial marking, the net is covered by 1-P-invariants (exactly
one token in each P-invariant), therefore the net is 1-bounded (also called safe).
That is in perfect accordance with the understanding that in signal transduction
networks a P-invariant comprises all the different states of one specie. Obviously,
each specie can be only in one state at any time.

In the following, however, we will use an initial marking derived from the
initial concentrations used by Cho et al. [10] as part of their method to esti-
mate rate parameters required for their ODE model of the RKIP pathway (see
Table 1 in Section 4.2). This marking is represented in Figure 2. We use their
initial marking because we focus the Cho et al. model throughout this paper for
illustrative purposes. We will later in this paper demonstrate that the Cho et al.
initial marking is equivalent the initial marking which we have constructed, and
that in fact both markings are members of a larger equivalence class of markings.
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Fig. 3. The beginning of the infinite partial order run of the non-trivial minimal T-
invariant of the place/transition Petri net given in Figure 2. Here, transitions represent
events, labelled by the name of the reaction taking place, while places stand for binary
conditions, labelled by the name of the species, set or reset by the event, respectively.
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With the chosen marking we can check the non-trivial minimal T-invariant
(see step (2)) for realizability, which then involves the realizability of the triv-
ial T-invariants. We obtain an infinite run, the beginning of which is given as
labelled condition/event net in Figure 3, and characterize this in a short-hand
notation by the following set of partially ordered words out of the alphabet of
all transition labels: (k1; k3; k5;[((k9; k11; k1), (k6; k8)); k3; k5]*). This partial
order behaviour gives further insight into the dynamic behaviour of the network
which may not be apparent from the standard net representation. In this exam-
ple, the partial order representation illustrates the central role of Raf-1* and the
fact that certain reactions take place sequentially, others can take place indepen-
dently and that some reactions are constrained by the need for the presence of
two or more precursors produced from prior reactions; e.g. the reaction labelled
by k1 requires the participation of both proteins associated with concentration
labels m1 and m2, which are produced by reactions k5 and k11 respectively.

Having established and justified our initial marking we proceed to the next
steps of the analysis.

(4) Static decision of marking-dependent behavioural properties. The
net belongs to the structural class “extended simple” and the Deadlock-Trap
Property (DTP) holds (any structural deadlock contains a marked trap), there-
fore the net is live, see e.g. [4], [6]. However, most biochemical networks (as well
as non-trivial technical networks) do not fulfill the DTP. Therefore we omit here
the formal definition as well as a more detailed discussion to save space.

(5) Dynamic decision of behavioural properties. In order to decide re-
versibility we have to calculate the reachability graph. The nodes of a reachability
graph represent all possible states (markings) of the net. The arcs in between are
labelled by single transitions, the firing of which causes the related state change.
Altogether, the reachability graph gives us a finite automaton representation of
all possible single step firing sequences. Consequently, concurrent behaviour is
described by enumerating all interleaving firing sequences.

Because we already know that the net is bounded, we also know that the
reachability graph has to be finite. Here, the reachability graph has 13 states
(out of 2048 = 211 theoretically possible ones), forming one strongly connected
component, see Figure 4. Therefore, the Petri net is reversible, i.e. the initial
system state is always reachable again, or in other words - the system has the
capability of self-reinitialization. Further, the liveness of the net has already been
decided structurally, so we know that each transition (reaction) appears at least
once in this strongly connected component.

Moreover, from the viewpoint of the discrete model, all these 13 states are
equivalent, i.e. any of those 13 states could be taken as initial state resulting in
exactly the same total (discrete) system behaviour. That is in perfect accordance
with the observations gained during quantitative analyses, see Section 4.2.

For reasons of completeness we explored all other possible sensible initial
states. Following our understanding that P-invariants in signal transduction net-
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works reflect different states of a given specie, the net should be covered by 1-
P-invariants. Therefore we had to consider only those initial markings which do
not contradict this assumption. None of these potential initial markings results
in a net whose behaviour is reversible and live, and only a few of them produce a
terminal strongly connected component in the reachability graph (meaning that
at least this part, consisting of mutually reversible reactions, is live).

This concludes the analysis of general behavioural net properties, i.e. of prop-
erties we can speak about in syntactic terms only, without any semantic knowl-
edge. The next step consists in a closer look at special behavioural net properties,
reflecting the expected special functionality of the network.

s1

s2

s3

s4

s5

s6

s7

s9

s10

s11

s13 s8

k1

k2

k3k4

k5

k6 k9
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k9k8

k7k10

k8

k11

k6

k10

k11

k1k6

k2

k6

k2

k7

k8

k1

k7k9

k10

k8k11

s12

Fig. 4. The reachability graph of the place/transition Petri net given in Figure 2. Nodes
represent states (markings), while the arcs are labelled with the transition responsible
for a given change of states. For a list of the complete state descriptions see table 2.
The initial state is highlighted in gray. In the reachability graph, the two concurrent
transition sequences (k6; k8) and (k9; k11; k1), compare the partial order run of Figure
3, are represented by all possible totally ordered (interleaving) sequences, blowing up
the state space.
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(6) Model checking of special behavioural properties. Special properties
are best expressed using temporal logics, e.g. Computational Tree Logic (CTL),
which is a branching time logic with interleaving semantics. For an introduction
into the specification of biologically relevant properties of biochemical networks
using CTL see [12].

Because we are in the fortunate position of having a bounded model, these
temporal-logic formulae can be checked using standard model checking tech-
niques. Furthermore, the model under consideration is 1-bounded. Therefore,
we can rely on a particularly rich choice of model checkers to solve this task [7].
In the case of our rather simple example the variety of model checkers is not
important, and the properties could even be checked manually. However, the
state space of more complex networks exceeds typically several millions.

We instantiate some of the generic property patterns provided in [12] and get
the following samples of meaningful statements for our running example, whose
truth can be determined via model checking:

– property 1: There are reachable states where ERK is phosphorylated and
RKIP is not phosphorylated.

EF [ (ERK-PP ∨ Raf-1* RKIP ERK-PP) ∧ RKIP ]

– property 2: The phosphorylation of ERK (to ERK-PP) is independent of
the phosphorylated state of RKIP.

E [ ¬(RKIP-P ∨ RKIP-P RP) U ERK-PP ]

– property 3: A cyclic behaviour w.r.t. the presence/absence of RKIP is
possible forever.

AG [ ( RKIP → EF (¬RKIP) ) ∧ (¬RKIP → EF (RKIP) ) ]

3.3 Summary

To summarize the preceding validation steps, the model has passed the following
validation criteria.

validation criterion 0

– All expected structural properties hold.
– All expected general behavioural properties hold.

validation criterion 1

– CPI.
– No minimal P-invariant without biological interpretation.
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validation criterion 2

– CTI.
– No minimal T-invariant without biological interpretation.
– No known biological behaviour without corresponding, not necessarily min-

imal T-invariant.

validation criterion 3

– All expected special behavioural properties, expressed as temporal-logic for-
mulae, hold.

It is worth noting that not all of the validation criteria outlined above are
always feasible. E.g. it only makes sense to ask for CPI as well as CTI for self-
contained (closed) systems, i.e. without boundary nodes. In the case of signal
transduction networks it depends on the modelling style whether the essen-
tial system behaviour can be explained by the discussion of only T-invariants.
Finally, validation criterion 3 relies on temporal logics as a flexible language
to describe special properties. Thus it requires seasoned understanding of the
network under investigation combined with the skill to correctly express the
expected correct behaviour in temporal logics.

Therefore, the set of meaningful validation criteria has to be adjusted to the
case study on hand, but it should become common practice to do some model
validation and to make the criteria applied explicit.

Now we are ready for a more sophisticated quantitative analysis of our model.

4 The Continuous Approach

In this section we transform our validated time-less discrete model, given as
place/transition Petri net, into a timed continuous one, specified as continuous
Petri net. For an introduction into continuous Petri nets see e.g. [13], [14].

The software tools, which have been used in this section, are: an extended
version of Snoopy [15], supporting modelling as well as analysis by some standard
numerical integration algorithms. Additionally, we use Gepasi [16] and Matlab
[17] for more detailed analyses.

4.1 Quantitative Modelling

In a continuous Petri net the marking of a place is no longer an integer, but
a positive real number, called token value (which we are going to interpret as
the concentration of a given specie). The instantaneous firing of a transition
is carried out like a continuous flow, whereby the current firing rate depends
generally on the current marking. To be precise we give the following definition.
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Definition 3 (Continuous Petri net ). A continuous Petri net is a quintuple
CON = 〈P, T, f, v, m0〉, where

– P and T are finite, non empty, and disjoint sets. P is the set of continuous
places (in the figures represented by bold cycles). T is the set of continuous
transitions (in the figures represented by bold rectangles).

– f : (P × T ) ∪ (T × P ) → IR+

0 defines the set of directed arcs, weighted by
non-negative real values.

– v : T → H assigns to each transition a firing rate function, whereby

H :=
⋃

t∈T

{

h|h : IR|•t| → IR
}

is the set of all firing rate functions, and

dom (v (t)) = •t.
– m0 : P → IR+

0 gives the initial marking.

A continuous transition t is enabled by m, iff ∀p ∈ •t : m(p) > 0. Due to
the influence of time, a continuous transition is forced to fire as soon as possi-
ble. The firing rate of an atomic (re-) action depends typically on the current
concentrations of the substances involved, i.e. of the token values of the transi-
tion’s preplaces. So we get marking-dependent, i.e. variable firing rates. Please
note, a firing rate may also be negative, in which case the reaction takes place
in the reverse direction. This feature is commonly used to model reversible reac-
tions by just one transition, where positive firing rates correspond to the forward
direction, and negative ones to the backward direction.

Altogether, the semantics of a continuous Petri net is defined by a system of
ordinary differential equations (ODEs), where one equation describes the con-
tinuous changes over time on the token value of a given place by the continuous
increase of its pretransitions’ flow and the continuous decrease of its posttransi-
tions’ flow:

m (p)

dt
=

∑

t∈•p

f (t, p) v (t) −
∑

t∈p•

f (p, t) v (t) .

Each equation corresponds basically to a line in the incidence matrix, whereby
now the matrix elements consist of the rate functions multiplied by the arc
weight, if any. Moreover, as soon as there are transitions with more than one
preplace, we get a non-linear system, which calls for a numerical treatment of
the system on hand.

With other words, the continuous Petri net becomes the structured descrip-
tion of the corresponding ODEs. Due to the explicit structure we expect to get
descriptions which are less error prone compared to those ones created manually
from the scratch. In fact, writing down a system of ODEs by designing continu-
ous Petri nets instead of just using a text editor might be compared to high-level
instead of assembler programming. In order to simulate the continuous Petri net,
exactly the same algorithms are employed as for numerical differential equation
solvers, see e.g. [15].
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Fig. 5. The flattened continuous Petri net, corresponding to Figure 2. The system
of ordinary differential equations defined by this net is given below in a structured
notation (generated by our continuous Petri net tool). We use the mi as synonyms for
the lengthy specie names. The initial concentrations reappear in Table 1.

dm1

dt
= r2 + r5 − r1

dm2

dt
= r2 + r11 − r1

dm3

dt
= r1 + r4 − r2 − r3

dm4

dt
= r3 − r4 − r5

dm5

dt
= r5 + r7 − r6

dm6

dt
= r5 + r10 − r9

dm7

dt
= r7 + r8 − r6

dm8

dt
= r6 − r7 − r8

dm9

dt
= r4 + r8 − r3

dm10

dt
= r10 + r11 − r9

dm11

dt
= r9 − r10 − r11

r1 = k1 ∗ m1 ∗ m2

r2 = k2 ∗ m3

r3 = k3 ∗ m3 ∗ m9

r4 = k4 ∗ m4

r5 = k5 ∗ m4

r6 = k6 ∗ m5 ∗ m7

r7 = k7 ∗ m8

r8 = k8 ∗ m8

r9 = k9 ∗ m6 ∗ m10

r10 = k10 ∗ m11

r11 = k11 ∗ m11

k1 = 0.53

k2 = 0.0072

k3 = 0.625

k4 = 0.00245

k5 = 0.0315

k6 = 0.6

k7 = 0.0075

k8 = 0.071

k9 = 0.92

k10 = 0.00122

k11 = 0.87
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In the quantitative model of the biochemical pathway under consideration
(see Figure 5), we associate a rate with each reaction, denoted by the rate con-
stants k1, k2, etc.. These were reaction labels in the qualitative model, and are
again placed in the figure next to the relevant reaction symbol (rectangle). In the
case of reversible reactions, the rate constants are given by kn, kn + 1 denoting
that kn is the forward rate and kn+1 the backward rate. E.g., the forward reac-
tion rate for the combination of Raf-1* and RKIP is k1, and the disassociation
rate for Raf-1 RKIP is k2.

4.2 Quantitative Analysis

In general, biochemists will wish to use ODE models of biochemical systems to
explore in a general manner possible observable behaviours of the systems, for
example the change in concentration of a component over time, or the steady-
state properties of the system including oscillatory behaviour. Specifically in
the case of signalling pathways the system components are proteins in both
complexed and uncomplexed forms and in phosphorylated and unphosphorylated
states. The kinds of experimental observations that can be made often result in
very coarse data points — for example immuno-blotting will give quite inexact
data on the relative concentrations of species at a few time-points, the data
varying quite a lot between repeated experiments. In addition, experiments are
often conducted in-vivo in cells, and immuno-blotting applied to the entire cell
contents (after lysing, or breaking down the cell wall) — hence there is very
little exactness possible in terms of concentrations since in reality these may
vary through the cell, but local concentrations may not be measurable by this
technique. Moreover it is often not possible to distinguish between the complexed
and non-complexed form of proteins – thus for example the relative concentration
of phosphorylated ERK (ERK-PP) will be given as a combination of ERK-PP
alone (m8) plus the ERK-PP component of the Raf-1* RKIP ERK-PP complex
(m4).

Given these inexactitudes, biochemists will want to know the answers to
general questions, such as “Will the concentration of the phosphorylated form
of protein X-PP rise for the first 10 minutes after a particular stimulus is given
to the cell, and then remain constant?”, and in the same experiment “Will the
concentration of the unphosphorylated form of protein Y rise from the start of
the experiment, peaking at 20 minutes at a concentration higher than that of
X-PP, and then fall off during the remainder of the time, eventually becoming
less than the concentration of X-PP?”.

The ODE solvers which are normally used to interpret ODE models of bio-
chemical networks rely on exact values of rate constants and initial concentra-
tions in order for the computations to be performed. Thus the results produced
by simulations of ODE models of networks may be over-exact with respect to
the characteristics of the real data. For this reason, biochemists will often inter-
pret the results of ODE-based simulations as indicators of the behaviour of the
components of the network, rather than being concerned with the exact value of
the concentration of a particular species at a particular point in time.
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We have performed a quantitative analysis of the results of simulating the
behaviour of the network using a system of ODEs. The aim of this analysis was
to determine whether the 13 ‘good’ initial states suggested by the qualitative
Petri net analysis were indeed in some way equivalent (they all result in the
same steady state), and that no other possible initial states can be used to give
the same results.

The differential equation model of the pathway, taken from Cho et al. [10] and
reproduced in Section 4 above, was coded in MatLab. Although these authors do
not explicitly state the initial concentrations of the 11 species when computing
the simulation of the network, we have deduced by inspection of Fig. 5 in their
paper which presents their simulation results that they are as given in the µMCho
column of Table 1. For the purposes of our computations we have mapped any
non-zero concentrations to 1, as in column µMPN of that table, hence our initial
concentrations correspond to the marking in the Petri net in Figure 2.

Table 1. Initial concentrations

Species µMCho µMPN
Raf1* 2.5 1
RKIP 2.5 1

Raf1 RKIP 0 0
RAF RKIP ERK 0 0

ERK 0 0
RKIP-P 0 0

MEK-PP 2.5 1
MEK-PP ERK 0 0

ERK-PP 2.5 1
RP 2.5 1

RKIP-P RP 0 0

Since there are eleven species, there are 211 i.e. 2048 possible initial states,
including that given in the original paper. Of these, 13 were identified by the
reachability graph analysis (Section 3.2) to form one strongly connected compo-
nent, and thus to be be “good” initial states (see Table 2).

These are ‘sensible’ initial states from the point of view of biochemistry, in
that in all these 13 cases, and in none of the other 2035 states, each protein
specie is in a high initial concentration in only one of the following states: un-
complexed, complexed, unphosphorylated or phosphorylated. These conditions
relate exactly to the 1-P-invariant interpretation given in our initial marking
construction procedure in Section 3.2.

We then computed the final steady state of the set of species for each possible
initial state, using the MatLab ODE solver ode45, which is based on an explicit
Runge-Kutta formula, the Dormand-Prince pair [18], with 100 time steps.

We found that all of the 13 ‘good’ initial states resulted in the same final
state, within the bounds of computational error of the ODE solver. These results
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Table 2. Initial 13 ‘good’ state configurations

Species S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
Raf-1* 1 0 0 1 1 1 1 1 0 0 1 1 1
RKIP 1 0 0 0 0 0 0 1 0 0 1 0 0
Raf-1* RKIP 0 1 0 0 0 0 0 0 1 1 0 0 0
Raf-1* RKIP ERK-PP 0 0 1 0 0 0 0 0 0 0 0 0 0
ERK 0 0 0 1 0 0 1 1 1 0 0 0 0
RKIP-P 0 0 0 1 1 0 0 0 0 0 0 0 1
MEK-PP 1 1 1 1 0 0 1 1 1 0 0 1 1
MEK-PP ERK 0 0 0 0 1 1 0 0 0 1 1 0 0
ERK-PP 1 1 0 0 0 0 0 0 0 0 0 1 1
RP 1 1 1 1 1 0 0 1 1 1 1 0 1
RKIP-P RP 0 0 0 0 0 1 1 0 0 0 0 1 0

are summarized in Table 3 which reports the mean steady state concentration
and standard deviation for each of the 11 species.

In the Appendix we reproduce two simulations of the model: State 1 (Fig-
ure 7) corresponding to the initial marking suggested by Cho et al [10] where
the initial concentration of ERK-PP is high and ERK is low, and State 8 (Fig-
ure 8) corresponding to the initial marking suggested by our approach described
above in Section 3.2 with ERK-PP low and ERK high. State 8 has been con-
firmed by an expert signal transduction researcher as the most sensible starting
state [19]. The equivalence of the final states, compared with the difference in
some intermediate states is clearly illustrated in these figures. For example, the
concentration of Raf-1* RKIP behaves overall in a similar manner in both State 1
and State 8, peaking before 10 minutes although the peak is greater when ERK
is not phosphorylated at the start of the experiment. In Figure 9 we reproduce
the computed behaviour of ERK-PP for all 13 good initial states, showing that
despite differences in the concentrations at early time-points, the steady state
concentration is the same in all 13 states.

We computed the Euclidean distances between the vector of mean values of
the final steady states of the 13 states in the reachability graph and each of
the final steady states for the states not identified by the reachability graph.
These distances ranged from 0.7736 to 6.0889, and we summarize these results
in Figure 6. None of the initial states which is not identified by the reachability
analysis resulted in a final steady state which was near that of the set of 13
‘good’ states.

4.3 Summary

In summary, our results show that

1. All of the 13 states identified by the reachability graph of the discrete Petri
net result in the same set of steady state values for the 11 species in the
pathway.
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Table 3. Mean values for steady states for the 13 ‘good’ initial states

Species Mean steady state concentration Standard Deviation
Raf-1* 0.2133 0.1225 * 1.0e-04
RKIP 0.1727 0.0854 * 1.0e-04
Raf-1* RKIP 0.2163 0.5546 * 1.0e-04
Raf-1* RKIP ERK-PP 0.5704 0.4346 * 1.0e-04
ERK 0.0332 0.0135 * 1.0e-04
RKIP-P 0.0200 0.0169 * 1.0e-04
MEK-PP 0.7469 0.6020 * 1.0e-04
MEK-PP ERK 0.2531 0.6020 * 1.0e-04
ERK-PP 0.1433 0.1846 * 1.0e-04
RP 0.9793 0.0471 * 1.0e-04
RKIP-P RP 0.0207 0.0473 * 1.0e-04
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Fig. 6. Distribution of ‘bad’ steady states as Euclidean distances from the ‘good’ final
steady state



20 Gilbert, Heiner

2. None of the remaining 2035 possible initial states of the discrete Petri net
results in a final steady state close to that generated by the 13 markings in
the reachability graph.

3. The transient behaviour — the crucial point of interest in signal transduction
networks — of the continuous model is sensible for the 13 states identified
by our method.

5 Related Work

There are several research groups, applying various kinds of Petri nets to model
and analyse biochemical networks. However, most of them are devoted to hybrid
Petri nets, see e.g. [8], [20]; for a bibliography of related papers see [21]. Hybrid
Petri nets comprise the discrete as well as the continuous case. Thus, they have to
be treated by dedicated simulation techniques, instead by standard ODE solvers.

An approach combining qualitative and quantitative analysis techniques is
proposed in [22]. In this paper time Petri nets are used to describe the steady
state behaviour of a given biochemical network, whereby the time intervals are
derived from the time-less model by help of the T-invariants, which are inter-
preted as firing count vectors. Interval-timed Petri nets provide a continuous
time scale, but keep the discrete firing behaviour. Therefore they can still be
treated in a discrete way, but they do not help in investigating continuous firing
behaviour, e.g. in the transient state of a given network.

An approach describing the automatic derivation of ODEs from stochastic
process algebra models of signalling pathways is presented in [23]. Consequently,
the authors employ different analysis methods, which might be complementary
to our ones, but they do not generate initial good markings.

Investigations on the relation between the properties of discrete and con-
tinuous Petri nets are fairly recent, as mentioned in [24]. In contrast to our
approach, these authors focus on technical applications, which are inherently
discrete. Then, they use the continuous model as a relaxation/approximation
of the discrete one to get a better efficiency of analysis. In any case, they find
themselves confronted with exactly the same questions we face: how do the prop-
erties of the one model relate to the properties in the other one. In particular
the paper mentions some open questions of great interest, the solution of which
coincide perfectly with our requirements.

6 Summary

We have created a discrete Petri net model of the influence of the Raf Kinase
Inhibitor Protein (RKIP) on the Extracellular signal Regulated Kinase (ERK)
signalling pathway, based on the ODE model presented by Cho et al [10]. We
have then analysed the discrete model using a set of Petri net based tools and
shown that the model enjoys several nice properties, among them boundedness,
liveness, and reversibility. Moreover, the net is covered by P-invariants and T-
invariants, all of them having sensible biological interpretation, and it fulfills
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several special functional properties, which have been expressed in temporal
logic. Reachability graph analysis identifies 13 strongly connected states out of
2048 theoretically possible ones, which permit self-reinitialization of the Petri
net. From the viewpoint of the discrete model, all these 13 states are equivalent,
and could be taken as an initial state resulting in exactly the same total (discrete)
system behaviour.

We have then transformed the discrete Petri net into a continuous Petri net,
defining ODEs. We have shown empirically that in the ODE model the 13 initial
states, derived from the discrete model, result in the same steady state. This
analysis was performed by numerically solving the system of ordinary differential
equations. Moreover, none of the other 2035 possible states result in a steady
state close to that derived using those identified by reachability analysis.

Altogether we advocate a two-step technology for the modelling and analy-
sis of biochemical networks in a systematic manner: (1) qualitative, i.e. (time-
less) discrete modelling and analysis, esp. for the beneficial effect of confidence-
increasing model validation, and (2) quantitative, i.e. (timed) continuous mod-
elling and analysis, esp. with the hope of the reliable prediction of behaviour.
For both steps we favour the deployment of both discrete as well as continuous
Petri nets, sharing the same net structures for a given case. The quantitative
model is derived from the qualitative one only by the addition of the quantitative
parameters. Hence both models are likely to share some behavioural properties.
However, the meticulous rules of this approach are the subject of further ongoing
investigations by the authors.
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Fig. 7. Dynamic behaviour for state 1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

C
on

ce
nt

ra
tio

n 
(r

el
at

iv
e 

un
its

)

State8

Raf−1Star
RKIP
Raf−1Star_RKIP
Raf−1Star_RKIP_ERK−PP
ERK
RKIP−P
MEK−PP
MEK−PP_ERK
ERK−PP
RP
RKIP−P_RP

Fig. 8. Dynamic behaviour for state 8
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Fig. 9. Dynamic behaviour of ERK-PP for all 13 ‘good’ states


