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Abstract-The qualitative analysis of biochemical reaction systems is presented. A discrete event 
systems approach is used to represent and analyze bioreaction pathways. The approach is based 
on Petri nets, which are particularly suited to modeling stoichiometric transformations, i.e. the 
inter-conversion of metabolites in fixed proportions. The properties and methods for the analysis 
of Petri nets, along with their interpretation for biochemical systems, are presented. As an 
example, the combined glycolytic and pentose phosphate pathway of the erythrocyte cell is 
presented to illustrate the concepts of the methodology. 
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INTRODUCTION 

In order to simulate and analyze a biochemical pathway one must research and 
incorporate in a model many characteristics and parameters that determine the behavior 
of the pathway. This requires the integration of a large volume of diverse data from the 
biological, chemical and physical sciences, if one attempts a complete quantitative 
analysis. Several methods for the analysis of biochemical reaction systems seek to 
address particular aspects of the modeling problem. Biochemical Systems Theory (BST) 
[l, 21 developed by Michael Savageau can be used to study the regulation, optimization 
and control of biochemical reactions. A power law approximation is used to express 
system behavior in terms of the concentrations and other parameters, such as kinetic 
orders and rate constants. The graphical models explored by Kohn and Letzkus [3] for 
modeling metabolic networks consisted of Kauffman binary networks [4], signal flow 
graphs [5] and bond graphs [6]. Derived from these graph models, a new model called 
MetaNets was introduced by Kohn and Lemieux [7]. The MetaNets method is based on 
maintaining the biochemical reaction structure in a graphical model consisting of 
functional nodes and interconnecting arcs. The method serves to identify the potential 
feedback sites and controlling enzymes in the network, without quantitative information. 
However, the model does not capture certain biochemical processes, such as transport 
mechanisms, thereby losing generality in its representation. Metabolic Control Theory 
(MCT) is a method for relating properties, such as flux or concentration of metabolites, 
to parameters of the network, such as concentrations of enzymes, to study the effect of 
perturbations in these parameters on the overall system behavior [8]. The theory 
developed independently by Kacser and Burns [9] and Heinrich and Rapaport [lo] has 
since been modified and applied by others [ 1 l-131. 

The methods described above include parameters and constants estimated quantitati- 
vely from experimental data. Sometimes, modeling a complex biochemical system 
involves data that are incomplete, uncertain or unreliable. For instance, a model of a 
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complex biochemical pathway is likely to involve many parameters describing kinetics 
and regulation; the absence of even one of these parameters may prevent evaluation of 
the model. Also, the primary data that are used to estimate model parameters sometimes 
contain experimental errors and inconsistencies. In addition, some parameters used in 
the model are not constant, e.g. the concentration of enzymes participating in a pathway 
may vary within a certain range. It is difficult to arrive at an accurate quantitative model 
for a biochemical pathway under these circumstances. Techniques suited for individual 
reaction mechanisms do not suffice since we require methods that are scalable to 
pathways of arbitrary size: Comprehensive experimental and calculated values are 
usually available for single reactions (or a small set of reactions) that are deemed 
important, but a complex pathway requires a much larger volume of data which is 
unlikely to be available. The problem of analyzing complex biochemical pathways in the 
absence of detailed accurate data remains unresolved and there is a need for a method 
based primarily on qualitative data rather than on quantitative parameters. 

Given the sparseness and uncertainty of data, it is practical to explore methods that do 
not require detailed quantitative data to reach general conclusions on the behavior of 
biochemical pathways. A qualitative method that excludes detailed simulations of the 
system is essentially independent of parametric information of the pathway, such as rate 
constants and cooperativity indices. A qualitative analysis allows us to draw preliminary 
conclusions about the biochemical pathway such as the influence of particular reactions, 
metabolites or pathway segments on the overall system. We would like to adopt a 
method that can identify, for example, key compounds (metabolites, enzymes, activa- 
tors, etc.) necessary for a biotransformation; metabolites capable of accumulation in 
unbounded amounts and those that exist in invariant amounts; behavior that results in 
cyclic transformations (futile cycles); potential effects on the overall behavior of a 
pathway due to modification of a portion of the pathway; and classes of behavior based 
on the reaction network structure of the system. 

A new method of qualitative analysis of biochemical pathways is presented in this 
article. The technique incorporates the use of a discrete event methodology for the 
representation and analysis of biochemical reaction networks. The reactions and other 
biological processes are modeled as discrete events and analyzed by applying Petri net 
theory and properties [15,16]. A brief overview of the Petri net theory relevant to the 
method is discussed in the next section. 

PETRI NET THEORY 

Petri nets are a mathematical and computational tool for the modeling and analysis of 
discrete event systems. Petri nets offer a formal way to represent the structure of a 
discrete event system, simulate its behavior and draw certain types of general conclusions 
on the properties of the system. The methodology has applications in a number of fields 
such as control engineering, manufacturing systems and computer science. 

The essential concepts in Petri net theory are outlined in this section. Detailed theory 
and applications of Petri nets are available elsewhere in literature [17-191. 

Definitions 

A Petri net is a directed graph (Fig. 1) formed by two kinds of nodes, called places and 
transitions. Directed edges, called arcs, connect places to transitions, and transitions to 
places. For the sake of convenience, the presence of multiple arcs between a single place 
and a single transition is represented by a single arc with an arc-weight. We associate a 
non-zero positive integer equal to the number of implied connecting arcs with this one 
weighted arc. 

A non-negative integer number of tokens may be assigned to each place; these 
numbers of tokens form the state of the Petri net (which will be defined as a marking, 
below). 
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Fig. 1. A Petri net graph with places, transitions and arcs. 

Pictorially, places are represented by circles, transitions by boxes, arcs by lines ending 
in an arrow, and tokens as black dots placed in the circles. Generally if there is no arc- 
weight explicitly specified on the graph it is assumed to be equal to one. 

Marking 

The state of a Petri net is determined by the number of tokens present in each place of 
the net. The marking M of a Petri net is a vector of size m X 1, where m is the number of 
places, whose elements correspond to the number of tokens present at each place of the 
Petri net. The execution of the Petri net changes the marking by decreasing tokens in 
certain places and increasing them in other places. The initial state of a Petri net before 
execution is called the initial marking &. 

Execution 

Each transition is associated (through arcs) with a finite number of input places and 
output places. In many types of models of discrete event systems, it is necessary to satisfy 
a set of pre-conditions (defined by the input places for Petri nets) before an event 
(transition for Petri nets) may occur; the event results in a set of post conditions (output 
places for Petri nets). 

In a Petri net a transition is enabled when the number of tokens in each input place is 
greater than or equal to the weight on the arc connecting that place to the transition. A 
transition with no input places, called asource transition, is always enabled. In Fig. 1, the 
transitions t, and f., are enabled, while the rest are not. 

An enabled transition can fire, consuming tokens from its input places and depositing 
tokens in its output places; the numbers of tokens consumed and produced are 
determined by the arc-weights. The firing of transitions can be understood as the 
movement of tokens, from one place to another, through the transitions. A transition 
with no output places, called a sink transition, can fire when enabled consuming the 
tokens from its input places. 

Figure 2 shows the same Petri net graph from Fig. 1 after firing several transitions. The 
firing of one enabled transition may deposit tokens in the input places of another 
transition - thus enabling that transition to fire in turn. In Fig. 1, t, and t4 are enabled, 
hence one possible firing sequence could begin with transition tl firing and depositing two 
tokens in place pl; then t4 firing, consuming one token from p3 and depositing two tokens 
in p2 (Fig. 2(a)). Similarly, the firing sequence tz, t3, tS and t6, starting from a marking of 
Fig. 2(a), will result in the marking of Fig. 2(b). 

State space representation 

Since the Petri net is presented as a model for a discrete event system, it is helpful to 
have a system of equations that can be used to specify and manipulate the state of the 
system. 
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Fig. 2. (a) Marking after firing enabled transitions t, and t, from Fig. 1 (b) Marking after firing in 

sequence t,, t3, ts and t6 from Fig. 2(a). 

For a Petri net with m places and IZ transitions, we can formulate [20] a state equation 
of the type 

Mk = Mk-, + ATuk, k=1,2,3,. . . (1) 
The index k represents a state in a firing sequence. For each k, Mk represents an m x 1 
vector, the marking after the kth firing; uk an IZ x 1 vector, the control uector indicating 
the transition fired at the kth firing; and A an IZ x m matrix, the incidence matrix whose 
elements aij denote the change in the number of tokens in place j due to the firing of 
transition i. The control vector uk is simply the unit vector, containing the entry of 1 in 
the position corresponding to the transition that fired, and 0 everywhere else. The matrix 
A describes the weights on the arcs, with an entry of aij = 0 describing the absence of an 
arc altogether between transition i and place j. 

If a particular marking M, is reached from the initial marking &, though a firing 
sequence u= {ul, u2, u3, . . . un}, and the state-equations are summed for all the firings in 
this u, we obtain 

M,=M,,+A’i uk 
k=l 

(2) 

We define x = &, uk , as an it X 1 vector, called the firing count vector. The element i in x 
indicates the number of times transition i must fire to transform M,, to M,,. Substituting 
the definition of x in Equation (2), we obtain 

or 

M,-MO=ATx (3) 

ATx = AM. (4) 
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Fig. 3. A transition as a representation of a sub-net. 

For example, from the Petri net graph of Fig. 1 we obtain the incidence matrix A and the 
initial marking l& as follows 

2 0 0 00 

-1 2 0 00 

o-3 1 10 
A= 

0 2-l 00 

1 -1 0 -1 1 

0 0 0 02 

Atk=l,t,fires... 

. u,=[l 0 0 0 0 O]T . . and M1=[2 0 1 1 llr 

Atk=2, t,fires.. . 

* I#*=[0 0 0 1 0 O]T . . and M,=[2 2 0 1 l]r 

and so on. 

Petri net properties relevant to the biochemical system 

Extendibility. If a high level of abstraction is initially adopted to construct a simpler 
Petri net, the net can be subsequently extended from the initial structure by modifying 
relevant sections of the net [21]. This modification does not involve changing the 
structure of the complete net. For instance, a transition can be visualized as the 
representation of a Petri subnet (Fig. 3) and any modification to this subnet is reflected in 
the behavior of the original transition. This feature is particularly useful in cases where 
the present knowledge is incomplete, and we would like a representation that can be 
extended without significant deviation from the existing structure. 

Abstraction. Petri nets allow abstraction in the representation of biochemical reaction 
systems. This corresponds, in many cases, to a process which is the reverse from that 
mentioned in the previous paragraph. For example, if a part of a Petri net model is not of 
primary interest in our analysis, it is possible to collapse this information to a smaller 
representation. 

Structural reduction. In addition to the above, large Petri nets can be reduced to 
smaller nets by substituting certain combinations of places and transitions following 
specific rules (Fig. 4) without sacrificing the original properties of the net [17]. Reducing 
the size of the net is of importance not only for reducing the complexity of the system but 
also in achieving more efficient computational analysis. 
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Fig. 4. Some examples of structural reductions that are possible in Petri net graphs. 

Boundedness, S-invariants and T-invariants. These properties do not depend on the 
initial marking M,, of the net, but only on the structure or connectivity of the net. 

A Petri net is said to be bounded if all reachable markings of the net are such that the 
number of tokens in each place is bounded by a finite value. A Petri net is structurally 
bounded if there exists an m-vector y of positive integers such that Ay G 0. The bounds on 
the places can be determined by the expression M(p) G (Mcy)ly(p), where M(p) is any 
reachable marking for place p and y(p) is the pth element in the solution vector y. 

S-invariants are defined by the solutions to the equation 

Ay=O. (5) 
The non-zero entries in y constitute the set of places whose total token count does not 

change with any firing sequence from M,, and is called the support of the invariant. In 
other words the equation Mry = Mry holds for all M reachable from MO. 

T-invariants are the solutions to the equation 

ATx=O, x20. (6) 

The solution vector x is the set of transitions that have to fire, from some M,,, to return 
the Petri net to the same M,,. 
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Liueness. A Petri net is said to be live if all transitions are potentially firable for all 
reachable markings of the net, i.e. if from any marking reachable from MO it is possible to 
fire any transition in the net through a subsequent firing sequence. Liveness is too 
stringent a criterion for most real life systems; a more practical solution is to test for the 
absence of deadlocks (i.e. transitions that are not enabled) in the net. 

The significance of these properties in the analysis of biochemical pathways will be 
discussed in detail in the latter section where we present an example. 

BIOCHEMICAL PATHWAYS 

The proposed approach to the qualitative modeling of a pathway incorporates the use 
of a discrete event methodology for the representation and simulation of bioreaction 
networks. The properties of Petri nets are useful in drawing qualitative conclusions about 
the behavior and structure of biochemical pathways. 

The representation of the essential components in a biochemical pathway, using Petri 
net terminology, is the first step in modeling the metabolic network as a discrete event 
system [20]. 

For biochemical pathways, places would represent compounds (such as metabolites, 
enzymes, cofactors, etc.) participating in the biochemical system. Tokens indicate the 
presence of a compound in certain proportions. 

Instead of having just one place represent each component, it may be necessary to 
prescribe two or more places when there are alternative physical attributes, changes in 
the activity of the compound, or distinct biochemical functions. 

For example, in Fig. 5(a), each place represents one biological compound, whereas in 
Fig. 5(b), two places are used to represent a difference in activities: One place represents 

Hexokinase 

0 A 
Glucose G6P 

+I+ 

0 

b ADP 
(a> 

Trypsin 

(zymogen) 

MITOCHONDRIAL 
MEMBRANE 

transport system 

Fig. 5. Correspondence of places to biological components. 
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A-B A-B-C-D 

Fig. 6. A transition can represent a single reaction, a chain of forward reactions or an abstraction 
of a subnet. 

the inactive zymogen and the other the active enzyme Chymotrypsin. As another 
example, if we would like to distinguish between compounds based on their location in 
the cell, we could have different places represent the same compound. For instance, in 
Fig. 5(c), the ATP pools inside and outside the mitochondrion in a cell are different and 
their relative concentrations are determined through a selective transport process. 
Hence, we could have two places, one representing the compound inside and the other 
representing the compound outside the mitochondrion. 

As would be natural, we assign transitions to represent individual reactions (Fig. 6). A 
series (chain) of forward reactions or an abstraction of a subnet could be represented as a 
single transition, if desired, provided that the intermediary compounds are not of 
primary interest. Arc-weights represent the stoichiometry of reactions, and the direction 
of an arc is based either on the thermodynamic feasibility or the physiological tendency 
of the reaction. 

EXAMPLE: METABOLIC PATHWAYS IN ERYTHROCYTES 

Pathway overview 

The pathways in an erythrocyte (red blood cell) are numerous as in any mammalian 
cell; the small set of pathways used as an illustrative example in this study includes the 
oxidative pentose phosphate pathway and the main glycolytic pathway [22, 231. 

The overall pathway as shown in Fig. 7, in conjunction with Tables 1 and 2, defines the 
various reactions occurring in the cell that use glucose as the substrate and produce 
lactate as the product under heavy energy loads, such as in brisk muscle activity. Also, a 
steady supply of NADPH is required to regenerate GSH that is essential in sustaining 
cell integrity by reducing harmful peroxides produced in the cell [24]. 



Qualitative analysis of biochemical reaction systems 17 

ATP ADP 

lo “6PA;‘BP -+-$A; 

ADP 14 

G 

NAD+ 
DHAP + 

P 
15 

1 

r= NADH 

NAD+ NADH ATP ADP ATF ADP 

Lx +u pyr ,t19/ PEP& 2PG 17 3-K u 1,3!WG 

Fig. 7. The combined metabolism of the glycolytic and the pentose phosphate pathways of an 
erythrocyte cell. 

Petri net representation 

The Petri net graph of the pathway of Fig. 7 is shown in Fig. 8. The place and transition 
mapping between the pathway and the model is defined according to the method of 
representation explained earlier and is listed in Tables 1 and 2. It is important to 
emphasize at this point that although the places labeled with an asterisk (*) occur more 
than once in the depiction of the Petri net, they in fact represent only one place with the 
appropriate label, for example ATP, ADP and F6P. The equilibrium reaction (reaction 
indices 13 & 14) is represented by two separate transitions since individual Petri nets 
must have a predefined directionality. The presence of the enzymes associated with each 
reaction is implicit in the representation of the transition unless otherwise noted. 

Analysis 

The qualitative analysis of metabolic pathways largely depends on the information that 
is required from the system. For instance, if we choose to concentrate our analysis on 
properties that are derived from the structural connectivity of the reactions we would 
analyze the Petri net model of the pathway based on structural properties of Petri nets 
defined earlier. To supplement such an analysis, we would also determine behavioral 
properties of the Petri net model to obtain functional qualities of the system. We 
illustrate a few of the properties applied in the context of a biochemical pathway. 

Table 1. Mapping between reactions in the pathway and transitions in the Petri net model 

Transition mapping for the Petri net model 
Index Enzyme/reaction Index Enzyme/reaction 

1 Glutathione oxidation reaction 2 Glutathione reductase 
3 G6P oxidation reactions 4 
5 Ribulose-T-phosphate isomerase 

Ribulose-S-phosphate epimerase 
6 Transketolase 

7 Transaldolase 8 Transketolase 
9 Hexokinase 10 Phosphoglucose isomerase 

11 Phosphofructokinase 12 Aldolase 
13 Triosephosphate isomerase (forward reaction) 14 Triosephosphate isomerase (backward 

reaction) 
15 GlyceraldehydeJ-phosphate dehydrogenase 16 Phosphoglycerate kinase 
17 Phosphoglycerate mutase 18 Enolase 
19 Pyruvate kinase 20 Lactate dehydrogenase 
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Table 2. Mapping between metabolites in the pathway and places in the Petri net model 

Index 

Place mapping for the Petri net model 

Metabolitelcompound Index Metabolite/compound 

9 
11 
13 
15 
17 
19 
21 
23 
25 

Orthophosphate (Pi), ionic form 
Adenosine diphosphate (ADP) 

Nicotinamide adenine dinucleotide, reduced 
form (NADH) 

Nicotinamide adenine dinucleotide phos- 
phate, reduced form (NADPH) 

Glutathione (GSH) 
XyluloseJ-phosphate (XuSP) 
Sedoheptulose-5-phosphate (S7P) 
Erythose-Cphosphate (E4P) 
Glucose (Glut) 
Fructose bisphosphate (FBP) 
1,3-Bisphosphoglycerate (1,3-BPG) 
2-Phosphoglycerate (2PG) 
Pyruvate (Pyr) 

2 
4 

6 

8 

10 Ribulose-5-phosphate (RuSP) 
12 Ribose-5-phosphate (RSP) 
14 Glyceraldehyde-3-phosphate (GAP) 
I6 Fructose-6-phosphate (F6P) 
18 Glucose-6-phosphate (G6P) 
20 Dihydroxyacetone phosphate (DHAP) 
22 3-Phosphoglycerate (3PG) 
24 Phosphoenolpyruvate (PEP) 
26 Lactate (Lac) 

Adenosine triphosphate (ATP) 
Nicotinamide adenine dinucleotide, oxi- 

dized form (NAD’) 
Nicotinamide adenine dinucleotide phos- 

phate, oxidized form (NADP+) 
Glutathione disulfide (GSSG) 

Model reduction. Abstraction: Petri nets allow us the flexibility to abstract certain 
information in the net which is not essential for the analysis of the overall pathway. For 
example, consider the pathway shown in Fig. 7, the corresponding abstract Petri net 
model in Fig. 8 has information that is implicit in the structure of the net such as the 
presence of enzymes, activators and co-factors. Abstraction of detailed information 
allows the analysis of large and complex systems without losing the overall properties of 
the system. 

The information of enzymatic activity can be abstracted by way of the subnet 
illustrated in Fig. 6. The representation of the enzymes becomes necessary when we are 
interested in studying the details of the influence of enzymes (such as their associated 
activators) on the behavior of the pathway as a whole. In Fig. 8 the oxidative reaction of 
glutathione with the participating peroxide is abstracted to a single transition (tJ. The 
abstraction follows from the assumption that if the availability of peroxides and the 
corresponding enzyme is unlimited then the only required condition for the activity of 
the reaction is the presence of glutathione. 

Fig. 8. Petri net graph of the erythrocyte metabolism shown in Fig. 7. 
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Fig. 9. Reduction of the subnet structure to a single transition. 

Structural reduction: this process reduces the number of intermediate metabolites 
represented in the pathway. The method allows us to eliminate certain combinations of 
places and transitions, defined earlier, such that the change does not affect the overall 
behavior of the model (in terms of specific Petri net properties, such as liveness and 
boundedness). 

In Fig. 8, if we assume that the compounds GSH, GSSG, NADPH and NADP+ are 
always present in proportions that permit the oxidative reactions to proceed, then the 
structure can be reduced to a single transition as shown in Fig. 9. The rules applied here 
are from the simple reduction rules presented in Fig. 4. 

Qualitutioe inference. Accumulation of metabolites (Boundedness): industrial biopro- 
cesses usually aim to produce a particular metabolite in the maximum amount achiev- 
able; in other biological systems, the accumulation of some intermediates may be toxic, 
and therefore undesirable. Thus, in a large network of reactions, the identification of 
those metabolites that can potentially accumulate under certain conditions is useful. The 
boundedness of a Petri net, for a given M,,, provides a criterion to identify such 
metabolite accumulation. 

As an example, consider the model from Fig. 8. The equations are set up as: 

AysO, y>O (7) 

The Petri net is bounded if there exists a solution to the above set. One such solution 
to the equation is y = [l, 3,3,4,4,5,5,10,5,16,16,16,25,7,14,16,18,17,15,7,6,5, 
4,3,&l]‘: The bound on each place can now be calculated, given the initial marking, as: 

M(P) 6 (M~Y)~Y(P), G-9 

where M(p) is any reachable marking in place p and y(p) is the pth element in the vector 
y. For our case, if we consider the initial marking M0 = [l, 3,0,3,0,2,0, 1, 0, 0, 0, 0, 0, 
0, 0, 0,3, 0, 0, 0, 0, 0, 0, 0, 0, O]r, the bounds on the set of places P= ij+, p4, per p8, pu} 
are (32, 24, 19.2, 9.6, 19.2}, respectively. The bounds for any general class of Petri nets 
are conservative; therefore the concentrations (moles) of the corresponding metabolites 
may not reach these bounds under any possible conditions of the pathway, given the set 
of initial concentrations. A method to improve this bound is by considering the minimal 
support S-invariants [ 171 demonstrated later in this section. 

Invariant proportions (S-invariants): in the Petri net model of a pathway the non-zero 
entries of an S-invariant determine the set of compounds whose total net concentrations 
remain unchanged in the course of a biotransformation. This property occurs with 
compounds that act in a catalytic capacity. For example, the unbound form of enzymes, 
along with all its bound (or inactivated) forms, may collectively represent an S-invariant. 
This will occur if there is no production of new enzyme, but merely association/ 
dissociation and activation/inactivation events. S-invariants may also occur for currency 
metabolites (such as ATP, ADP, and AMP) if, in the system being modeled, consump- 
tion of one member of the family is always accompanied by production of another (in an 
equal number of moles). 
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The S-invariants for our example can be computed from Equation (5) based on the 
incidence matrix for the Petri net of Fig. 8 and are as follows: 

y1= [L 0, 0, -1, o,o,o, o,o, (4% (4% 0, o,o, 0,&O, 

o,o,o, o,o,o, 11’ 

y2= [-1, -1, 0, 1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1, 0, -1, -2, -1, -1, 

0, 0, 091, OIT 
y3= [l, l,O, o,o, o,o,o, 0, 1,1,1,1,1,1,1,0,1,2,1,2, 

1, 1, 170, or 

Y4 = [O, 0, 0, 070, o,o 32 71 70 70 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0 70 70 ,0,01* 

55 = [O, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 09% 0, 0, 0, 0, 0, 0, 0, 

o,o,o, 0, or 

Y6 = Lo, O, O, l, l, O, O, O, O, O, 0~0, 0~0, 0,&o, 0, 0~0, 0, 

o,o,o, 0, OIT 

Y7 = [O, 1, 1, 0, 0, 0, 0, 0, 0, 07% 0, 0, 0, 0, 0, 0, 0, 0, (40, 

07% 070, w 
The equality M,ry = Mry is satisfied for a given initial marking M,, and all reachable 

markings M. This can be thought of as a weighted sum of the tokens present in the 
support of the invariant. The property of conservation is evident in the above statement 
and is demonstrated by the fact that the set of invariants {y7, y6, ys} includes the currency 
metabolites ATP, ADP; NAD+, NADH; and NADP+, NADPH, as would be expected, 
since the combined moles of the pairs must remain constant. The other set of invariants is 
not as obvious and requires careful consideration. The invariant y4 corresponds to the 
GSSG, GSH pair of compounds. The reduction of GSSG produces 2 moles of GSH and 
in the oxidative reaction 2 moles of GSH combine to form GSSG. Thus to conserve the 
token count within the pair, the number of tokens has to be weighted to reflect the 
reaction stoichiometry. The invariant y3 corresponds to the set of compounds {Pi, ATP, 
RuSP, XuSP, R5P, S7P, GAP, E4P, F6P, G6P, FBP, DHAP, 1,3-BPG, 3PG, 2PG, 
PEP} which indicates the conservation of phosphate groups among this set of compounds 
in the pathway. The invariant formed by the sum of basis invariants yr +yz+y3 
corresponds to a straight chain {Pi, 1,3-BPG, 3PG, 2PG, PEP, Pyr, Lac} that does not 
have any external input arcs to the places. The number of tokens in such a chain of places 
remains constant no matter which transition fires in the Petri net. 

The minimal support invariants can be used to improve on the bounds by the method 
described in [17]. The bounds are calculated for the minimal support invariants by the 
expression M(p) d Min [(M,Tyi)lyi(p)], w  h ere the minimum is taken over all non-negative 
minimal support S-invariants yi such that yi(p) #O. The values calculated for the set of 
places P = (p2, p4, P6, ps, p22) are {3,3,2,1,4}. This gives a better description of the upper 
bounds on the token count for selected places given the initial marking. 

Continuous operation (T-invariants): T-invariants of a pathway indicate the presence 
of cyclic firing sequences. This can be interpreted as a condition where a set of reactions 
(or the entire pathway) can be in a state of continuous operation. For the model in the 
example, there exists only one T-invariant, x = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 
0, 0, O]r. Indeed, this corresponds to the reversible reaction (indices 13 & 14) between 
DHAP and GAP. No other cycles are present in this Petri net. In other cases, however, 
more complicated T-invariants may arise. 

Deadlock free pathways (Liveness): a general method for determining the property of 
liveness for a Petri net has not been developed; however there are methods to determine 
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the nonexistence of deadlock markings [25], which are markings where no transition is 
enabled. This is important, from the point of view of modeling biochemical pathways, 
because it determines the possibility of metabolic blocks that could hinder the progress of 
the reactions. 

A method described by Ivanov [25] determines the existence of deadlock markings in a 
Petri net. The method generates all (reachable and unreachable) deadlock markings 
using a logical predicate function, and then tests for their reachability using the matrix 
representation of the Petri net. 

An outline of the method follows. A logical function c is defined based on the token 
count of the input places to transition i, such that Fi = 1 would indicate that the transition 
is not enabled. The equality to 1 of the conjunction K, formed by all F;(i= 1 . . n), 
would indicate the non-existence of enabled transitions (i.e. a deadlock) in the Petri net 
for some given marking. The expression K is reduced by identities of Boolean algebra 
and simplification rules [25]. The complete set of marking vectors, M(K) that would 
result in K= 1 is constructed. This is the set of all deadlock markings of the Petri net. 

The S-invariants of a Petri net are used to describe the invariant properties of the Petri 
net and can be used to eliminate those markings that are not reachable. All reachable 
markings from some l& must satisfy MT*%’ = MoT*$‘, with Y an m X k matrix, (where 
k = n-r and r is the rank of A) formed by the S-invariants of the Petri net. Further analysis 
is performed to find those marking vectors that are actually reachable, using the matrix 
representation of the Petri net. If the equation M - MC, = ATx has no solution on the set 
M(K), then the Petri net has no deadlock markings reachable from that MC,. For Petri 
nets that have S-invariants, only those markings of the set M(K) that satisfy the invariant 
properties need be checked for the reachability condition. 

The analysis was applied to the erythrocyte glycolysis example with different initial 
markings. The analysis shows that it is possible to identify those initial markings that 
result in a deadlock in the Petri net of the pathway. This translates, in the case of 
biochemical pathways, to the identification of proportions of starting substrate concen- 
trations that could potentially lead to an insurmountable block in the course of the 
pathway. The analysis assumes that the proportions between the metabolites are finite 
and are not altered except by the normal progress of the reactions of the pathway. The 
procedure applied to the initial condition M,, (Table 3) shows the existence of deadlocks 
in the pathway. One such reachable deadlock marking is M, that shows the formation of 
XuSP in the same proportion as the substrate Glut and the unavailability of RuSP for 
subsequent reaction. This is one outcome among many reachable deadlock markings, 
such as M2 and M9 The initial condition Mb does not lead to any deadlock markings and 
the justification would be the cyclic nature of the reversible reaction (13 and 14) between 
DHAP and GAP that could continue indefinitely. The important aspects of this analysis 
lie in predicting the existence of deadlocks in a pathway structure based on the presence 
of metabolites in certain proportions. One can systematically identify those proportions 
between metabolites that could potentially lead to deadlocks. 

SUMMARY 

This article provided an introduction to the analysis of metabolic pathways as discrete 
event systems, using the methodology of Petri nets. The use of discrete event and other 
qualitative methods is very useful for gaining preliminary insights into the behavior of 
biochemical pathways, even in the absence of quantitative data. The analysis of large 
complex networks can be handled with the same set of simple structural and behavioral 
properties. 

The Petri net methodology is often useful in the analysis of complex biochemical 
pathways when it is necessary to determine the role of particular reactions. The 
properties of a Petri net model of the pathway may provide a preliminary test of possible 
experimental outcomes. In a pathway with several species and reaction steps, it is 
difficult to screen for instances where elimination of a reaction might block the pathway 

or result in the accumulation of a species. It is not necessary for a biochemist to 
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Table 3. Deadlock markings M,, Mz, M, are reachable from 
the initial marking IV&,. Mh does not lead to any deadlock 

marking 

Place Metabolite & Ml 
1 Pi 6 6 
2 ATP 3 0 
3 ADP 0 3 
4 NAD+ 6 6 
5 NADH 0 0 
6 NADP+ 2 2 
7 NADPH 0 0 
8 GSSG 1 1 
9 GSH 0 0 

10 R&P 0 0 
11 Xu5P 0 3 
12 RSP 0 
13 S7P 0” 0 
14 GAP 0 0 
15 E4P 0 0 
16 F6P 0 0 
17 Glut 3 0 
18 G6P 0 0 
19 FBP 0 0 
20 DHAP 0 0 
21 1,IBF’G 0 0 
22 3PG 0 0 
23 2PG 
24 PEP 8 

0 
0 

25 PYr 0 0 
26 Lac 0 0 

M2 
6 
0 
3 
6 
0 
2 
0 
1 
0 
0 
0 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

M3 
6 
0 
3 
6 
0 
2 
0 
1 
0 
0 
0 
0 
0 
0 
0 
3 
0 

8 
0 
0 
0 

8 
0 
0 

WI,’ 
6 
3 
0 
6 
0 
2 
0 
1 
0 
0 
3 
2 
0 
0 
0 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

experimentally investigate the behavior of the complete reaction system when it is 
possible to deduce properties of interest with this method. For example, in a biochemical 
pathway one expects a change in reaction rates as a result of a nonfunctional enzyme. In 
the Petri net model of the pathway, one would examine the S-invariants containing the 
input or output places of the non-firing transition (nonfunctional enzyme). The invar- 
iants would contain those places that are likely to be affected by the change. Quantitative 
evaluation can be confined to the set of metabolites contained in the S-invariants to 
investigate experimentally the change in reaction rates. 

The methodology of Petri nets demonstrates the use of qualitative methods as useful 
preliminary analysis tools for biochemical pathways. The method is easy to implement 
and visually comprehensible. However, the solution to some Petri net problems, notably 
the determination of liveness, reachability, and boundedness, has not been achieved for 
the general Petri net structure [ 181. The issue of complexity and decidability of problems 
in the general class of Petri nets is a matter of concern; for practical purposes, one may 
strive to model the system (or parts of the system) through one of the restricted structural 
classes [17] of Petri nets, which allow easier determination of properties. 

The modeling power of Petri nets can also be extended by suitable modifications to the 
basic definition. In fact, the extension of Petri nets by the inclusion of inhibitor arcs (i.e. 
a transition is only enabled when the input place connected by this arc does not contain 
any tokens) can increase the modeling power of Petri nets to that of Turing machines 
[18]. Naturally, the extension of the modeling power exacerbates undecidability and 
complexity obstacles. This increase in modeling power leads to a decrease in the 

ClASSIFICATlON 

MODELING 
MODIFICATION 

DECISION 
POWER POWER 

EXTENSION 

Fig. 10. Effect of modification of Petri nets on the modeling and decision (analytical) powers. 
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analytical power of methods for determining properties of Petri nets (Fig. 10) which is an 
essential feature of the methodology. Thus, an important task is the identification of 
appropriate narrow classes of nets that combine reasonable expressive power for the 
domain of biochemical pathways without undue complexity burdens. 
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