DATA STRUCTURES
AND

!'_ ALGORITHMS

Lecture Notes 2

Prepared by inanc TAHRALI

i Recapture

= Asymptotic Notations
= O Notation
= () Notation
= O Notation
= 0 Notation

i Big Oh Notation (O)
Provides an “upper bound” for the function 7

Definition :

= T(N) = O (f(N)) if there are positive constants
¢ and 1, such that

T(N) < cf(N) when N = n,
= T(N) grows no faster than f(N)

= growth rate of T(N) is less than or equal to growth
rate of f(N) for large N

= f(N) is an upper bound on T(N)
= not fully correct !

i Omega Notation (Q)

= Definition :

T(N) = Q (f(N)) if there are positive constants
cand 71, such that T(N) = cf(N) when N= n,

= T(N) grows no slower than f(N)

= growth rate of T(N) is greater than or equal to
growth rate of f(N) for large N

= f(N) is a lower bound on T(N)
= not fully correct !

i Theta Notation (0)

= Definition:
T(N) = 6 (h(N)) if and only if
T(N) = O(h(N)) and T(N) = Q(h(N))

= T(N) grows as fast as h(N)
= growth rate of T(N) and h(N) are equal for large N
= h(N) is a tight bound on T(N)

= not fully correct !

i Little o Notation (0)

= Definition :

T(N) = o(p(N)) if
T(N) = O(p(N)) and T(N)#8(p(N))

= p(N) grows strictly faster than T(N)

= growth rate of T(N) is less than the growth rate of
p(N) for large N

= p(N) is an upperbound on T(N) (but not tight)
= not fully correct !

!_h ROAD MAP

= Model

= What to Analyze ?

= Running Time Analysis

s General Rules

s Recursive Calls

s Maximum Subsequence Sum Problem
s Binary Search

s Experimentally checking analysis

i MODEL

= A formal framework for analysis
(simplify the real computers)

= There are many models
= Automata

= Turing Machine
= RAM

i MODEL

= We use RAM model (normal computer)

addition

multiplication X take a unit time
comparison

assignment /

fixed size word (32 bit)

no complicated operation supported

= requires an algorithm (algorithm may not take unit
time)

i What to Analyze ?

= Running Time (most important !)
= Required memory space

Run-time complexity is effected by

= compiler \
~ usually effects the constants &
= computer lower order terms

= algorithm } use asymptotic notation

10

i Running Time Analysis

« Emprical - after implementation
= Theoritical > before implementation

= If there are many algorithms ideas, we need
to evaluate them without implementation

= We will use 0-notation
= drop constants
= ignore lower order terms

11

i Running Time Analysis

= Example:

Int sum (int N)

{
Int i, partial sum - does not count
partial sum = O; 2> 1
for (1=1; i<=N;, i++) 2> 1+(N+1)+N
partial sumt=i *i *i; -> 3N
return partial sum 2> 1
}
5N + 4

6(N)

12

What to Analyze ?

= Running Time Analysis

= General Rules

s Recursive Calls

s Maximum Subsequence Sum Problem
s Binary Search

s Experimentally checking analysis

13

i GENERAL RULES

= RULE 1 : For Loops

The running time of a for loop is at most the running
time of the statements in the for loop times the
number of iterations

Int 1, a = 0;

for (1=0; 1I<n; |I++)

{
print i: T(n) = 6(n)
a=a+ti ;

}

return i; 14

i GENERAL RULES
= RULE 2 : Nested Loops

Analyze nested loops inside out

Example :

for (int 1=1;i<=q;I ++)

{
for (int j=1;j<=r:j++) ’
K+ }G(F) 6(a)
} J
T(n) = 6(r*q) N

i GENERAL RULES

= RULE 3 : Consequtive Statements

Add the running times

for ...

for ...

lll,

for ...

-

-
\

_ 6(N)

>~ B(N2)

>6(N2)

16

i GENERAL RULES

= RULE 4 : If / Else

if (condition) + T5(n)

S1; } Tun) | T(n)
else

SZ; } Tz(n) J

Running time is never more than the running time of
the test plus larger of the running times of S1 and S2

(may overestimate but never underestimates)

T(n) < T3(n) + max (T,(n), T,(n)) 17

i Types of complexition

Tworst (N) = maX{T(I)} - USU&”y used

IH=N

T, (N)=>'T(1).Pr(1) - difficult to compute

=N

Toes (N) = min{T(I)}

[I=N

Tworst (N)2 Tav(N) 2 Tbest (N)

T(N) =0(T g (N)) = Q (T (N)) s

i GENERAL RULES
= RULE 4 : If / Else

if (condition) } Ti(n)

oL } Tun) | T(n)
else

S2; } T,(n) J

T,, (n) =Ts(n) + max (T,(n), T,(n))
T, (n) =T5(n) + min (T,(n), T,(n))
Tav (n) = p(T)Tl(n) + p(F)TZ(n) + T3(n)

p(T) = p (condition = True)

p(F) = p (condition = False)
19

i GENERAL RULES

= Example:

if (condition)]:T3(n) = 9(n)

S1; T,(n) = 6(n2) , T(n)
else

S2; } T,(n) = 6(n)

Ty (n) =T;(n) + max (T, (n), T,(n)) = 6(n?)
T, (n) =T; (n) + min (T, (n), T,(n)) = 6(n)

if p(T) = p(F) =2
T,y (n) = p(T)T, (n) + p(F)T, (n) + T3 (n) = 8(n?)

T(n) = 0 (n?) = Q (n) 20

What to Analyze ?

= Running Time Analysis

s General Rules

= Recursive Calls

s Maximum Subsequence Sum Problem
s Binary Search

s Experimentally checking analysis

21

i RECURSIVE CALLS

Example 1:
Algorithm for computing factorial

Int factorial (int n)

{
i f (n<=1)
return 1;
el se }
return n*factorial (n J;
}
T(n) = cost of evaluation of factorial of n
T(n) =4+ T(n-1)
T(1) =2

1 for multiplication
+ 1 for substraction
+ cost of evaluation of

factorial(n-1)

22

i RECURSIVE CALLS

T(n) =4 + T(n-1)
T(n) =4 + 4+ T(n-2)
"(n) =4+ 4+ 4+ T(n-3)

T(n) = k*4 + T(n-k)

T(n) = (n-1)*4 + T(n-(n-1))
T(n) = (n-1)*4 + T(1)

T(n) = (n-1)*4 + 2

T(n) = 0 (n)

k=n-1=>

23

i RECURSIVE CALLS

Example 2:
Algorithm for fibonacci series
Fib (int N)

{
1T (N<=1)
return 1;

el se
return Fi b(N-1) +Fi b(N- 2);

}
T(N) = T(N-1) + T(N-2) +4 , T(1)=T(0)=2
=> T(N) = O(2") (by induction) y

!_h ROAD MAP

Model

What to Analyze ?

= Running Time Analysis

s General Rules

m Recursive Calls

= Maximum Subsequence Sum Problem
s Binary Search

s Experimentally checking analysis

25

MAXIMUM SUBSEQUENCE SUM
PROBLEM

= Given (possibly negative) integers A,, A,,..., Ay, find

max ZJ: Ak

1<i<j<N k=i

-2 11 -4 13 -5 -2
A[2,4] = sum = 20
A[2,5] = sum = 15

= There are many algorithms to solve this problem ! 26

MAXIMUM SUBSEQUENCE SUM

i PROBLEM
O(N?)

T (Time)
4

O(N logN)
O(N?)
O(N)

N (Input Size)

= for small N all algorithms are fast
= for large N O(N) is the best

27

MAXIMUM SUBSEQUENCE SUM

i PROBLEM

1) Try all possibilities exhaustively

f f
I j
for each i (0 to N-1)
for each j (i to N-1)
compute the sum of subsequence for (i to j)
check if it is maximum

T(N) = O(N3) 2

Algorithm 1:

;’r*

wla
Eal

/’"a‘r
fx‘:’r
,-';*

!,H-k
/:‘r

(‘,f*.':

1%/
2%/

- 3*’[

4%/
oot f
.Ef-.-(/

?1‘:},-"
g/

gy

int

MaxSubsequenceSum(const int A[], int N)

{

int ThisSum, MaxSum, 1, J, k;

MaxSum = 0;
for(i = 0; 1 < N; i++)
for(j =15 3 < N; J++)
{
ThisSum = 0;
farf kK = 15 k €= 35 k+t)
ThisSum += A[k];
if(ThisSum > MaxSum)
MaxSum = ThisSum;
}

return Max5um;

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

29

MAXIMUM SUBSEQUENCE SUM
PROBLEM

+

2) How to compute sum of a subsequence
j

2 A=A +kz:_:'°k

k=i

= We can use previous subsequence sum to
calculate current one in O(1) time

T(N) = O(N2)

30

Algorithm 2:

i
e
i

L

V&
Ve

j,l' .3

";"ﬁr
,-’l’ﬁ—

S
= aE
S

4%/
5}'{4}

6‘:'4'!,(
7%/

B g

MaxSubSequenceSum(const int A[], int N)

1

}

int ThisSum, MaxSum, 1, J;

MaxSum = 0
for(1 = 03 1 < Nj 4+)
{
ThisSum = 0Q;
for{ j = 1; j < N; j++)

{
ThisSum += A[j 1;
if(ThisSum > MaxSum)
MaxSum = ThisSum;
}

i

return MaxSum;

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

31

MAXIMUM SUBSEQUENCE SUM

i PROBLEM

3) Compeletely different algorithm ?
Divide and Conquer Strategy

Maximum subsequence can be

divide = inL
solved recursively
= INR
L R
Solve L Solve R = in the middle, in both sides

largest sum in L ending with
middle element

-+

largest sum in R begining W|th
middle element

combine

ll..l"a::
If.l"Fc'
lll.l'-ﬂ

II,.-'-.'e
,.-".*
JI.-":-'r
e

f.-":.‘.-
II,.-"ﬂ.-

1%/
2%/
3%/

4%/
Tl
i 4
Bk

B®/
Ll

FELOE)
Vs s R
JE12%

Pl hird
14/

i S
LAIBY
FELES

fx18%/
i B

static int
MaxSubSum({ const int A[], int Left, int Right)

i

int MaxLeftSum, MaxRightSum:

int MaxlLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;

int Center; 1:

if{ Left == Right) /% Base Case 2/
1FC AL Left] >0 D
return A[Left]:
else
return 0O;

Center = { Left + Right) [2;
MaxLeftSum = MaxSubSum({ A, Left, Center);
MaxRightSum = MaxSubSum(A, Center + 1, Right):

MaxLeftBorderSum = 0; LeftBorderSum = 0
for{ 1 = Center; i == Left:; i-==)
{
LeftBorderSum += A[i 1;
if{ LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum = LeftBorderSum;

i

MaxRightBorderSum = 0; RightBorderSum = 0:
for{ i = Center + 1; i <= Right: i++)
{
RightBorderSum += A[7];
if(RightBorderSum > MaxRightBorderSum)
MaxRightBorderSum = RightBorderSum;

H

return Max3({ MaxlLeftSum, MaxRightSum,
MaxlLeftBorderSum + MaxRightBorderSum J);

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

33

Algorithm 4:

int
MaxSubsequenceSum(const int A[1, int N)
{
int ThisSum, MaxSum, j;
s R ThisSum = MaxSum = 0;
o g for(3 = 0; J < N; Jj++)
{
ol T ThisSum += A[7 1;
Pl v if(ThisSum > MaxSum)
i MaxSum = ThisSum;
G else if(ThisSum < 0)
* JEy ThisSum = 0:
b
i B/ return MaxSum;

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

34

What to Analyze ?

= Running Time Analysis

s General Rules

m Recursive Calls

s Maximum Subsequence Sum Problem
= Binary Search

s Experimentally checking analysis

35

Binary Search

/’1"-:
/"..‘r

V&
Ve,
Ve

/:.‘:
/"1-':'

ey

l:’:/
St
3:’:/
4%/
51-':/

6%/
?“;‘:J/

3‘.’{/
91‘&'/’

int

BinarySearch(const ElementType AL 1, ElementType X, int N)

d

int Low, Mid, High;

Low = 0; High = N - 1;
while(Low <= High)

{ Mid = (Low + High) / 2;
ifC AL Mid] < X)
Low = Mid + 1;
else
FEC AL Mid 1% 1)
High = Mid - 1;
else
return Mid; /* Found */
ieturn NotFound; /* NotFound is defined as -1 */

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

20

!_h ROAD MAP

Model

What to Analyze ?

= Running Time Analysis

s General Rules

s Recursive Calls

s Maximum Subsequence Sum Problem

s Binary Search

= Checking your analysis experimentally

37

iChecking Your Analysis Experimentally

= Implement your algorithm, measure the
running time of your |mplementat|on

= check with theoretical results

= When N doubles (2x)

= linear => 72X
= quadratic => 4x
= Cubic => 8X

what about logarithm ?
O(N) O(N logN)

not easy to see the difference !
38

iChecking Your Analysis Experimentally

T, (N) = theoretical running time
T. (N) = experimental running time

Let T.(N) = O(f(N))
T,(N) _ T,(N)
T.(N) f(N)

= if converges to a constant
f(N) is a tight bound
= if converges to zero
not tight bound (overestimate)
=« if diverges
underestimate 39

compute

iChecking Your Analysis Experimentally

T,

Te

Te /Tt

40

iChecking Your Analysis Experimentally

4

41

