DATA STRUCTURES AND ALGORITHMS

Lecture Notes 2

Prepared by İnanç TAHRALI

Recapture

- Asymptotic Notations
- O Notation
- Ω Notation
- Θ Notation
- o Notation

Big Oh Notation (O)

Provides an "upper bound" for the function f

Definition :

- $T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq c f(N)$ when $N \geq n_{0}$
- $T(N)$ grows no faster than $f(N)$
- growth rate of $T(N)$ is less than or equal to growth rate of $f(N)$ for large N
- $f(N)$ is an upper bound on $T(N)$
- not fully correct !

Omega Notation (Ω)

- Definition :
$T(N)=\Omega(f(N))$ if there are positive constants c and n_{0} such that $\mathrm{T}(\mathrm{N}) \geq c \mathrm{f}(\mathrm{N})$ when $\mathrm{N} \geq n_{0}$
- $\mathrm{T}(\mathrm{N})$ grows no slower than $\mathrm{f}(\mathrm{N})$
- growth rate of $T(N)$ is greater than or equal to growth rate of $f(N)$ for large N
- $f(N)$ is a lower bound on $T(N)$
- not fully correct !

Theta Notation (θ)

- Definition :

```
\(T(N)=\theta(h(N))\) if and only if
\(T(N)=O(h(N))\) and \(T(N)=\Omega(h(N))\)
```

- $T(N)$ grows as fast as $h(N)$
- growth rate of $T(N)$ and $h(N)$ are equal for large N
- $h(N)$ is a tight bound on $T(N)$
- not fully correct !

Little o Notation (o)

- Definition :

```
\(T(N)=o(p(N))\) if
\(T(N)=O(p(N))\) and \(T(N) \neq \theta(p(N))\)
```

- $p(N)$ grows strictly faster than $T(N)$
- growth rate of $T(N)$ is less than the growth rate of $p(N)$ for large N
- $p(N)$ is an upperbound on $T(N)$ (but not tight)
- not fully correct !

ROAD MAP

- Model
- What to Analyze ?
- Running Time Analysis
- General Rules
- Recursive Calls
- Maximum Subsequence Sum Problem
- Binary Search
- Experimentally checking analysis

MODEL

- A formal framework for analysis (simplify the real computers)
- There are many models
- Automata
- Turing Machine
- RAM

MODEL

- We use RAM model (normal computer)
- addition
- multiplication
- comparison
- assignment
- fixed size word (32 bit)
- no complicated operation supported
- requires an algorithm (algorithm may not take unit time)

What to Analyze ?

- Running Time (most important !)
- Required memory space

Run-time complexity is effected by

- compiler
usually effects the constants \&
- computer lower order terms
- algorithm $\}$ use asymptotic notation

Running Time Analysis

- Emprical \rightarrow after implementation
- Theoritical \rightarrow before implementation
- If there are many algorithms ideas, we need to evaluate them without implementation
- We will use 0-notation
- drop constants
- ignore lower order terms

Running Time Analysis

- Example:

```
int sum (int N)
{
            int i, partialsum; }\quad->\mathrm{ does not count
            partialsum = 0;
            for (i=1; i<=N; i++)
            partialsum+=i*i*i; -> 3N
            return partialsum;
            -> 1
}
\[
\begin{aligned}
& =5 \mathrm{~N}+4 \\
& =\theta(\mathrm{N})
\end{aligned}
\]
```


ROAD MAP

- Model
- What to Analyze ?
- Running Time Analysis
- General Rules
- Recursive Calls
- Maximum Subsequence Sum Problem
- Binary Search
- Experimentally checking analysis

GENERAL RULES

- RULE 1 : For Loops

The running time of a for loop is at most the running time of the statements in the for loop times the number of iterations

```
int i, a = 0;
for (i=0; i<n; i++)
{
    print i;
    a=a+i;
return i;
```

```
}
```

```
}
```

$$
T(n)=\theta(n)
$$

GENERAL RULES

- RULE 2 : Nested Loops

Analyze nested loops inside out

Example:

$T(\mathbf{n})=\theta\left(\mathbf{r}^{*} \mathbf{q}\right)$

GENERAL RULES

- RULE 3 : Consequtive Statements Add the running times

GENERAL RULES

- RULE 4 : If / Else

Running time is never more than the running time of the test plus larger of the running times of S1 and S2
(may overestimate but never underestimates)
$T(n) \leq T_{3}(n)+\max \left(T_{1}(n), T_{2}(n)\right)$

Types of complexition

$$
\begin{aligned}
& T_{\text {worst }}(N)=\max _{|I|=N}\{T(I)\} \quad \rightarrow \text { usually used } \\
& T_{a v}(N)=\sum_{|I|=N} T(I) \cdot \operatorname{Pr}(I) \rightarrow \text { difficult to compute } \\
& T_{\text {best }}(N)=\min _{|I|=N}\{T(I)\} \\
& T_{\text {worst }}(N) \geq T_{a v}(N) \geq T_{\text {best }}(N) \\
& T(n)=O\left(T_{\text {worst }}(n)\right)=\Omega\left(T_{\text {best }}(n)\right)
\end{aligned}
$$

GENERAL RULES

- RULE 4 : If / Else

GENERAL RULES

- Example:

$$
\begin{aligned}
& \text { if (condition) } \\
& \text { S1; } \\
& \text { else } \\
& \text { S2; } \\
& \left.\begin{array}{l}
\left\{\begin{array}{l}
T_{3}(n)=\theta(n) \\
T_{1}(n) \\
\} \\
T_{2}(n)
\end{array}\right)=\theta(n)
\end{array}\right\} T(n) \\
& T_{w}(n)=T_{3}(n)+\max \left(T_{1}(n), T_{2}(n)\right)=\theta\left(n^{2}\right) \\
& T_{b}(n)=T_{3}(n)+\min \left(T_{1}(n), T_{2}(n)\right)=\theta(n) \\
& \text { if } p(T)=p(F)=1 / 2 \\
& T_{a v}(n)=p(T) T_{1}(n)+p(F) T_{2}(n)+T_{3}(n)=\theta\left(n^{2}\right) \\
& T(n)=O\left(n^{2}\right)=\Omega(n)
\end{aligned}
$$

ROAD MAP

- Model
- What to Analyze ?
- Running Time Analysis
- General Rules
- Recursive Calls
- Maximum Subsequence Sum Problem
- Binary Search
- Experimentally checking analysis

RECURSIVE CALLS

Example 1:

Algorithm for computing factorial

```
int factorial (int n)
{
    if (n<=1)
        return 1;
    else
        return n*factorial (n 1); {
} + cost of evaluation of
T(n) = cost of evaluation of factorial of n factorial(n-1)
T(n) = 4 + T(n-1)
T(1) = 2

\section*{RECURSIVE CALLS}
\[
\begin{aligned}
& T(n)=4+T(n-1) \\
& T(n)=4+4+T(n-2) \\
& T(n)=4+4+4+T(n-3) \\
& \vdots \\
& T(n)=k^{*} 4+T(n-k) \quad k=n-1=> \\
& T(n)=(n-1)^{*} 4+T(n-(n-1)) \\
& T(n)=(n-1)^{*} 4+T(1) \\
& T(n)=(n-1)^{*} 4+2 \\
& T(n)=\theta(n)
\end{aligned}
\]

\section*{RECURSIVE CALLS}

\section*{Example 2:}

Algorithm for fibonacci series
```

Fib (int N)
{
if (N<=1)
return 1;
else
return Fib (N-1) +Fib (N-2);
}

```
\(\mathrm{T}(\mathrm{N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{T}(\mathrm{N}-2)+4, \mathrm{~T}(1)=\mathrm{T}(0)=2\)
    \(\Rightarrow \mathrm{T}(\mathrm{N})=\mathrm{O}\left(2^{\mathrm{n}}\right)\)
(by induction)

\section*{ROAD MAP}
- Model
- What to Analyze ?
- Running Time Analysis
- General Rules
- Recursive Calls
- Maximum Subsequence Sum Problem
- Binary Search
- Experimentally checking analysis

\section*{MAXIMUM SUBSEQUENCE SUM PROBLEM}
- Given (possibly negative) integers \(A_{1}, A_{2}, \ldots, A_{N}\), find

- There are many algorithms to solve this problem !

\section*{MAXIMUM SUBSEQUENCE SUM PROBLEM}

- for small N all algorithms are fast
- for large \(\mathrm{NO}(\mathrm{N})\) is the best

\section*{MAXIMUM SUBSEQUENCE SUM PROBLEM}
1) Try all possibilities exhaustively

for each i (0 to \(\mathrm{N}-1\) )
for each j (i to \(\mathrm{N}-1\) )
compute the sum of subsequence for ( i to j ) check if it is maximum
\(\mathrm{T}(\mathrm{N})=\mathbf{O}\left(\mathrm{N}^{3}\right)\)

\section*{Algorithm 1:}


\section*{MAXIMUM SUBSEQUENCE SUM PROBLEM}
2) How to compute sum of a subsequence
\[
\sum_{k=i}^{j} A_{k}=A_{j}+\sum_{k=i}^{j-1} A_{k}
\]
- We can use previous subsequence sum to calculate current one in \(\mathrm{O}(1)\) time
\[
T(N)=O\left(N^{2}\right)
\]

\section*{Algorithm 2:}
```

int

```
int
MaxSubSequenceSum( const int \(A[\) ], int \(N\) )
MaxSubSequenceSum( const int \(A[\) ], int \(N\) )
    int ThisSum, MaxSum, i, j;
    int ThisSum, MaxSum, i, j;
/* 1*/ MaxSum \(=0\)
/* 1*/ MaxSum \(=0\)
/* 2*/ for ( \(i=0 ; i<N ; i++)\)
/* 2*/ for ( \(i=0 ; i<N ; i++)\)
/* 3*/ ThisSum \(=0\);
/* 3*/ ThisSum \(=0\);
/* 4*/ for ( \(j=i ; j<N ; j++\) )
/* 4*/ for ( \(j=i ; j<N ; j++\) )
\{
\{
ThisSum += A[ j ];
ThisSum += A[ j ];
if( ThisSum > MaxSum )
if( ThisSum > MaxSum )
                        MaxSum = ThisSum;
                        MaxSum = ThisSum;
        \}
        \}
        \}
        \}
/* 8*/ return MaxSum;
/* 8*/ return MaxSum;
\}
```

\}

```

\section*{MAXIMUM SUBSEQUENCE SUM PROBLEM}
3) Compeletely different algorithm ?

Divide and Conquer Strategy
Maximum subsequence can be
- in L
solved recursively
- in R
- in the middle, in both sides largest sum in L ending with middle element
+
largest sum in R begining with 32 middle element
```

static int
MaxSubSum(const int A[], int Left, int Right)
{
int MaxLeftSum, MaxRightSum;
int MaxLeftBorderSum, MaxRightBorderSum;
int LeftBorderSum, RightBorderSum;
int Center, i;
if(Left == Right) /* Base Case */
if(A[Left] > 0)
return A[Left];
else
return 0;
Center = (Left + Right) / 2;
MaxLeftSum = MaxSubSum(A, Left, Center);
MaxRightSum = MaxSubSum(A, Center + 1, Right);
MaxLeftBorderSum = 0; LeftBorderSum = 0
for(i=Center; i >= Left; i--)
{
LeftBorderSum += A[i];
if(LeftBorderSum > MaxLeftBorderSum)
MaxLeftBorderSum = LeftBorderSum;
}
MaxRightBorderSum = 0; RightBorderSum = 0;
for(i = Center + 1; i <= Right; i++)
{
RightBorderSum += A[i];
if(RightBorderSum > MaxRightBorderSum)
MaxRightBorderSum = RightBorderSum;
}
/*18*/ return Max3(MaxLeftSum, MaxRightSum,
/*19*/ MaxLeftBorderSum + MaxRightBorderSum);

```

\section*{Algorithm 4:}
```

int
MaxSubsequenceSum(const int A[], int N)
{
int ThisSum, MaxSum, j;
/* 1*/ ThisSum = MaxSum = 0;
/* 2*/ for(j = 0; j < N; j++)
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/ return MaxSum;
ThisSum += A[j];
if(ThisSum > MaxSum)
MaxSum = ThisSum;
else if(ThisSum < 0)
ThisSum = 0;
}
}

ROAD MAP

- Model
- What to Analyze ?
- Running Time Analysis
- General Rules
- Recursive Calls
- Maximum Subsequence Sum Problem
- Binary Search
- Experimentally checking analysis

Binary Search

```
    int
    BinarySearch( const ElementType A[ ], ElementType X, int N )
    int Low, Mid, High;
/* 1*/ Low = 0; High = N - 1;
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
    while( Low <= High )
    {
        Mid = (Low + High ) / 2;
        if( A[ Mid ] < X )
            Low = Mid + 1;
        else
        if( A[ Mid ] > X )
        High = Mid - 1;
        else
            return Mid; /* Found */
        }
        return NotFound; /* NotFound is defined as -1 */
}
```


ROAD MAP

- Model
- What to Analyze ?
- Running Time Analysis
- General Rules
- Recursive Calls
- Maximum Subsequence Sum Problem
- Binary Search
- Checking your analysis experimentally

Checking Your Analysis Experimentally

- Implement your algorithm, measure the running time of your implementation
- check with theoretical results
- When N doubles (2 x)
- linear $=>2 x$
- quadratic $=>4 x$
- cubic $\quad=>8 x$
what about logarithm ?
$\mathrm{O}(\mathrm{N}) \quad \mathrm{O}(\mathrm{N} \log \mathrm{N})$
not easy to see the difference !

Checking Your Analysis Experimentally

$T_{t}(N)=$ theoretical running time
$T_{e}(N)=$ experimental running time
Let $\mathrm{T}_{\mathrm{t}}(\mathrm{N})=\mathrm{O}(\mathrm{f}(\mathrm{N}))$
compute $\frac{T_{e}(N)}{T_{t}(N)}=\frac{T_{e}(N)}{f(N)}$

- if converges to a constant $f(N)$ is a tight bound
- if converges to zero not tight bound (overestimate)
- if diverges underestimate

Checking Your Analysis Experimentally

Checking Your Analysis Experimentally

