
DATA STRUCTURES
AND

ALGORITHMS

Lecture Notes 2

Prepared by Đnanç TAHRALI

2

Recapture

� Asymptotic Notations

� O Notation

� Ω Notation

� Θ Notation

� o Notation

3

Big Oh Notation (O)

Provides an “upper bound” for the function f

Definition :
� T(N) = O (f(N)) if there are positive constants

c and n0 such that

T(N) ≤ c f(N) when N ≥ n0

� T(N) grows no faster than f(N)

� growth rate of T(N) is less than or equal to growth
rate of f(N) for large N

� f(N) is an upper bound on T(N)
� not fully correct !

4

Omega Notation (Ω)

� Definition :

T(N) = Ω (f(N)) if there are positive constants

c and n0 such that T(N) ≥ c f(N) when N≥ n0

� T(N) grows no slower than f(N)

� growth rate of T(N) is greater than or equal to
growth rate of f(N) for large N

� f(N) is a lower bound on T(N)

� not fully correct !

5

Theta Notation (θ)

� Definition :

T(N) = θ (h(N)) if and only if

T(N) = O(h(N)) and T(N) = Ω(h(N))

� T(N) grows as fast as h(N)

� growth rate of T(N) and h(N) are equal for large N

� h(N) is a tight bound on T(N)

� not fully correct !

6

Little o Notation (o)

� Definition :

T(N) = o(p(N)) if

T(N) = O(p(N)) and T(N)≠θ(p(N))

� p(N) grows strictly faster than T(N)

� growth rate of T(N) is less than the growth rate of
p(N) for large N

� p(N) is an upperbound on T(N) (but not tight)

� not fully correct !

7

ROAD MAP

� Model

� What to Analyze ?

� Running Time Analysis

� General Rules

� Recursive Calls

� Maximum Subsequence Sum Problem

� Binary Search

� Experimentally checking analysis

8

MODEL

� A formal framework for analysis
(simplify the real computers)

� There are many models

� Automata

� Turing Machine

� RAM

9

MODEL

� We use RAM model (normal computer)

� addition

� multiplication take a unit time

� comparison

� assignment

� fixed size word (32 bit)

� no complicated operation supported

� requires an algorithm (algorithm may not take unit
time)

10

What to Analyze ?

� Running Time (most important !)

� Required memory space

Run-time complexity is effected by

� compiler

usually effects the constants &

� computer lower order terms

� algorithm use asymptotic notation

11

Running Time Analysis

� Emprical � after implementation

� Theoritical � before implementation

� If there are many algorithms ideas, we need
to evaluate them without implementation

� We will use 0-notation
� drop constants

� ignore lower order terms

12

Running Time Analysis

� Example:

int sum (int N)
{

int i, partialsum; � does not count
partialsum = 0; � 1
for (i=1; i<=N; i++) � 1+(N+1)+N

partialsum+=i*i*i; � 3N
return partialsum; � 1

}
= 5N + 4
= θ(N)

13

ROAD MAP

� Model

� What to Analyze ?

� Running Time Analysis

� General Rules

� Recursive Calls

� Maximum Subsequence Sum Problem

� Binary Search

� Experimentally checking analysis

14

GENERAL RULES

� RULE 1 : For Loops
The running time of a for loop is at most the running
time of the statements in the for loop times the
number of iterations

int i, a = 0;

for (i=0; i<n; i++)

{

print i;

a=a+i;

}

return i;

T(n) = θ(n)

15

GENERAL RULES

� RULE 2 : Nested Loops
Analyze nested loops inside out

Example :

for (int i=1;i<=q;i++)

{

for (int j=1;j<=r;j++)

k++;

}

θ(r) θ(q)

T(n) = θ(r*q)

16

GENERAL RULES

� RULE 3 : Consequtive Statements
Add the running times

for … θ(N)

…;

for … θ(N2)

for … θ(N2)

…;

17

GENERAL RULES

� RULE 4 : If / Else

if (condition) T3(n)
S1; T1(n) T(n)

else
S2; T2(n)

Running time is never more than the running time of
the test plus larger of the running times of S1 and S2

(may overestimate but never underestimates)

T(n) ≤ T3(n) + max (T1(n), T2(n))

18

Types of complexition

)}({min)(
||

ITNT
NI

best =
=

∑
=

→=
NI

av computetodifficultIITNT
||

)Pr().()(

usedusuallyITNT
NI

worst →=
=

)}({max)(
||

)()()(NTNTNT bestavworst ≥≥

))(())(()(nTnTOnT bestworst Ω==

19

GENERAL RULES

� RULE 4 : If / Else
if (condition) T3(n)

S1; T1(n) T(n)
else

S2; T2(n)

Tw (n) = T3(n) + max (T1(n), T2(n))
Tb (n) = T3(n) + min (T1(n), T2(n))
Tav (n) = p(T)T1(n) + p(F)T2(n) + T3(n)

p(T) � p (condition = True)
p(F) � p (condition = False)

20

GENERAL RULES

� Example :

if (condition) T3(n) = θ(n)
S1; T1(n) = θ(n2) T(n)

else
S2; T2(n) = θ(n)

Tw (n) = T3 (n) + max (T1 (n) , T2 (n)) = θ(n2)
Tb (n) = T3 (n) + min (T1 (n), T2 (n)) = θ(n)

if p(T) = p(F) = ½
Tav (n) = p(T)T1 (n) + p(F)T2 (n) + T3 (n)= θ(n2)

T(n) = O (n2) = Ω (n)

21

ROAD MAP

� Model

� What to Analyze ?

� Running Time Analysis

� General Rules

� Recursive Calls

� Maximum Subsequence Sum Problem

� Binary Search

� Experimentally checking analysis

22

RECURSIVE CALLS

Example 1:
Algorithm for computing factorial

int factorial (int n)

{

if (n<=1)

return 1;
else

return n*factorial(n- 1);

}

T(n) = cost of evaluation of factorial of n
T(n) = 4 + T(n-1)
T(1) = 2

1 for multiplication
+ 1 for substraction
+ cost of evaluation of
factorial(n-1)

23

RECURSIVE CALLS

T(n) = 4 + T(n-1)

T(n) = 4 + 4+ T(n-2)

T(n) = 4 + 4 + 4 + T(n-3)
.
.
.

T(n) = k*4 + T(n-k) k= n-1 =>

T(n) = (n-1)*4 + T(n-(n-1))

T(n) = (n-1)*4 + T(1)

T(n) = (n-1)*4 + 2

T(n) = θ (n)

24

RECURSIVE CALLS

Example 2:
Algorithm for fibonacci series
Fib (int N)
{
if (N<=1)

return 1;
else

return Fib(N-1)+Fib(N-2);
}

T(N) = T(N-1) + T(N-2) + 4 , T(1)=T(0)=2

=> T(N) = O(2n) (by induction)

25

ROAD MAP

� Model

� What to Analyze ?

� Running Time Analysis

� General Rules

� Recursive Calls

� Maximum Subsequence Sum Problem

� Binary Search

� Experimentally checking analysis

26

MAXIMUM SUBSEQUENCE SUM
PROBLEM

� Given (possibly negative) integers A1, A2,…, AN, find

max

1 ≤ i ≤ j ≤ N

-2 11 -4 13 -5 -2

A[2,4] � sum = 20

A[2,5] � sum = 15

� There are many algorithms to solve this problem !

∑

=

j

ik
kA

27

MAXIMUM SUBSEQUENCE SUM
PROBLEM

� for small N all algorithms are fast

� for large N O(N) is the best

28

MAXIMUM SUBSEQUENCE SUM
PROBLEM

1) Try all possibilities exhaustively

for each i (0 to N-1)

for each j (i to N-1)

compute the sum of subsequence for (i to j)

check if it is maximum

T(N) = O(N3)

29

Algorithm 1:

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

30

MAXIMUM SUBSEQUENCE SUM
PROBLEM

2) How to compute sum of a subsequence

� We can use previous subsequence sum to
calculate current one in O(1) time

T(N) = O(N2)

∑∑
−

==

+=
1j

ik
kj

j

ik
k AAA

31

Algorithm 2:

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

32

MAXIMUM SUBSEQUENCE SUM
PROBLEM

3) Compeletely different algorithm ?
Divide and Conquer Strategy

Maximum subsequence can be
� in L

solved recursively
� in R

� in the middle, in both sides
largest sum in L ending with
middle element
+
largest sum in R begining with
middle element

33
© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

34

Algorithm 4:

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

35

ROAD MAP

� Model

� What to Analyze ?

� Running Time Analysis

� General Rules

� Recursive Calls

� Maximum Subsequence Sum Problem

� Binary Search

� Experimentally checking analysis

36

Binary Search

© Mark Allen Weiss, Data Structures and Algorithm Analysis in C

37

ROAD MAP

� Model

� What to Analyze ?

� Running Time Analysis

� General Rules

� Recursive Calls

� Maximum Subsequence Sum Problem

� Binary Search

� Checking your analysis experimentally

38

Checking Your Analysis Experimentally

� Implement your algorithm, measure the
running time of your implementation
� check with theoretical results

� When N doubles (2x)
� linear => 2x
� quadratic => 4x
� cubic => 8x

what about logarithm ?
O(N) O(N logN)
not easy to see the difference !

39

Checking Your Analysis Experimentally

Tt (N) = theoretical running time
Te (N) = experimental running time

Let Tt(N) = O(f(N))

compute

� if converges to a constant
f(N) is a tight bound

� if converges to zero
not tight bound (overestimate)

� if diverges
underestimate

)(

)(

)(

)(

Nf

NT

NT

NT e

t

e =

40

Checking Your Analysis Experimentally

Te /TtTeTtN

41

Checking Your Analysis Experimentally

