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ABSTRACT
In  this  paper  we present  a  framework for  rapid  prototyping  of 
airplane  designs  as  an  example  of  the  benefits  of  integrating 
simulation, gaming, and design interfaces into a cohesive package, 
which  we  have  labeled  the  Integrated  Flight  Simulation  and 
Design framework.  We discuss the design of this framework and 
detail  the  progress  of  a  simple  prototype  implementation.   We 
discuss  the  advantages  close  integration  of  the  simulation  and 
design components of aerospace vehicle design has for required 
time and cost of the prototyping process.

Categories and Subject Descriptors
I.6.5  [Simulation  and  Modeling]:  Model  Development  – 
modeling methodologies.

General Terms
Design, Economics, Reliability, Experimentation, Human Factors, 
Standardization, Verification.

Keywords
Newt,  IFSID,  flight  simulation,  aerospace  design,  aerospace 
editor,  simulation  integration,  design  framework,  simulation 
framework, multiparadigm modeling

1. INTRODUCTION
The integration of aerospace vehicle design and simulation is an 
important  step  in  the  streamlining  of  the  overall  vehicle 
development  process.   Until  recently,  design  tools  and  design 
models were largely separate from simulation tools and models, 
requiring a lengthy and expensive translation process to perform 
simulation-based tests.   In  addition,  after  the  simulation  results 
have  been  analyzed,  they  must  undergo  another  translation 
process to determine the appropriate design changes.  Integration 
between  editor  and  simulator  has  benefits  in  addition  to  the 
minimization  of  these  translation  costs.   The  frameworks 
developed  for  this  integration  are  excellent  examples  of 
applications of multiparadigm modeling methodologies.  Several 
other researchers have developed integration frameworks for these 
two components, in varying degrees of detail,  scope,  and goals. 

Our framework differs from these in that it is not intended for use 
as  an  engineering-quality  package,  but  rather  to  serve  as  an 
illustration of the benefits of even moderate integration between 
editor  and  simulator,  and  to  provide  a  backdrop  for  education 
about flight simulation, design, and physics.

We  have  developed  an  integration  framework  which 
allows for modular representation of a plane both in the design 
editor and the simulator.  The framework uses this plane model to 
communicate between the editor's  model  representation  and the 
simulator's  physics  calculations.   It  also  provides  for  utility 
functionality including simulation analysis,  design optimization, 
and  alternate  information  presentations.   The  framework  is 
designed to  be modular,  extensible,  and scalable.   The primary 
design goal of the framework is to allow rapid transitions between 
the design editor and the simulator.  Secondary goals included an 
acceptable  level  of  accuracy  in  the  simulation  physics  model, 
interactivity in the simulator to motivate learning, and an intuitive, 
powerful,  and  flexible  editor.   Our  primary  motivation  was to 
experiment with simulation and aerospace vehicles as a learning 
method.

The  framework  for  editor  and  simulator  integration 
draws heavily from elements of multiparadigm modeling.  A key 
challenge in designing such a framework is combining multiple 
modeling methodologies and their interactions in a uniform way. 
Integration  between  design  editor  and  simulator  has  been 
attempted in  other  research.   [Liu and Berndt  2006]  apply this 
methodology to develop their own integration framework, which 
they use to examine a flight control  system for a short-takeoff-
vertical-landing (STOVL) plane.  They designed their framework 
to emphasize modularity and computational distribution, as well 
as minimizing or removing the design model to simulator model 
translation.   Similarly, the RIPTIDE system is part  of a design 
pipeline  intended  to  streamline the editor-simulator  relationship 
[Mansur et al. 2000].

This paper will present the design for this framework as 
intended  to  aid  rapid  prototyping of aerospace vehicle  designs. 
This  framework  illustrates  the  benefits  of  close  integration 
between simulation, gaming, design, and optimization.  Section 2 
discusses the background and motivation for this framework.  The 
design of  the  framework is detailed in  Section  3.   The current 
implementation  is  described  in  Section  4.   Finally,  Section  5 
summarizes our statements.

2. BACKGROUND
In  2006  the  aerospace industry averaged over $52.5  billion,  as 
show in [AIA 2006],  and the industry continues to grow.  The 
vast bulk of this money is spent on operating costs.  Decreasing 
these costs, in both time and money, is a primary pursuit of these 
companies.   A cheaper,  more  rapid  development  of  aerospace 
vehicle prototypes is precisely what is desired.



Modern  aerospace  design  is  an  iterative  process. 
Potential designs are subjected to exhaustive testing and analysis, 
the results of which feed back into the design process.  Aerospace 
vehicles are also unified mechanisms - every aspect of their design 
has  potentially  critical  relationships  with  other  design  aspects. 
Even a minor change to the design may require costly and time-
consuming  re-evaluation  and  re-testing  of  the  entire  system. 
When  dealing  with  physical  prototypes,  this  translates  into 
enormous costs, which is one of the motivations for the rigorous 
nature  of  aerospace  design  methodologies.   The  advent  of 
computer-based  simulation  allows for  designs to  be  tested at  a 
fraction  of the  cost  of traditional  testing with  physical  models. 
There  are  a  variety  of  tools  designed  specifically  to  simulate 
various aspects of a vehicle design.  These range from component-
level  testing,  such  as  simulation  to  determine  airfoil 
characteristics, to full-scale performance testing, such as pilot-in-
the-loop (PIL) flight simulators,  used to test control  systems or 
train pilots.  Interactive flight simulators are an invaluable training 
tool  for  pilots,  and  their  history  begins  almost  as  early  as  the 
invention of powered flight.  Commercial single-computer flight 
simulators are certified to replace a significant portion of actual 
flight hours required for obtaining a pilot's license.  Mechanical 
flight simulators were used to train pilots in World War I and II, 
as  well  as  astronauts  during  the  Gemini  and  Apollo  programs. 
The military relies enormously on flight simulation in training its 
pilots.  All of these examples illustrate the beneficial nature of PIL 
simulation on the pilot's understanding of the vehicle he or she is 
to operate.  As in [Liu and Berndt 2006], pilots are also involved 
in  the  analysis  of  new  control  systems  through  simulation, 
providing valuable feedback to the design.

From the design point  of view, simulation  provides  a 
plethora  of  analytical  data  that  is  difficult,  expensive,  and/or 
impossible  to collect  from physics testing.   Temperature,  stress 
and  response  profiles  are  only  a  few  examples  of  the  data 
simulation  can  provide.   The  SpaceShipOne  suborbital  vehicle 
was  designed  almost  entirely  by  computational  fluid  dynamics 
(CFD) simulation of each successive design iteration.  The design 
process itself has also seen a variety of tools emerge, such as the 
multiple computer-aided design (CAD) programs.  Some of these 
are  packaged  with  associated  simulation  capabilities,  such  as 
Matlab and Simulink, but typically a full-scale flight simulation 
requires  additional  time and  effort  to  create  a  simulation-ready 
flight  model.   Integration  between  these  design  packages  and 
flight  simulation,  especially  PIL  simulation,  has  a  number  of 
advantages.  First, the time, effort, and money spent on translation 
between  design  and  simulation  models,  as  well  as  simulation 
results and and design changes, can be minimized with  a close 
and  efficient  integration  scheme.   Second,  PIL  simulation 
provides  the designer with the same valuable knowledge of the 
vehicle  as  a  pilot  receives,  giving  them extra  insight  into  the 
characteristics  of  the  design.   In  addition,  there  is  nothing  to 
prevent testing with actual pilots.  Third, the close integration and 
low translation costs between design editor and simulator allow 
changes  and  their  effects  to  be  quickly  and  cost-efficiently 
analyzed, greatly streamlining the iterative design process.

Our approach to this integration is two-fold.  First, we 
closely integrate  the  simulation  and  design  portions  of  vehicle 
design  using  a  common  plane  model.   The  naturally  cyclic 
relationship between the two portions is best expressed when the 
logical distance between them is smallest.  This has the benefit of 

both  decreasing  the  time  required  to  design  and  simulate  a 
prototype,  as  well  as  the  cost  of  transferring  a  design  to  a 
simulation  format.   The  plane  model  we  present  allows  an 
algorithmic transformation of the plane model to the appropriate 
simulation model, making designs modular.  The close integration 
means that  these  simulations  may be performed and  evaluated, 
changes made to the design, and the same simulations continued 
or preformed again without any intermediate process.  The quick 
turnaround time also promotes affordable exploration of multiple 
design directions.

Second, we combine the simulation with user input to 
generate  a  PIL  gaming  environment.   As  shown  in  [Jain  and 
McLean 2005], this provides the user with a clear mental model 
of the relationships between their design choices and the specific 
effects  each  design  choice  has  on  the  overall  design.   The 
relationship between learning and gaming has been the subject of 
several  studies,  and  it  has  generally  been  found  that  targeted 
application of gaming aids overall learning [Kincaid et al. 2003, 
Randel et al.  1992,  Gopher et al.  1994].   The large quantity of 
qualitative information that is obtained from interacting with the 
prototype  design  helps  the  user  make  better  design  choices 
regarding the prototype.  Simulation and gaming naturally have a 
large measure of similarity, but the integration of the two provides 
both  qualitative  design  guidance  and  quantitative  analytical 
results.  The quantitative results have a corrective influence on the 
qualitative  model  the  user  has  of  the  prototype.   This  allows 
insight and understanding of specific design choices that may not 
be immediately clear when the simulation portion of the process is 
non-interactive.

3. DESIGN AND ARCHITECTURE
The ultimate goal of the Integrated Flight Simulation and Design 
(IFSID)  system is  to  provide  a  framework  for  rapid  design  of 
aircraft  by  integrating  simulation  of  the  craft  closely  with  the 
design process.  A simulation of a possible design should reflect 
changes in the design instantaneously, so that the designer may 
evaluate  the  effects  of  each  change made and  experiment  with 
alternative development  paths  quickly, easily, and cheaply.   To 
achieve this goal,  IFSID is divided into  three main subsystems. 
The simulation subsystem evaluates the current model in a given 
environment, producing performance data and giving the designer 
an accurate portrayal of the operation of that design.  The editor 
subsystem provides an intuitive but powerful interface that allows 
modification of the design on multiple levels of detail.  A utilities 
subsystem provides a variety of functionality to aid in the design 
process by providing miscellaneous aids such as data analysis and 
representation, physics model examinations, and similar utilities. 
All of these operate on an object oriented representation of the 
plane model.

3.1 Plane Model
The  plane  model  must  be  able  to  represent  a  variety  of  plane 
configurations and designs.  As such, the model must be flexible 
in the configuration of the distinct plane components, and allow a 
range of specification of their  attributes.   The model must also 
capture the behavior of each component of the system, as well as 
the emergent behavior of their interactions.  This means that the 
model  must  have  a  uniform  way  of  representing  how  each 
component should be simulated within the simulator subsystem. 
This  representation  should  not  consist  of  actual  physics  logic, 



however, since the physics system should be independent of the 
plane model representation.

The  plane  is  considered  a  single  object  which  is 
composed of multiple linked components, as shown in Figure 1. 
The plane may have some global attributes or functionality, such 
as altitude, orientation, or implementation specific parameters, but 
the  main  function  of  this  general  object  is  to  serve  as  a 
composition  of  the  components  and  their  interrelations.   Each 
component  represents  a  part  or  subpart  of  the  plane,  and  its 
relation  to  one  or  more  other  parts.   For  example,  the  left 
horizontal stabilizer of a small civil plane would be represented 
by a single component.   A large jetliner,  however, may have a 
separate component for each portion of a multi-segmented wing. 
These wing components would have specified relationships with 
each other, indicating their spatial relation, physics joint strength, 
position,  and  so  on.   These  are  typically  parent-child 
relationships, although a tree structure is by no means required - 
for  example,  a  biplane  model  may have a  circular  relationship 
between the fuselage, a wing, a wing spar, the other wing, and the 
fuselage.  The only stipulation is that each component must have a 
relation  to  one or  more of the  previously existing components. 
One special component is designated the root component, such as 
a fuselage, which has no parent relationship.

Each component contains its own attributes, including a 
mesh for its geometry, material information, mass, center of mass, 
mass  distribution,  and  so  on.   Depending  on  the  type  of 
component,  some of the attributes  may be more important  than 
others for the physics simulation of the component.  The type of 
component determines how it is treated in the physics model.  For 
example, an airfoil component may be simulated using a vortex 
panel  method  to  determine  coefficients  of  lift,  moment,  and 
induced drag, while a fuselage may be simulated primarily based 
on body drag equations.   The components  are unaware of how 
their  simulation  types are handed  by the  simulation  subsystem, 
only that they are of a particular type of simulation object.  These 
component  types are the interface between component  behavior 
representation and the simulation subsystem.

3.2 Simulator Subsystem
The simulator subsystem contains the physics model, the physics 
engine,  the  environment,  the  visualization  system,  the  control 
interface, and data generation.  The physics model is responsible 
for executing the appropriate  physics logic for each component 
based on its component type.  This logic may be as complicated or 
simplistic as the engine allows.  The result of the model logic is a 
series  of  physical  effects  on  the  components,  such  as  forces, 
torques, heating, deformation, et cetera.  These are applied on a 
per component basis.  The physics engine then takes the disparate 
effects and integrates them based on the component relationships 
in order to determine the net effect of the results on the plane. 
These  effects  are  influenced  by,  and  may  influence,  the 
environment in which the plane is operating.  Altitude of the plane 
will greatly affect the atmospheric density the plane encounters, 
and  thus  the  lift  it  can  generate  through  differential  pressure. 
Similarly, a plane crossing the supersonic threshold may generate 
shockwaves  in  the  environment  which  affect  control  surfaces 
downstream.  The visualization subsystem takes the geometry and 
any special effects and renders them for the user to interpret.  The 
user may then modify control surfaces or environmental settings 
through the control interface.  Finally, the data generated by the 
physics model and engine can be recorded to be analyzed by the 
utilities package or to verify performance characteristics.

The  most  important  of  these  functions  is  the  physics 
model.  The detail and accuracy of the physics model determines 
in large part the reliability of the results of the simulation of the 
plane design.  The interface of component types allows a plane 
model  to  be  specified  independently  of  a  physics  model 
implementation,  and  it  also  allows  each  component  type  to  be 
simulated by a variably detailed model.  This modularity allows 
the  user  to  specify  multiple  levels  of  detail  for  varying 
components, and also allows for simple comparison of alternative 
methods.  It also provides for easy extensibility of the system as 
more  accurate  or  efficient  methods  are  implemented.   For 
example, an airfoil may be simulated in a variety of ways.  It may 
be considered  to  have a static  performance table  which can be 

referenced  quickly,  it  may  have  performance  determined 
dynamically by applying a panel method, or it may be subjected to 
an in-depth computational fluid dynamics simulation in order to 
determine  precise  characteristics.   All  of  these  data  may  be 
recorded  separately,  before  the  physics  engine  combines  the 
results of the system update to determine the net effect.

The  second  most  important  feature  is  that  of  user 
involvement.   The  simulation  allows  the  user  to  actively 
manipulate  attributes  and  control  surfaces  of  the  plane  while 

Figure 2: An example of component types.

Figure 1: An example of component 
relationships in a plane model.



receiving realistic feedback through an instrumentation heads-up 
display, giving a much greater feel for the performance of a design 
than  numerical  analysis  alone  can  provide.   This  qualitative 
assessment  can  be  an  enormous  asset  when  paired  with  the 
quantitative analysis the data generated provides.  The simulator 
should  also  support  real-time  viewing  of  the  forces,  torques, 
velocities, and other physics effects occurring on each component. 
The simulator's modular structure allows the plane model to be 
altered  dynamically during the  simulation,  allowing the  user to 
immediately effect changes without having to restart the scenario. 
This allows rapid exploration of modifications of the design.

3.3 Editor Subsystem
The  advantage  of  this  framework  lies  in  its  close  integration 
between simulation of a plane model and editing that model.  This 
means that the editor subsystem should provide a simple, intuitive 
user  interface for  modification  of  important  plane  components. 
The editor must also be able to provide the user with the ability to 
alter detailed information of each component.  This necessitates 
multiple levels of detail in the editor.  Finally, the editor should be 
able to generate as wide a variety of model designs as possible. 
The editor should only be restricted by the limits of the general 
plane model.

To  create  an  intuitive  user  interface  while  still 
containing  a  sufficient  amount  of  information  required  to  be 
useful,  the  editor  makes  use  of  multiple  levels  of  detail.   In 
general, the editor makes use of two of these levels.  The first is 
an overall perspective on the plane model.  It deals primarily with 
the configuration of the plane components.  The editor provides a 
variety of basic component objects, which the user may add to the 
plane  model  at  will.   One component,  such  as  the  fuselage,  is 
specified as  the  root  component,  and all  other  components  are 
attached to previously added components, as discussed in section 
3.1.  The user is able to determine the spatial and physics relations 
between separate components, and to alter general characteristics 
of each component such as mass, basis dimensions, material, or 
texture.  An example realization might include a selection of basic 
components,  a  drag-and-drop  interface  for  adding  components, 
and  a  similar  interface  for  manipulating  their  positions, 
dimensions, or other general attributes.  The user should have the 
option of mirroring the model across a given plane, in order to 
ensure symmetry.  To simplify the editing process, the model may 
be presented in the standard top, front, and side orthogonal views, 
separately or simultaneously, to give the user a simple interface 
while maintaining maximum flexibility.

More  detailed  editing  can  then  be  performed  in  a 
component-specific interface.  This would provide access to the 
attributes  of  the  particular  component  type,  in  a  specialized 
component view.  For example, editing an airfoil component type 
would yield an airfoil cross-section view allowing the user to edit 
the geometry, thickness at root and tip, and other attributes.  A 
planform1 view may also be presented to provide the user with the 
ability to taper or skew the airfoil.  This provides the user with the 
ability to  alter  the  actual  geometry of  the  plane model  without 
having  to  deal  with  the  complexity  of  a  full-scale  three-
dimensional editor.

1 A planform view is  an  overhead  view of  an  object,  such  as 
would be shown in a blueprint.

After  the  user  has  created  a  model,  he  or  she  has 
essentially created a list of basic component forms and attributes 
for each.  These are the inputs for a construction algorithm, which 
performs the translation from the editor's model representation to 
the  general  plane  model.   This  includes  the  creation  of  each 
component  object,  including  its  attributes  and  specified  mesh 
geometry,  as  well  as  defining  the  exact  spatial  and  physics 
relationships  existing  between  components.   This  translation 
allows the editor to maintain its flexibility and ease of use while 
enabling the simulation to operate on an exactly specified design.

If the  user wishes,  the modular  structure of the  plane 
model  makes  it  possible  to  design  plane  geometry in  a  three-
dimensional editor and specify the attributes of each component 
manually.  While this approach is much more difficult and time 
consuming than use of the editor, it should allow for previously 
built models to be imported into this framework.

3.4 Utilities Subsystem
The simulation subsystem generates a plethora of data that must 
be analyzed to quantitatively evaluate the design.  These data must 
also be presented in multiple ways to aid understanding of what 
the  data  represent.   There  is  also  the  need  for  a  variety  of 
miscellaneous functionality that greatly enhances the ability of the 
user  to  evaluate  potential  designs.   Finally,  the  logical 
continuation of integration of the simulation and design portions 
of a design evaluation is that of computational optimization of the 
design based on simulation results.  

The  utility  simulation  should  provide  functionality  to 
analyze and summarize important data from the simulation.  This 
includes  statistical  analysis  of  the  results,  computation  of 
performance  metrics,  et  cetera.   These  data  must  then  be 
represented to the user, either in graphical or textural form.  The 
simulation  should  also  provide  the  functionality  to  compare 
results across multiple simulation runs and display the data and 
results  to  the  user.   The  utilities  subsystem  should  contain 
miscellaneous functionality such as a model viewer, which allows 
the user to examine the current state of the simulation model and 
the forces on it in more detail.  For example, the user may be able 
to scale the model to a larger dimension in order to examine small 
details.

The benefit  of integrating the  analysis and evaluation 
results  of  simulation  with  the  rapid  and  powerful  design 
modifications  of  the  editing  could  be  greatly  extended  with 
computational optimization.  Application of genetic algorithms or 
other techniques have been detailed in a variety of other papers 
[Cantù-Pax 1998, Padula 1994, Padula and Gillian 2006].  The 
conversion of the plane model attributes to a suitable format for 
these  techniques,  or  conversely  their  application  to  the  plane 
model data set would both be trivial operations.

4. CURRENT IMPLEMENTATION
We  have  partially  implemented  a  simple  prototype  of  this 
framework.   The  implementation  was  creating  using  Java,  the 
jMonkeyEngine  (jME)  game  library,  and  the  jMEPhysics  2 
physics engine, which is developed with ODEJava, itself a Java 
wrapper for the Open Dynamics Engine (ODE) written in C.  jME 
makes use  of  the  Lightweight  Java  Gaming Library (LWJGL), 
which provides Java access to OpenGL.  Our prototype is called 
the Newtonian Flight Simulator (Newt).



Our implementation at  the time of writing consists  of 
the majority of the simulation subsystem and a few minor features 
of  the  utilities  subsystem.   As  the  editor  has  not  yet  been 
implemented,  we have created a default  plane model using the 
Blender  three-dimensional  modeling  system  and  assigned  the 
model attributes manually.  The model is a to scale approximation 
of  a  North  American  Aviation  P-51D  Mustang  created  using 
freely  available  blueprints  and  specifications,  including  airfoil 
specification.   The  model  is  composed  of  a  fuselage  root 
component,  with separate components  for each wing, stabilizer, 
and control surface, as shown above in Figure 1.

The  physics  model  is  minimal,  but  can  easily  be 
extended in a modular fashion.  The components are considered to 
be of three types: a fuselage component, an airfoil component, and 
a  stabilizer  component.   The  fuselage  model  calculates  thrust

 T  and parasitic drag  D p forces.

T=C t⋅T max⋅f local ,0≤C t≤1
where C t is  the coefficient  of thrust,  a control  setting, T max is 

the  maximum  output  of  the  engine,  and f local is  the  local 
normalized forward vector.

D p=Cd , p⋅A⋅ 1
2
⋅⋅∣v eff∣

2⋅−1⋅
veff

∣veff∣

where Cd , p is the coefficient of parasitic drag, A was the area 

of  the  component  orthogonal  to  effective  velocity,  was  the 

local air density, and veff the effective local velocity.

The  wing  models  are  considered  airfoils,  calculating  their 
coefficients  of  lift L and  induced  drag  Di for  use  when 
determining  their  respective  forces.   The  respective  equations 
were:

L=C l⋅Al⋅
1
2
⋅⋅∣v eff

2∣

Di=Cd , i⋅Al⋅
1
2
⋅⋅∣veff

2∣

where C l and Cd ,i are the coefficients of lift and induced drag, 

respectively, as determined based on angle of attack (AoA or  ), 

and Al is the lifting surface area of the airfoil.

Most  of the  control  surfaces  and the  stabilizers  are  considered 
symmetric airfoils that generate no lift at zero degrees angle of 
attack,  and  therefore  they are  dominated  primarily  by parasitic 
drag  depending  on  the  angle  of  attack.   Their  drag  force  was 
directly proportional to the local  , and given by:

Figure 3: A collection of screenshots from the early prototype implementation.  From top to bottom, 
left to right: a physics debug view illustrating the forces(red), joints(yellow), and velocities(white) of 
each component; a view of the model in the model viewer utility; a view of the model during flight 

(instrumentation not shown).



D p=sin ⋅Cd , p⋅A⋅ 1
2
⋅⋅∣v eff∣

2⋅−1⋅
veff

∣veff∣
In the case of the horizontal stabilizers, positive  followed the 
aerospace  engineering  standard  of  positive  values  indicating 
stabilizer toward the top and back of the stabilizer.  In the case of 
the vertical stabilizer, positive VS was considered to be airflow 
towards the back and right of the stabilizer.  The components are 
connected  using  joints  from jMEPhysics.   Each  component  is 
simulated to calculate the forces acting on it at a given timestep, 
and these forces are then input into the physics engine where they 
are composited based on the physics joints.

The  simulator  supports  full  control  of  the  control 
surfaces, including ailerons, flaps, elevators, and rudder, as well 
as control over the level of thrust.  Changes to the model made by 
the user only alter the angle of the specified control surfaces, ie 
ailerons; the physical model of each component then determines 
the realistic behavior of the plane.  An instrumentation head-up 
display (Figure 4) give feedback to the user on current altitude, 
velocity,  orientation,  et  cetera.   The simulator  also  integrates  a 
physics debug view from jMEPhysics, which allows the user to 
examine the forces acting on each component, their geometric and 
mass centers, their velocities, and other attributes in real time.

The user may return to the menu at any time during the 
simulation to access other functionality.  The simulation may be 
reset, or the user may continue where they left.  A viewer utility is 
available to the user at any time from the menu, which displays 
the current status of the plane model in the simulator, with free 
camera and scaling movement.  This allows the user to examine 
any of the aspects of the forces, components,  or joints in more 
detail at any time during the simulation.

We  plan  to  complete  the  editor  and  provide  basic 
statistical  analysis  functionality.   We  also  plan  to  extend  the 
complexity  of  the  physics  model  to  incorporate  more  realistic 
simulation techniques and environments, such as adding weather. 
The  utilities  subsystem will  be  developed  incrementally  as  the 
other  subsystems  mature.   At  the  time  of  writing  the 
implementation  is  still  in  progress;  for  more  up  to  date 
information, please visit http://cs.uga.edu/~parrish/newt.html.

5. CONCLUSIONS
We  have  presented  an  example  of  a  framework  for  close 
integration  between  simulation  and  design  for  aerospace 
applications,  and  the  amplification  of  their  mutually  beneficial 

relationship due to that integration.  Such a framework is modular 
and flexible, allowing for a wide range of applications tailored to 
the specific needs of the user.  Such an integration supports the 
application of computational optimization of designs.  Finally, the 
close integration of the three of these system - simulation, design, 
and optimization - have the potential to greatly reduce prototype 
design time and cost.
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Figure 4: An example of the instrumentation 
(artificial horizon is not shown).
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