
A Framework for Integrated Flight Simulation and Design
Jeff Parrish

University of Georgia

parrishj@uga.edu

Micah Cooper
University of Georgia

mrcooper@uga.edu

ABSTRACT
In this paper we present a framework for rapid prototyping of
airplane designs as an example of the benefits of integrating
simulation, gaming, and design interfaces into a cohesive package,
which we have labeled the Integrated Flight Simulation and
Design framework. We discuss the design of this framework and
detail the progress of a simple prototype implementation. We
discuss the advantages close integration of the simulation and
design components of aerospace vehicle design has for required
time and cost of the prototyping process.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development –
modeling methodologies.

General Terms
Design, Economics, Reliability, Experimentation, Human Factors,
Standardization, Verification.

Keywords
Newt, IFSID, flight simulation, aerospace design, aerospace
editor, simulation integration, design framework, simulation
framework, multiparadigm modeling

1. INTRODUCTION
The integration of aerospace vehicle design and simulation is an
important step in the streamlining of the overall vehicle
development process. Until recently, design tools and design
models were largely separate from simulation tools and models,
requiring a lengthy and expensive translation process to perform
simulation-based tests. In addition, after the simulation results
have been analyzed, they must undergo another translation
process to determine the appropriate design changes. Integration
between editor and simulator has benefits in addition to the
minimization of these translation costs. The frameworks
developed for this integration are excellent examples of
applications of multiparadigm modeling methodologies. Several
other researchers have developed integration frameworks for these
two components, in varying degrees of detail, scope, and goals.

Our framework differs from these in that it is not intended for use
as an engineering-quality package, but rather to serve as an
illustration of the benefits of even moderate integration between
editor and simulator, and to provide a backdrop for education
about flight simulation, design, and physics.

We have developed an integration framework which
allows for modular representation of a plane both in the design
editor and the simulator. The framework uses this plane model to
communicate between the editor's model representation and the
simulator's physics calculations. It also provides for utility
functionality including simulation analysis, design optimization,
and alternate information presentations. The framework is
designed to be modular, extensible, and scalable. The primary
design goal of the framework is to allow rapid transitions between
the design editor and the simulator. Secondary goals included an
acceptable level of accuracy in the simulation physics model,
interactivity in the simulator to motivate learning, and an intuitive,
powerful, and flexible editor. Our primary motivation was to
experiment with simulation and aerospace vehicles as a learning
method.

The framework for editor and simulator integration
draws heavily from elements of multiparadigm modeling. A key
challenge in designing such a framework is combining multiple
modeling methodologies and their interactions in a uniform way.
Integration between design editor and simulator has been
attempted in other research. [Liu and Berndt 2006] apply this
methodology to develop their own integration framework, which
they use to examine a flight control system for a short-takeoff-
vertical-landing (STOVL) plane. They designed their framework
to emphasize modularity and computational distribution, as well
as minimizing or removing the design model to simulator model
translation. Similarly, the RIPTIDE system is part of a design
pipeline intended to streamline the editor-simulator relationship
[Mansur et al. 2000].

This paper will present the design for this framework as
intended to aid rapid prototyping of aerospace vehicle designs.
This framework illustrates the benefits of close integration
between simulation, gaming, design, and optimization. Section 2
discusses the background and motivation for this framework. The
design of the framework is detailed in Section 3. The current
implementation is described in Section 4. Finally, Section 5
summarizes our statements.

2. BACKGROUND
In 2006 the aerospace industry averaged over $52.5 billion, as
show in [AIA 2006], and the industry continues to grow. The
vast bulk of this money is spent on operating costs. Decreasing
these costs, in both time and money, is a primary pursuit of these
companies. A cheaper, more rapid development of aerospace
vehicle prototypes is precisely what is desired.

Modern aerospace design is an iterative process.
Potential designs are subjected to exhaustive testing and analysis,
the results of which feed back into the design process. Aerospace
vehicles are also unified mechanisms - every aspect of their design
has potentially critical relationships with other design aspects.
Even a minor change to the design may require costly and time-
consuming re-evaluation and re-testing of the entire system.
When dealing with physical prototypes, this translates into
enormous costs, which is one of the motivations for the rigorous
nature of aerospace design methodologies. The advent of
computer-based simulation allows for designs to be tested at a
fraction of the cost of traditional testing with physical models.
There are a variety of tools designed specifically to simulate
various aspects of a vehicle design. These range from component-
level testing, such as simulation to determine airfoil
characteristics, to full-scale performance testing, such as pilot-in-
the-loop (PIL) flight simulators, used to test control systems or
train pilots. Interactive flight simulators are an invaluable training
tool for pilots, and their history begins almost as early as the
invention of powered flight. Commercial single-computer flight
simulators are certified to replace a significant portion of actual
flight hours required for obtaining a pilot's license. Mechanical
flight simulators were used to train pilots in World War I and II,
as well as astronauts during the Gemini and Apollo programs.
The military relies enormously on flight simulation in training its
pilots. All of these examples illustrate the beneficial nature of PIL
simulation on the pilot's understanding of the vehicle he or she is
to operate. As in [Liu and Berndt 2006], pilots are also involved
in the analysis of new control systems through simulation,
providing valuable feedback to the design.

From the design point of view, simulation provides a
plethora of analytical data that is difficult, expensive, and/or
impossible to collect from physics testing. Temperature, stress
and response profiles are only a few examples of the data
simulation can provide. The SpaceShipOne suborbital vehicle
was designed almost entirely by computational fluid dynamics
(CFD) simulation of each successive design iteration. The design
process itself has also seen a variety of tools emerge, such as the
multiple computer-aided design (CAD) programs. Some of these
are packaged with associated simulation capabilities, such as
Matlab and Simulink, but typically a full-scale flight simulation
requires additional time and effort to create a simulation-ready
flight model. Integration between these design packages and
flight simulation, especially PIL simulation, has a number of
advantages. First, the time, effort, and money spent on translation
between design and simulation models, as well as simulation
results and and design changes, can be minimized with a close
and efficient integration scheme. Second, PIL simulation
provides the designer with the same valuable knowledge of the
vehicle as a pilot receives, giving them extra insight into the
characteristics of the design. In addition, there is nothing to
prevent testing with actual pilots. Third, the close integration and
low translation costs between design editor and simulator allow
changes and their effects to be quickly and cost-efficiently
analyzed, greatly streamlining the iterative design process.

Our approach to this integration is two-fold. First, we
closely integrate the simulation and design portions of vehicle
design using a common plane model. The naturally cyclic
relationship between the two portions is best expressed when the
logical distance between them is smallest. This has the benefit of

both decreasing the time required to design and simulate a
prototype, as well as the cost of transferring a design to a
simulation format. The plane model we present allows an
algorithmic transformation of the plane model to the appropriate
simulation model, making designs modular. The close integration
means that these simulations may be performed and evaluated,
changes made to the design, and the same simulations continued
or preformed again without any intermediate process. The quick
turnaround time also promotes affordable exploration of multiple
design directions.

Second, we combine the simulation with user input to
generate a PIL gaming environment. As shown in [Jain and
McLean 2005], this provides the user with a clear mental model
of the relationships between their design choices and the specific
effects each design choice has on the overall design. The
relationship between learning and gaming has been the subject of
several studies, and it has generally been found that targeted
application of gaming aids overall learning [Kincaid et al. 2003,
Randel et al. 1992, Gopher et al. 1994]. The large quantity of
qualitative information that is obtained from interacting with the
prototype design helps the user make better design choices
regarding the prototype. Simulation and gaming naturally have a
large measure of similarity, but the integration of the two provides
both qualitative design guidance and quantitative analytical
results. The quantitative results have a corrective influence on the
qualitative model the user has of the prototype. This allows
insight and understanding of specific design choices that may not
be immediately clear when the simulation portion of the process is
non-interactive.

3. DESIGN AND ARCHITECTURE
The ultimate goal of the Integrated Flight Simulation and Design
(IFSID) system is to provide a framework for rapid design of
aircraft by integrating simulation of the craft closely with the
design process. A simulation of a possible design should reflect
changes in the design instantaneously, so that the designer may
evaluate the effects of each change made and experiment with
alternative development paths quickly, easily, and cheaply. To
achieve this goal, IFSID is divided into three main subsystems.
The simulation subsystem evaluates the current model in a given
environment, producing performance data and giving the designer
an accurate portrayal of the operation of that design. The editor
subsystem provides an intuitive but powerful interface that allows
modification of the design on multiple levels of detail. A utilities
subsystem provides a variety of functionality to aid in the design
process by providing miscellaneous aids such as data analysis and
representation, physics model examinations, and similar utilities.
All of these operate on an object oriented representation of the
plane model.

3.1 Plane Model
The plane model must be able to represent a variety of plane
configurations and designs. As such, the model must be flexible
in the configuration of the distinct plane components, and allow a
range of specification of their attributes. The model must also
capture the behavior of each component of the system, as well as
the emergent behavior of their interactions. This means that the
model must have a uniform way of representing how each
component should be simulated within the simulator subsystem.
This representation should not consist of actual physics logic,

however, since the physics system should be independent of the
plane model representation.

The plane is considered a single object which is
composed of multiple linked components, as shown in Figure 1.
The plane may have some global attributes or functionality, such
as altitude, orientation, or implementation specific parameters, but
the main function of this general object is to serve as a
composition of the components and their interrelations. Each
component represents a part or subpart of the plane, and its
relation to one or more other parts. For example, the left
horizontal stabilizer of a small civil plane would be represented
by a single component. A large jetliner, however, may have a
separate component for each portion of a multi-segmented wing.
These wing components would have specified relationships with
each other, indicating their spatial relation, physics joint strength,
position, and so on. These are typically parent-child
relationships, although a tree structure is by no means required -
for example, a biplane model may have a circular relationship
between the fuselage, a wing, a wing spar, the other wing, and the
fuselage. The only stipulation is that each component must have a
relation to one or more of the previously existing components.
One special component is designated the root component, such as
a fuselage, which has no parent relationship.

Each component contains its own attributes, including a
mesh for its geometry, material information, mass, center of mass,
mass distribution, and so on. Depending on the type of
component, some of the attributes may be more important than
others for the physics simulation of the component. The type of
component determines how it is treated in the physics model. For
example, an airfoil component may be simulated using a vortex
panel method to determine coefficients of lift, moment, and
induced drag, while a fuselage may be simulated primarily based
on body drag equations. The components are unaware of how
their simulation types are handed by the simulation subsystem,
only that they are of a particular type of simulation object. These
component types are the interface between component behavior
representation and the simulation subsystem.

3.2 Simulator Subsystem
The simulator subsystem contains the physics model, the physics
engine, the environment, the visualization system, the control
interface, and data generation. The physics model is responsible
for executing the appropriate physics logic for each component
based on its component type. This logic may be as complicated or
simplistic as the engine allows. The result of the model logic is a
series of physical effects on the components, such as forces,
torques, heating, deformation, et cetera. These are applied on a
per component basis. The physics engine then takes the disparate
effects and integrates them based on the component relationships
in order to determine the net effect of the results on the plane.
These effects are influenced by, and may influence, the
environment in which the plane is operating. Altitude of the plane
will greatly affect the atmospheric density the plane encounters,
and thus the lift it can generate through differential pressure.
Similarly, a plane crossing the supersonic threshold may generate
shockwaves in the environment which affect control surfaces
downstream. The visualization subsystem takes the geometry and
any special effects and renders them for the user to interpret. The
user may then modify control surfaces or environmental settings
through the control interface. Finally, the data generated by the
physics model and engine can be recorded to be analyzed by the
utilities package or to verify performance characteristics.

The most important of these functions is the physics
model. The detail and accuracy of the physics model determines
in large part the reliability of the results of the simulation of the
plane design. The interface of component types allows a plane
model to be specified independently of a physics model
implementation, and it also allows each component type to be
simulated by a variably detailed model. This modularity allows
the user to specify multiple levels of detail for varying
components, and also allows for simple comparison of alternative
methods. It also provides for easy extensibility of the system as
more accurate or efficient methods are implemented. For
example, an airfoil may be simulated in a variety of ways. It may
be considered to have a static performance table which can be

referenced quickly, it may have performance determined
dynamically by applying a panel method, or it may be subjected to
an in-depth computational fluid dynamics simulation in order to
determine precise characteristics. All of these data may be
recorded separately, before the physics engine combines the
results of the system update to determine the net effect.

The second most important feature is that of user
involvement. The simulation allows the user to actively
manipulate attributes and control surfaces of the plane while

Figure 2: An example of component types.

Figure 1: An example of component
relationships in a plane model.

receiving realistic feedback through an instrumentation heads-up
display, giving a much greater feel for the performance of a design
than numerical analysis alone can provide. This qualitative
assessment can be an enormous asset when paired with the
quantitative analysis the data generated provides. The simulator
should also support real-time viewing of the forces, torques,
velocities, and other physics effects occurring on each component.
The simulator's modular structure allows the plane model to be
altered dynamically during the simulation, allowing the user to
immediately effect changes without having to restart the scenario.
This allows rapid exploration of modifications of the design.

3.3 Editor Subsystem
The advantage of this framework lies in its close integration
between simulation of a plane model and editing that model. This
means that the editor subsystem should provide a simple, intuitive
user interface for modification of important plane components.
The editor must also be able to provide the user with the ability to
alter detailed information of each component. This necessitates
multiple levels of detail in the editor. Finally, the editor should be
able to generate as wide a variety of model designs as possible.
The editor should only be restricted by the limits of the general
plane model.

To create an intuitive user interface while still
containing a sufficient amount of information required to be
useful, the editor makes use of multiple levels of detail. In
general, the editor makes use of two of these levels. The first is
an overall perspective on the plane model. It deals primarily with
the configuration of the plane components. The editor provides a
variety of basic component objects, which the user may add to the
plane model at will. One component, such as the fuselage, is
specified as the root component, and all other components are
attached to previously added components, as discussed in section
3.1. The user is able to determine the spatial and physics relations
between separate components, and to alter general characteristics
of each component such as mass, basis dimensions, material, or
texture. An example realization might include a selection of basic
components, a drag-and-drop interface for adding components,
and a similar interface for manipulating their positions,
dimensions, or other general attributes. The user should have the
option of mirroring the model across a given plane, in order to
ensure symmetry. To simplify the editing process, the model may
be presented in the standard top, front, and side orthogonal views,
separately or simultaneously, to give the user a simple interface
while maintaining maximum flexibility.

More detailed editing can then be performed in a
component-specific interface. This would provide access to the
attributes of the particular component type, in a specialized
component view. For example, editing an airfoil component type
would yield an airfoil cross-section view allowing the user to edit
the geometry, thickness at root and tip, and other attributes. A
planform1 view may also be presented to provide the user with the
ability to taper or skew the airfoil. This provides the user with the
ability to alter the actual geometry of the plane model without
having to deal with the complexity of a full-scale three-
dimensional editor.

1 A planform view is an overhead view of an object, such as
would be shown in a blueprint.

After the user has created a model, he or she has
essentially created a list of basic component forms and attributes
for each. These are the inputs for a construction algorithm, which
performs the translation from the editor's model representation to
the general plane model. This includes the creation of each
component object, including its attributes and specified mesh
geometry, as well as defining the exact spatial and physics
relationships existing between components. This translation
allows the editor to maintain its flexibility and ease of use while
enabling the simulation to operate on an exactly specified design.

If the user wishes, the modular structure of the plane
model makes it possible to design plane geometry in a three-
dimensional editor and specify the attributes of each component
manually. While this approach is much more difficult and time
consuming than use of the editor, it should allow for previously
built models to be imported into this framework.

3.4 Utilities Subsystem
The simulation subsystem generates a plethora of data that must
be analyzed to quantitatively evaluate the design. These data must
also be presented in multiple ways to aid understanding of what
the data represent. There is also the need for a variety of
miscellaneous functionality that greatly enhances the ability of the
user to evaluate potential designs. Finally, the logical
continuation of integration of the simulation and design portions
of a design evaluation is that of computational optimization of the
design based on simulation results.

The utility simulation should provide functionality to
analyze and summarize important data from the simulation. This
includes statistical analysis of the results, computation of
performance metrics, et cetera. These data must then be
represented to the user, either in graphical or textural form. The
simulation should also provide the functionality to compare
results across multiple simulation runs and display the data and
results to the user. The utilities subsystem should contain
miscellaneous functionality such as a model viewer, which allows
the user to examine the current state of the simulation model and
the forces on it in more detail. For example, the user may be able
to scale the model to a larger dimension in order to examine small
details.

The benefit of integrating the analysis and evaluation
results of simulation with the rapid and powerful design
modifications of the editing could be greatly extended with
computational optimization. Application of genetic algorithms or
other techniques have been detailed in a variety of other papers
[Cantù-Pax 1998, Padula 1994, Padula and Gillian 2006]. The
conversion of the plane model attributes to a suitable format for
these techniques, or conversely their application to the plane
model data set would both be trivial operations.

4. CURRENT IMPLEMENTATION
We have partially implemented a simple prototype of this
framework. The implementation was creating using Java, the
jMonkeyEngine (jME) game library, and the jMEPhysics 2
physics engine, which is developed with ODEJava, itself a Java
wrapper for the Open Dynamics Engine (ODE) written in C. jME
makes use of the Lightweight Java Gaming Library (LWJGL),
which provides Java access to OpenGL. Our prototype is called
the Newtonian Flight Simulator (Newt).

Our implementation at the time of writing consists of
the majority of the simulation subsystem and a few minor features
of the utilities subsystem. As the editor has not yet been
implemented, we have created a default plane model using the
Blender three-dimensional modeling system and assigned the
model attributes manually. The model is a to scale approximation
of a North American Aviation P-51D Mustang created using
freely available blueprints and specifications, including airfoil
specification. The model is composed of a fuselage root
component, with separate components for each wing, stabilizer,
and control surface, as shown above in Figure 1.

The physics model is minimal, but can easily be
extended in a modular fashion. The components are considered to
be of three types: a fuselage component, an airfoil component, and
a stabilizer component. The fuselage model calculates thrust

 T  and parasitic drag  D p forces.

T=C t⋅T max⋅f local ,0≤C t≤1
where C t is the coefficient of thrust, a control setting, T max is

the maximum output of the engine, and f local is the local
normalized forward vector.

D p=Cd , p⋅A⋅ 1
2
⋅⋅∣v eff∣

2⋅−1⋅
veff

∣veff∣

where Cd , p is the coefficient of parasitic drag, A was the area

of the component orthogonal to effective velocity,  was the

local air density, and veff the effective local velocity.

The wing models are considered airfoils, calculating their
coefficients of lift L and induced drag  Di for use when
determining their respective forces. The respective equations
were:

L=C l⋅Al⋅
1
2
⋅⋅∣v eff

2∣

Di=Cd , i⋅Al⋅
1
2
⋅⋅∣veff

2∣

where C l and Cd ,i are the coefficients of lift and induced drag,

respectively, as determined based on angle of attack (AoA or ),

and Al is the lifting surface area of the airfoil.

Most of the control surfaces and the stabilizers are considered
symmetric airfoils that generate no lift at zero degrees angle of
attack, and therefore they are dominated primarily by parasitic
drag depending on the angle of attack. Their drag force was
directly proportional to the local  , and given by:

Figure 3: A collection of screenshots from the early prototype implementation. From top to bottom,
left to right: a physics debug view illustrating the forces(red), joints(yellow), and velocities(white) of
each component; a view of the model in the model viewer utility; a view of the model during flight

(instrumentation not shown).

D p=sin ⋅Cd , p⋅A⋅ 1
2
⋅⋅∣v eff∣

2⋅−1⋅
veff

∣veff∣
In the case of the horizontal stabilizers, positive  followed the
aerospace engineering standard of positive values indicating
stabilizer toward the top and back of the stabilizer. In the case of
the vertical stabilizer, positive VS was considered to be airflow
towards the back and right of the stabilizer. The components are
connected using joints from jMEPhysics. Each component is
simulated to calculate the forces acting on it at a given timestep,
and these forces are then input into the physics engine where they
are composited based on the physics joints.

The simulator supports full control of the control
surfaces, including ailerons, flaps, elevators, and rudder, as well
as control over the level of thrust. Changes to the model made by
the user only alter the angle of the specified control surfaces, ie
ailerons; the physical model of each component then determines
the realistic behavior of the plane. An instrumentation head-up
display (Figure 4) give feedback to the user on current altitude,
velocity, orientation, et cetera. The simulator also integrates a
physics debug view from jMEPhysics, which allows the user to
examine the forces acting on each component, their geometric and
mass centers, their velocities, and other attributes in real time.

The user may return to the menu at any time during the
simulation to access other functionality. The simulation may be
reset, or the user may continue where they left. A viewer utility is
available to the user at any time from the menu, which displays
the current status of the plane model in the simulator, with free
camera and scaling movement. This allows the user to examine
any of the aspects of the forces, components, or joints in more
detail at any time during the simulation.

We plan to complete the editor and provide basic
statistical analysis functionality. We also plan to extend the
complexity of the physics model to incorporate more realistic
simulation techniques and environments, such as adding weather.
The utilities subsystem will be developed incrementally as the
other subsystems mature. At the time of writing the
implementation is still in progress; for more up to date
information, please visit http://cs.uga.edu/~parrish/newt.html.

5. CONCLUSIONS
We have presented an example of a framework for close
integration between simulation and design for aerospace
applications, and the amplification of their mutually beneficial

relationship due to that integration. Such a framework is modular
and flexible, allowing for a wide range of applications tailored to
the specific needs of the user. Such an integration supports the
application of computational optimization of designs. Finally, the
close integration of the three of these system - simulation, design,
and optimization - have the potential to greatly reduce prototype
design time and cost.

6. ACKNOWLEDGMENTS
The authors would like to thank Dr. John A. Miller of the
University of Georgia for sponsoring this project and providing
directed guidance throughout its realization. They would also like
to thank Hsin Hsiao Ma at the Georgia Institute of Technology for
providing aerospace engineering and physics expertise.

7. REFERENCES
[1] Aerospace Industries Association. 2006. Annual Income

Report for 2006. Aerospace Industries Association.
http://www.aia-aerospace.org/stats/aero_stats/stat0806.pdf.

[2] Cantù-Pax, E. 1998. A survey of parallel genetic
algorithms. Calculateurs Paralleles, Reseaux et Systems
Repartis, 10, 2, 141-171.

[3] Gopher, D. et al. 1994. Transfer of skill from a computer
game trainer to flight. Human Factors, 36, 387-405.

[4] Jain, S., and McLean, C. R. Integrated simulation and
gaming architecture for incident management training. In
Proceedings of the 2005 Winter Simulation Conference,
pages 904-913. Winter Simulation Conference, December
2005.

[5] Kincaid, J. P., et al. 2003. Chapter 19: Simulation in
Education and Training. In Applied System Simulation:
Methodologies and Applications, Obiadat, M. S. and
Papadimitriou, G. I., Eds. Kluwer Academic Publishers,
Norwell, MA, 437-456.

[6] H. H. Liu and H. Berndt. Interactive design and simulation
platform for flight vehicle systems development. In AIAA
Modeling and Simulation Technologies Conference and
Exhibit, AIAA-2006-6812, 16 pages. AIAA Modeling and
Simulation Technologies Conference and Exhibit, Keystone,
CO, August 2006.

[7] Mansur et al. Rapid prototyping and evaluation of control
systems designs for manned and unmanned applications. In
Proceedings of the American Helicopter Society 56th Annual
Forum. American Helicopter Society 56th Annual Forum,
Virginia Beach, VA, May 2000.

[8] Padula, S. L. 1994. Progress in multidisciplinary design
optimization at NASA Langley, NASA Langley Research
Center, TR No. NAS 1.15:107754, NASA-TM-107754.
NASA Langley Research Center, Hampton, Virginia.

[9] Padula, S. L. and Gillian, R. E. 2006. Multidisciplinary
environments: a history of engineering framework
development. 11th AIAA ISSMO Multidisciplinary Analysis
and Optimization Conference, Portsmouth, VA, September,
2006.

[10] Randel, J. M., et al. 1992. The effectiveness of gaming for
educational purposes: a review of recent research.
Simulation & Gaming, 23, 261-276.

Figure 4: An example of the instrumentation
(artificial horizon is not shown).

http://cs.uga.edu/~parrish/newt.html

	1. 	INTRODUCTION
	2. 	BACKGROUND
	3.	DESIGN AND ARCHITECTURE
	4. 	CURRENT IMPLEMENTATION
	5. 	CONCLUSIONS
	6. 	ACKNOWLEDGMENTS
	7. 	REFERENCES

