
Query Processing and Optimization Notes

John A. Miller

Department of Computer Science

University of Georgia

July 25, 2020

1 Bank Schema

1. table customer (cname, street, ccity) – 1000 3-tuples

nc = 1000 tuples, sc = 400 bytes

2. table deposit (accno, balance, cname, bname) – 2000 4-tuples

nd = 2000 tuples, sd = 400 bytes

3. table branch (bname, assets, bcity) – 10 3-tuples

nb = 10 tuples, sb = 200 bytes

4. table loan (loanno, amount, cname, bname) – 3000 4-tuples

nl = 3000 tuples, sl = 400 bytes

Convention: Primary Key (PK): underline, Foreign Key (FK): italics

1



2 Steps in Query Processing

1. Translate SQL

select c.cname, c.ccity

from customer c, deposit d

where d.bname = ‘Alps’ and c.cname = d.cname

2. to Relational Algebra (RA)

πc.cname, c.ccity(σbname=‘Alps′ and c.cname=d.cname(customer × deposit))

3. For each of the tables in the query, compute the blocking factor bf and number of

blocks nb.

bfc =
⌊sblock
sc

⌋
=

⌊4096

400

⌋
= 10 tuples per block

nbc =
⌈ nc

bfc

⌉
=

⌈1000

10

⌉
= 100 blocks

bfd =
⌊sblock
sd

⌋
=

⌊4096

400

⌋
= 10 tuples per block

nbd =
⌈ nd

bfd

⌉
=

⌈2000

10

⌉
= 200 blocks

4. Optimize the Query

2



3 Steps in Query Optimization

1. Direct Transalation. Arrange RA into a Relational Algebra Expression Tree

2. Convert Cartesian Product × to Join ./

πc.cname, c.ccity(σbname=‘Alps′(customer ./cname deposit))

This form of equi-join

customer ./cname deposit

is equivalent to

customer ./c.cname=d.cname deposit

3. Move Select Operations σ Down the Tree

πc.cname, c.ccity(customer ./cname (σbname=‘Alps′(deposit)))

4. Apply Indexes to speed up select and join operations

create index d_bname_idx on deposit (bname)

create unique index c_cname_idx on customer (cname)

Note: an index on customer (cname) will likely be created by default in most DBMSs.

3



4 Query Cost Metrics

1. Sum of all output sizes (number of tuples)

Tuple oriented, rough estimate

2. Sum of all block accesses required to process query

Block oriented, better estimate for secondary storage uses number of block accesses

(nba)

3. Run Time

Empirical, e.g., Project 3

4



5 Result Sizes in Tuples (Bottom Up Evaluation)

Ignore the last project operation.

1. Direct Translation

πc.cname, c.ccity(σbname=‘Alps′ and c.cname=d.cname(customer × deposit))

Cartesian Product × pairs every tuple in c with every tuple in d.

Size of Product = nc ∗ nd = 1000 ∗ 2000 = 2, 000, 000

The Select σ has two predicates that may be thought of as filters. The filter strength (or

selectivity) for σA=v(r) is the reciprocal of the number of distinct values for attribute

A in relation r.

1

V (A, r)

Size of Select =
nc ∗ nd

V (bname, d) ∗ nc
=

1000 ∗ 2000

10 ∗ 1000
= 200

total = 2,000,000 + 200 = 2,000,200

5



2. Convert Cartesian Product × to Join ./

πc.cname, c.ccity(σbname=‘Alps′(customer ./cname deposit))

When a join predicate/condition is found as part of a top-level conjunction, it may be

removed from a selection operation to be combined with a Cartesian Product operation

to form a join. In this case the join predicate (i.e., predicates involving attributes from

two tables) is c.cname = d.cname.

The Join ./ pairs each tuple in d with its unique match in relation c. The size (in

tuples) of the output of an equi-join of the form PK = FK is the size of the FK table.

Size of Join = nd = 2000

Now the select σ has a single predicate and filter.

Size of Select =
nd

V (bname, d)
=

2000

10
= 200

total = 2000 + 200 = 2200

6



3. Move Select Operations σ Down the Tree

πc.cname, c.ccity(customer ./cname (σbname=‘Alps′(deposit)))

The select σ has a single predicate (filter) and now pulls tuples directly from relation

d

Size of Select = n′d =
nd

V (bname, d)
=

2000

10
= 200

The c table and d′ table (what remains of d after selection) are now joined. The c

relation is still the PK table, so the size of the output is the size relation d′.

Size of Join = n′d = 200

total = 200 + 200 = 400

4. Apply Indexes

Improvements not visible with simple cost model.

7



6 Number of Block Accesses (nba)

Ignore the last project operation.

1. Direct Translation

πc.cname, c.ccity(σbname=‘Alps′ and c.cname=d.cname(customer × deposit))

The Cartesian Product × pairs every tuple in c with every tuple in d.

reads = nbc + nbc · nbd = 100 + 100 · 200 = 20, 100

writes = nb./ =
⌈nc · nd
bf./

⌉
=

⌈1000 · 2000

5

⌉
= 400, 000

The Select σ has two predicates that may be thought of as filters. The filter strength

(or selectivity) for σA=v(r) is the reciprocal of the number of distinct values for attribute

A in relation r.

1

V (A, r)

reads = nb./ = 400, 000

writes =
⌈ nc · nd
V (bname, d) · nc · bf./

⌉
=

⌈ 1000 · 2000

10 · 1000 · 5
⌉

= 40

total = 20,100 + 400,000 + 400,000 + 40 = 820,140

8



2. Convert Cartesian Product × to Join ./

πc.cname, c.ccity(σbname=‘Alps′(customer ./cname deposit))

When a join predicate/condition is found as part of a top-level conjunction, it may be

removed from a selection operation to be combined with a Cartesian Product operation

to form a join. In this case the join predicate (i.e., predicates involving attributes from

two tables) is c.cname = d.cname.

The Join ./ pairs each tuple in d with its unique match in relation c. The size (in

tuples) of the output of an equi-join of the form PK = FK is the size of the FK table.

reads = nbc + nbc · nbd = 100 + 100 · 200 = 20, 100

writes = nb./ =
⌈ nd
bf./

⌉
=

⌈2000

5

⌉
= 400

Now the Select σ has a single predicate and filter.

reads = nb./ = 400

writes =
⌈ nd
V (bname, d) · bf./

⌉
=

⌈ 2000

10 · 5
⌉

= 40

total = 20,100 + 400 + 400 + 40 = 20,940

9



3. Move Select Operations σ Down the Tree

πc.cname, c.ccity(customer ./cname (σbname=‘Alps′(deposit)))

The Select σ has a single predicate (filter) and now pulls tuples directly from relation

d

reads = nbd = 200

writes =
⌈ nd
V (bname, d) · bfd

⌉
=

⌈ 2000

10 · 10

⌉
= 20

For the Join, the c table and d′ table (what remains of d after selection) are now

joined. The c relation is still the PK table, so the size of the output is the size relation

d′.

reads = nbd′ + nbd′ · nbc = 20 + 20 · 100 = 2, 020

writes = nb./ =
⌈ nd′
bf./

⌉
=

⌈200

5

⌉
= 40

total = 200 + 20 + 2020 + 40 = 2280

10



4. Apply Indexes - B+Trees Formulas

h(n) =
⌈
logp

n

p− 1

⌉
=

⌈
log10

n

9

⌉

select : unique = h(n) + 2

select : nonunique = h(n) + 2 + writes

join : unique = nb1 + n1(h(n2) + 2)

join : nonunique = complicated

Use a non-unique index for bname in the deposit relation to reduce reads for the Select

operation.

reads = h(V (bname, d)) + 2 + writes 1 + 2 + 20 = 23

writes =
⌈ nd
V (bname, d) · bfd

⌉
=

⌈ 2000

10 · 10

⌉
= 20

Use a unique index for cname in the customer relation to reads for the Join operation.

reads = nbd′ + nd′(h(nc) + 2) = 20 + 200(3 + 2) = 1020

writes = nb./ =
⌈ nd′
bf./

⌉
=

⌈200

5

⌉
= 40

total = 23 + 20 + 1020 + 40 = 1103

11



7 Summary

Table 1: Results for the Four Optimization Steps

Opt Step Description Tuples Blocks

1 Unoptimized 2,000,200 820,140

2 Products to Joins 2200 20,940

3 Selects Down 400 2280

4 Apply Indexes NA 1103

12


	Bank Schema
	Steps in Query Processing
	Steps in Query Optimization
	Query Cost Metrics
	Result Sizes in Tuples (Bottom Up Evaluation)
	Number of Block Accesses (nba)
	Summary

