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ABSTARCT

Scalation is open source Scala based framework for Big Data Analytics that offers simulation,
optimization and analytics. And as big-data involves handling massive amounts of data, using a
single system to process such huge volumes of data is cumbersome and slow in processing. So,
in this work we explored adding distributed functionalities to Scalation and also the possibility of
using the OpenJDK VectorAPI to  write  compute  intensive  applications  in  Java without  Java
Native  Interface  performance  overhead.  Our  goal  was  to  improve  the  processing  time  and
efficiently utilize the available resources to reduce operation time and cost.  In this work, we
initially concentrated on the mathematics package of Scalation as it is the basis for the modeling
and database  modules  of ScalaTion.  We worked on the matrix  multiplication  problem as its
runtime optimization is still an ongoing research problem. We leveraged Akka, which is open-
source toolkit to add the distributed functionalities in the mathematics package of Scalation. 

Index words: Matrix Multiplication, Distributed systems, Cannon’s Matrix multiplication, 
VectorAPI

I. INTRODUCTION

Matrix Multiplication is still considered as a very important research problem to study when 
designing optimization solutions. As of recently, the  of the order of n2.37  with Coppersmith-
Winograd algorithm, the processing time quickly escalates when we have to deal with large 
amounts of data, say for example multiplying two matrices that have 900 rows and columns each
or more. And when such operations are included as a necessary calculation step, then the 
problem’s operational cost would be really high and take a lot of time to process. This 
operational cost becomes even more prominent in machine learning applications which are part 
of the ScalaTion framework. Instead we can try to reduce this cost by distributing the work to 
different machines that work independently to solve subparts of the problem and later these sub-
solutions can be combined to get the final result. Also, we considered using Java VectorAPI to 
directly transform vector-vector operations to optimal vector hardware instructions that use the 
data parallelism of the underlying hardware instruction set thus effectively lowering the 
runtimes.

In the Scalation mathematics package, matrix multiplication is one of the primary operations and
upon which many other operations are depended as the linalgebra package of the mathematics 
module is the basis for analytics and machine learning modules. So, in this work we narrowed 
our focus on improvising the performance of  matrix multiplication operation. First, we 

mailto:chandana.marneni@uga.edu


implemented Cannon’s distributed matrix multiplication algorithm [1] to distribute the work of a
single machine onto different machines to compute matrix multiplication. Next, we also tried to 
use the Java VectorAPI which is still in initial stages of development and not yet released into 
the market. Using VectorAPI showed significant performance improvements compared to 
distributed approach.

II. BACKGROUND and RELATED WORK

Much work has been done in the area of distributed matrix multiplication. 1D-systolic [2], 2D-
systolic [2], Summa [18] and Cannon’s [1] are some of the different approaches proposed for

matrix multiplication. Cannon’s algorithm is a distributed matrix multiplication algorithm that is
suitable  for  computers  laid  in  a  N*N  mesh  and  matrices  of  equal  dimensions.  The  main
advantages  of  using Cannon’s is  that  the  given the problem space,  the  storage  requirements
remain  constant  and  works  independent  of  the  number  of  processors  in  use  [19].  Summa
algorithm [18] is more generalized than Cannons’ and it doesn’t have the restrictions of working
with 2D grid. Also, in optimizing matrix multiplication process, another approach considered is
to transpose one of the matrices to lessen the retrieval cost.

III. SCALATION

Scalation is  a Big-Data framework [17] that  provides analytics,  simulation and optimization.
Scalation has different modules that include mathematics, statistics, databases and modeling. It
also includes some examples of working with this framework.

The  Scalation_mathstat  module is the basic package of Scalation and it offers the support for
mathematics and statistics needed for the scalation_modeling package.

The scalation_database module includes the database support of Scalation framework. Columnar
databases are used in this module for performance efficiency. The database package also includes
support for graph and spatial databases. The columns of the database are implemented as Vector
data-type of Scala language. Vector in Scala can include different datatypes – Int, Long, Double,
Real, Complex, Rational, String, Time that can represent real-world data. This module provides
support for the analytics  operations  of the Scalation  by including efficient  data management
techniques.

The  scalation_modeling  module provides support through the modeling techniques like linear
regression,  neural  networks,  classifiers  etc.  for  the  analytics,  simulation  and mathematics  of
Scalation.

The  scalation_models  package includes  examples of using the various modules  and how the
analytics and the models in Scalation can be used.

The current  work focuses on adding distributed capabilities  to  the mathematics  package and
explores the way of using Cannon’s algorithm using Akka toolkit to achieve this as a starting
step.

IV. CANNON’S ALGORITHM FOR DISTRIBUTED MATRIX MULTIPLICATION



In this work, we implemented Cannon’s algorithm for distributed matrix multiplication.
Cannon’s algorithm needs working with processes on 2D grid. For multiplying N*N matrices A

and B, we need N*N processing nodes with each node getting (N/√p) ∗ (N/√p) chunk of data

where p is perfect square.

Cannon’s algorithm organizes processors into rows and columns of the 2D mesh as shown in Fig
1. Each processor in the mesh gets a chuck of both the matrices A and B which are used to
calculate a part of the resultant matrix multiplication. And to fully calculate the complete chunk
of the matrix  multiplication  result,  we incrementally  move the  chunks of  matrices  A and B
among all the processors until the complete result is calculated. Effectively, we make use of ring
broadcast algorithm to move parts of A and B matrices to successive processors in each step. At
the end, each processor will have a chunk of the final result of multiplying the matrices and these
chunks can be either combined together or stored from each processor separately into database.   

P(0,0) P(0,1) P(0,2)

P(1,0) P(1,1) P(1,2)

P(2,0) P(2,1) P(2,2)

Fig 1 Description of Processors arranged in a 2D mesh
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Fig 2. Description of Initial arrangement of matrices A and B on the processor mesh

The Figure 2 shows how matrices A and B are initially arranged on the 2D processor mesh with
similar chunks of sub-matrices A and B assigned to the same processor at the beginning of the
multiplication. A(i,j) represents the sub-matrix of A that we got by slicing matrix A into chunks

of N/√p size each.

To calculate resultant matrix, we multiply the chunks of matrices of A and B, rotate them,
multiply the newly obtained chunks together and continue the process until all the sub parts have
been calculated.



If we want to calculate C[1,2], we need A[1,0] and B[0,2]; A[1,1] and B[1,2]; A[1,2] and B[2,2]
as sets on the same processor at different steps.

To achieve this configuration, we shift rows of A to the left and columns of B upwards to lineup.
For shifting, we move each row i by i columns to the left using send and receive operations. The
same is done for matrix B but each column j by j rows upwards. i and j in this shifting process
are numbered starting from 0. 

After the initial submatrix multiplication, we shift again using the same above-mentioned process
and then multiply. Each processor forms the sub-product of the two sub matrices A and B in each
step adding to the accumulated sum and finally after the algorithm finishes, each processor will
have the chunk of the resultant matrix of size N/√p.

Cannon’s algorithm shifts chunks of matrices A and B along the rows and columns of the
processor mesh. This shifting of data needs a message passing mechanism among the processors
to send and receive data.  To this effect,  we leveraged the use of Akka distributed toolkit  for
message passing in the processor grid.

V. AKKA DISTRIBUTED TOOLKIT

Instead of developing a distributed mechanism from scratch, we opted to use existing toolkits.
We explored Akka toolkit [4] and Apache’s Kafka [6], Spark [9], Storm [10], Flink [5] and
Samza [8]. Many works on comparing these distributed technologies exist. After studying the
features of these technologies, their compatibility with Scalation and ease of use, we decided on
using Akka to add distributed capabilities to Scalation.

Akka is free and open-source distributed toolkit developed by Lightbend and includes support for
both Java and Scala. Akka was initailly developed by Jonas Boner to simplify the overhead and
errors involved in directly using threads and synchronization of the critical  parts  with locks.
Akka  was  developed  from  the  inspiration  of  Erlang’s  highly-concurrent  and  event-driven
approach.  The  result  is  that  Akka  became  light-weight  and  offers transparent  remote
communication  between  the  actors  by  passing  immutable  messages.  Thus  Akka  effectively
obviates the burden of dealing with multi- threaded components, thus making it less complex to
work with. And the messages passed in Akka are immutable and we need not worry about other
components altering the message which is quite  common  when  working  with  distributed
systems.

Akka is actor model system where each component is envisioned as an actor that can send or
receive messages. An actor object encapsulates state and behavior and the actors communicate
among themselves by exchanging messages which are stored in an actor’s recipient mailbox.
Actors are contained in ActorSystem that manages the resources it is configured to use and runs
the actors that it contains. Actor is handled with actorRef that is returned upon the creation of
actor within the ActorSystem instead of using it directly. Following are the syntaxes for creating
ActorSystem, actor and message passing between actors.

ActorSystem creation:



val actorSystem: ActorRefFactory = ActorSystem("ActorSystem_name", config)
where config represents the configuration of ActorSystem.

Actor creation:
val actorRef: ActorRef = actorSystem.actorOf(Props[Actor_Class], "Master")

Message passing: done using ‘!’ 

actorRef ! print(“Hello world”)

Akka also supports clustering where individual nodes are grouped into a cluster are managed by
the Cluster system as a single unit. Many high-level clustering techniques are provided by Akka
that support different use cases. For our use in Scalation, we used simple Akka cluster to define
the distributed nodes involved in performing the subparts of the same computation as belonging
to the same cluster. With the use of Akka clustering,  low-level of details involved in remote
communication can be effectively handled with less complexity.

VI. JAVA VECTOR API

Vector API is being developed as part of Panama project under Oracle’s OpenJDK [15] to give
Java the  feature  of  expressing vector  computations  that  compile  to  optimal  vector  hardware
instructions  at  run-time.  Vector  computations  make use of data  parallelism and thus give far
better  performance optimization  compared  to  scalar  computations.  They obviate  the  need of
working directly with Java Native Interface (JNI) thus reducing the performance overhead in
converting to native code. It is especially useful for compute intensive applications like machine
learning, BigData and artificial intelligence applications in Java. 

Vector<E,S>

IntVecotor<S> FloatVector<S> DoubleVector<S>

Int128Vector Int256Vector Int512Vector Float128Vector …. Double128Vector ….
 

Fig 5 Vector API Interface hierarchy

Throughput  can  be  improved  by  a  combination  of  executing  many  instructions  per  cycle
(pipelining)  and also by processing multiple  data  items per instruction (SIMD).  Intel  already
provides  SIMD  instruction  sets  as  the  various  generations  of  SSE and  AVX.  To  improve
throughput, SIMD can me maximized. In Single Instruction Multiple Data Items (SIMD), we
have multiple processing entities perform the same instructions on multiple data points at the
same time thus working quickly on the entire input range in a short time compared to singe
instruction working on single data item at any given point of time. Vectorization in Java allows



throughput to be increased by the use of SIMD instructions. For exampleif we have a vector 256
instruction set, we can simultaneously work on 64 bytes of data at a time. Analytical workloads
are particularly suitable for vectorization, especially over columnar data, because they typically
involve operations consuming the entire range of a few numerical attributes of a data set. 

As per the Panama project VectorAPI, the Vector type is defined as Vector<E,S> where 'E' is the
Element  type  and  'S'  is  the  shape  or  bitwise  length  of  the  vector.  Based  on  the  recent
development of project Panama supports, Vectors creation of the following Elements and Shapes.
Are possible: 

Element types:  Byte, Short, Integer, Long, Float, and Double
Shape types (bit-size): 128, 256, and 512

Basic Vector-Vector functionalities like addition, multiplication are available for all of the above
Vector types. And Vector Masks are used for conditional if-else type operations and these vector
masks  used  together  with  the  normal  vector  operations  act  as  filters.  In  the  work  we  did,
VectorAPI is shown to improve performance by twofold compared to scalar operations. And the
API also provides many convenient high-level methods to convert arrays to vectors and vectors
to arrays so that we can read the data into a vector and perform Vector-Vector operations and
write back the results in our desired format.  The Vector API provides Vector.preferredSpecies
instance method in order to query for the appropriate vector size to use. This is especially useful
when we don’t  want  to  explicitly  state  the Shape of the Vector  to  use as  it  may vary from
machine to machine. And instead this enables the size to be dynamically computed depending on
the  system.  The  returned  species  of  this  method  can  be  used  for  generically  sized  vector
computations so no concrete shape need to be declared.

The  VectorAPI  operations  are  available  in  the  jdk.incubator.vector  of  the  Panama  project
develeopment  branch.  We can  read  data  between  arrays  and Vectors  using  ‘fromArray’ and
‘toArray’ methods. At each iteration, depending on the size of the vector data equivalent to the
vector length gets operated on parallely with the same instruction thus working on multiple data
points at the same time. 

VII. CANNON’S ALGORITHM IMPLEMENTATION USING AKKA

We  implemented  Cannon’s  distributed  matrix  multiplication  algorithm  using  Akka  in  the
mathematics  package  of  Scalation.  This  is  available  as  dist  package  in  the
LinearAlgebra(linalgebra)  of the scalation mathematics package. Specifically, we worked with
MatriD matrix type of the module.

We implemented the distributed matrix multiplication using four systems that form the four
nodes in the cluster. So, the processing of matrix multiplication is distributed evenly onto these
four machines with one of the machines working as the Master that distributes the sub-matrices
across the four nodes. The architecture is designed with single Master and four worker Nodes.



The Master node’s main function is message coordination among the individual worker nodes
and to achieve synchronization in the process. Synchronizing events is important as we have to
ensure that sub-matrix multiplication is completed successfully on all the nodes and then only the
sub-matrices can be exchanged between the nodes in the next step.

The worker nodes main functionality is to perform matrix multiplication, update their progress to
Master  node  and  upon  completion  of  the  process,  they  send  the  resultant  chunks  of  the
multiplication of matrices to the Master node which builds the final output matrix.

Initially the Master  node is  tasked with fetching the matrices  from the database,  divides  the
matrices  A and B into  chunks of size equal  to  that  N/√p where N is  the dimension of  the

matrices A and B. Both A and B are assumed to be square matrices of the same order. As each
node gets chunks of both A and B matrices, they calculate part of the result of the sub-matrix
multiplication and inform the Master node. And after receiving a message from Master node
to start shifting when all worker nodes have completed calculating part of the resultant matrix
multiplication chunk  on  those  nodes,  worker  nodes  start  shifting  their  chunks  of  A and  B
matrices to their successive processors in order according to the Cannon’s algorithm.

After each processor has successfully computed the chunk of the resultant matrix, these chunks
are transferred to the Master  node which forms  the final  matrix  that  would be the result  of
multiplying both A and B matrices.

While working with Akka, we noticed that the overall time to complete the matrix multiplication
is higher than what we looked for. This is due to the inbuilt Java serialization mechanism used by
Akka. This time to exchange data between nodes increases even more when the nodes are set to
run on different machines when the data has to transfer through network. To overcome this, we
looked at some binary serialization libraries like Google Protocol Buffers [12], Kryo serialization
[7] and tried to use Kryo binary serialization that provided support for Scala and easy to use. But
since we are working with MatrixD that has custom datatypes wrapped as a single entity, we
found that  serialization-deserialization process wasn’t straight forward.  We observed an issue
with deserialization being done out of order in comparison to the serialized messages. So, we
couldn’t include the Kryo serialization library to improve the communication costs.

VIII. PERFORMACE EVALUATIONS

Matrix multiplication results for matrices of size 900*900 using Vector API in ms:

Method Time (ms)
VectorAPI 407
Optimized (single node) 836
Cannon Distributed (four node) 892

Table 1 Performance evaluations

The above results show that VectorAPI provides the best possible performance as it makes use of
data  parallelism  of  the  underlying  hardware  instructions  while  also  avoiding  the  nativity
conversion overhead involved with JNI. Optimized matrix multiplication and Cannon’s both use



the optimized version of matrix  multiplication.  However, Cannon’s algorithm is  run on four
different nodes whereas the single node optimized version uses only a single node. They both
have almost similar performance results. But with the use of right serialization approach instead
of the slower java serialization used inherently in Akka, Cannon’s algorithm may provide even
better results than optimized version running on single node.

The following is the breakdown of the individual times taken to perform the Cannon’s matrix
multiplication at each step starting from the first sub-matrix multiplication excluding the time
taken for data exchange:

Node Before shifting (ms) After shifting (ms) Total (ms)

Worker 265 275  540

Node Merging of matrices (ms)

Master 35

Time taken to shift the sub-matrices among the individual nodes: 224.64ms
And similar times for initial transfer of sub-matrices to each of the nodes from the Master node.

Therefore, total time spent on the processor doing useful work is around 540ms on the worker
nodes and even lesser at the Master node. In our setup, we had the Master node and one of the
worker  nodes  running  on  the  same  machine  and  since  Master  node  doesn’t  do  much
computations when the worker node is busy and only starts merging matrices after all the worker
nodes  complete  sending  their  resultant  sub-matrices,  a  single  machine  can  effectively
accommodate both Master and worker node. The above times show that by distributing the work
onto different machines, we are improving the performance at each node end. If we take out the
latency involved in the exchange of data among the nodes, Cannon’s algorithm performance is
similar to that of VectorAPI. So, by applying effective serialization mechanisms, this latency
overhead can be brought down thus improving the overall performance of the algorithm.

In reference to the work done by Santosh Uttam Babode [16] on the performance evaluation of
Summa  [18],  which  is  a  universal  scalable  matrix  multiplication,  the  results  are  shown  as
1796ms for 900*900 matrix multiplication for 2-dimensional matrices where the operations are
done serially and 167ms for parallel approach. It is to be noted that the machines used to test
Summa’s performance in Santosh’s work and Cannon’s and VectorAPI in this work are different.
Both Cannon’s and VectorAPI perform better compared to Summa 2DS approach.

IX. FUTURE WORK

This  work only involves  implementation  of distributed  matrix  multiplication  of  MatriD type
matrices using Akka. There are many other components included in the mathematics package to
which distributed capabilities can be added. And in the future, we can extend all the Scalation
modules incrementally to implement the distributed functionalities and provide both monolithic
and distributed support.



And here we used only single instance of Master and slave nodes. The case of node failures has
not been handled in this work. Also, we assumed a 2*2 grid with 4 machines. Some changes
would be needed to generalize the number of machines used in the cluster. So, in order to obtain
resiliency and scalability,  maybe  we can look into node replication  and cluster  management
systems like Docker, Kubernetes [11] when this system with the distributed functionality get
mature enough to use containers.

Akka uses Java serialization to serialize messages that are sent remotely. And Java serialization
is slow thus effecting the overall performance. To achieve higher speed-ups, we can implement
alternative  serialization  techniques  that  provide  Scala  support  like  ScalaPB[13],  Twitter’s
Chill[14].

Java VectorAPI is still in the nascent stages development and is rapidly changing. But when this
API  becomes  finally  available  in  the  market,  this  will  benefit  many  compute-intensive
applications like machine learning and analytics applications.

X. CONCLUSION

In this work, we present Cannon’s distributed matrix multiplication implementation of MatrixD
from the mathematics module of Scalation. We used Akka distributed toolkit to add the
distributed functionalities as for message passing as it is light-weight, easy to use and provides
all the necessary features with support for Scala. This work can be considered as the initial step
towards making Scalation framework distributed. With the use of proper serialization mechanism
for  communication optimization, Akka can be effectively used to obtain the distributed
functionalities. We also showed how the Java VectorAPI boosts the performance by twofold with
its usage of data parallelism at the hardware level.
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