
Examining the Dual Cardinality Simulation

Algorithm

by

(Under the Direction of John Miller)

ABSTRACT

Graph pattern matching is typically defined in terms of subgraph isomorphism,

which makes it an NP-complete/NP-hard problem. Isomorphism algorithms re-

quires bijective functions which can be too restrictive to identify patterns in

real-world applications. Moreover, real-world graphs may contain some noise

and the problem of finding the exact match can be very expensive. In order to

avoid the combinatorial worst-case time complexity of subgraph isomorphism,

we extend prior work on dual cardinality simulation. According to our experi-

ments, this type of graph simulation offers high precision with good performance

in large graphs. Precision is acquired because dual cardinality simulation checks

the constraint in which the number of matching children or parents with the

same label in the data graph should not be less than their correspondents in the

query graphs. For improving the performance, we have introduced the concept

of count sets which are computed before dual cardinality simulation is executed.

Experiments are done on large graphs using synthetic and real-world graphs.

INDEX: Subgraph Isomorphism, Cardinality, Graph Database, Graph Simula-

tion, Pattern matching

Examining the Dual Cardinality

Simulation Algorithm

by

Luis Anggelo Ibarra

B.S, Pontificia Universidad Catolica del Peru, Peru,

2011

A thesis submitted to the Graduate Faculty

of University of Georgia in partial fulfillment

of the

requirements for the degree

Master of Science

2018

© 2018

Luis Anggelo Bernaola Ibarra

All Rights Reserved

Examining the Dual Cardinality Simulation Algorithm

by

Luis Anggelo Bernaola Ibarra

Approved:

Major Professor: John A Miller

Committee: Maria Hybinette

Budak Arpinar

Electronic Version Approved

Suzanne Barbour

Dean of the Graduate School

The University of Georgia

May 2018

Acknowledgements

The acknowledgements and the people to thank go here, don’t forget to include

your project advisor. . .

iv

Contents

Acknowledgements iv

List of Figures vi

1 Introduction 1

2 Background 3

2.1 Graph representation . 3

2.2 Subgraph Pattern Matching Problem 4

2.3 Types of Pattern Matching . 5

2.4 Graph Database Systems . 9

2.5 QUERY LANGUAGES. 10

3 Dual cardinality Algorithms 12

3.1 Dual Cardinality Simulation . 12

3.2 Dual Cardinality Isomorphism . 16

4 Experimentation 18

4.1 Introduction . 18

4.2 Effects that impact the runtime 19

4.3 Precision and runtime . 26

4.4 Cardinality in graphs . 41

5 Conclusion and Future Work 47

Bibliography 49

v

List of Figures

1.1 Small delivery company and a network of delivery companies . . 2

2.1 A data graph and a query graph 4

2.2 SubGraph Isomorphism. 6

4.1 data size effect for uniform graphs 20

4.2 data size effect for power law graphs 20

4.3 query size effect for uniform graphs 21

4.4 query size effect for power law graphs 21

4.5 label size effect for uniform graphs 22

4.6 label size effect for power law graphs 23

4.7 label size effect for amazon-2008 dataset 23

4.8 uk-2014 data set for label=200 24

4.9 data graph density effect . 25

4.10 Precision for uniform graphs . 27

4.11 runtime for uniform graphs . 27

4.12 Precision for power law graphs 28

4.13 runtime for power law graphs . 28

4.14 Precision for power law graphs with different query size 29

4.15 runtime for power law graphs with different query size 29

4.16 Precision for amazon-2008 dataset 30

4.17 runtime for amazon-2008 dataset 30

4.18 Precision for graphs with different density 31

4.19 runtime for graphs with different density 31

4.20 Precision vs runtime for uniform graphs 32

4.21 Precision vs runtime for power law graphs 32

4.22 Precision vs runtime for power law graphs with different query size 33

4.23 Precision vs runtime for amazon-2008 dataset with different label
size . 33

4.24 Precision vs runtime for graphs with different density 34

4.25 runtime for edge labeled power law graphs with different graph size 35

4.26 runtime for edge labeled power law graphs with different graph size 36

4.27 runtime for edge labeled power law graphs with different edge
label size . 37

4.28 runtime for edge labeled power law graphs with different edge
label size . 38

4.29 Mutable vs Immutable for uniform graphs 39

vi

vii

4.30 Mutable vs Immutable for power law graphs 40

4.31 version 1 vs vesion 2 for uniform graphs- graph size effect 42

4.32 version 1 vs vesion 2 for power law graphs- graph size effect . . . 42

4.33 version 1 vs vesion 2 for uniform graphs- query size effect 43

4.34 version 1 vs vesion 2 for power law graphs- query size effect . . . 44

4.35 version 1 vs vesion 2 for uniform graphs- label size effect 45

4.36 version 1 vs vesion 2 for power law graphs- label size effect . . . 46

Chapter 1

Introduction

The practical relevance of the graph pattern matching problem is reflected in a

variety of applications ranging from chemical documentation, computer vision,

knowledge discovery, biology, cheminformatics, dynamic network traffic, and re-

cently, social networks. Graph pattern matching is typically defined in terms of

subgraph isomorphism. Subgraph isomorphism tries to find all subgraphs of G

that are isomorphic to a query graph Q. That is, a match of Q is a subgraph

G′ of G such that there exists a bijective function f from the vertices of Q to

the vertices of G′ , and (a) for each vertex v in G′ , v and f(v) have the same

label, and (b) there exists an edge from v to v′ in Q if and only if (f(v), f(v′)) is

an edge in G′ . This makes graph pattern matching np-complete, and obstructs

its scalability in finding exact matches. Moreover, all known algorithms have an

exponential worst-case behavior.

Sometimes, a bijective function is too restrictive to identify patterns in real

world applications. Consider the structure of a delivery company organization,

depicted as a pattern graph Q in Fig. 1.1 A boss B oversees the operations

through a group of assistant managers (AM). An AM supervises a hierarchy

of low-level delivery workers (DW). The DWs deliver products and report to

AMs directly or indirectly, while the AMs report directly to the boss. The boss

may also convey messages through a secretary (S) to the DWs. A network of

delivery companies organization G is shown in Fig. 1.1 in which A1, . . , Am

are AMs, while Am is both an AM and the secretary (S). One wants to identify

all workers involved in the network of delivery companies by finding matches

of Q in G. However, graph pattern matching via subgraph isomorphism would

not be able to find these. We observe two problems. First, vertices AM and S

in Q should be mapped to the same node AM in G, which is not allowed by a

1

2

bijection. Second, the vertex AM in Q corresponds to multiple nodes A1, . . .

, Am in G. This relationship cannot be captured by a function from the nodes

of Q to the nodes of G. These tell us that graph pattern matching via subgraph

isomorphism is sometimes too strict to identify matches in real-world networks,

not to mention its intractability.

Figure 1.1: Small delivery company and a network of delivery companies

To reduce the complexity, Simulations like Tight[6], Strict[13] and Dual Sim-

ulation[1] have been adopted for patter matching. These simulations with a

polynomial-time complexity can identify matches with less constraint on the

topology of the graphs than subgraph isomorphism.

In this research project, we extent the dual cardinality simulation, introduced by

Arash Fard[8], that tries to solve the problem of subgraph isomorphism strictness.

Although this algorithm is not as fast as Dual Simulation, it exhibits a good

average performance and offers more precision than dual simulation. In chapter

2 we discuss the required background for this thesis, including how graphs are

represented and the most known pattern matching algorithms. In chapter 3 we

introduced our version for the dual cardinality algorithm. In chapter 4 we see

the experimental results in synthetic and real world graphs. In chapter 5 we

present our conclusions based on the experimentation results and we discuss the

future work.

Chapter 2

Background

In this section, we discuss graph terminology and its representation in Scala-

Tion[19], different types of pattern matching algorithms, graph databases and

the most popular query languages.

2.1 Graph representation

Throughout this thesis, we have considered only directed graph, with vertex la-

bels; this can be defined as G(V,E,L, l), where

V = set of vertices

E ⊆ {(u, v) |u∈ V , v ∈ V and u 6= v } set of directed edges

L = set of labels, l : V → L (vertex labeling function)

The base type of set L can be set at configuration time. In this research, we

have used integer or strings as the label type. We denote outgoing edges for a

vertex v as adj(v) where for some vertex v ∈ V , adj(v) = {v′ : (v,v′) ∈ E}. We

sometimes refer to the vertices in adj(v) as children of v and also refer to v as

the parent of all the vertices in adj(v). We have assumed that all the vertices are

labeled. We also assumed that the query graph is a connected graph, because

we need just one query graph from the data graph.

In ScalaTion a class called Graph is used to represent graphs in memory, vertices

of the graphs are represented in memory as the indices of an array and each ver-

tex is mapped to its labels using a separate array called label. The children of a

3

4

vertex v are represented by an adjacency set called ch where ch(v) contains all

the children of vertex v. If the parameter inverse is true, the parents of a vertex

v are also represented by an adjacency set. We will need the parent set in the

DualCAR simulation; and this inverse adjacency set will give us rapid accesses

to parent vertices for any vertex v. The last parameter called name just specifies

the name of the graph.

class Graph (ch : Array[SET [Int]], label : Array[TLabel], inverse : Boolean, name :

String)

2.2 Subgraph Pattern Matching Problem

The problem of subgraph pattern matching is defined as follows. Let G(V,E, L, l)

be a graph, where V is the set of vertices, E is the set of edges, l : V → L (vertex

labeling function). Let Q(V q,Eq, Lq, lq) be the query graph where V q is the set

of vertices, Eq is the set of edges and lq : V q → Lq. The goal of subgraph

pattern matching is to find all the subgraphs from the data graph G that match

the pattern graph Q. Therefore, G′(V ′, E′, L′, l′) is a subgraph of G if and only if

1. V ′ ⊆ V
2. E′ ⊆ E
3. ∀u ∈ V ′ : l′(u) = l(u)

Figure 2.1: A data graph and a query graph

In figure 2.1 we can see an example of subgraph pattern matching where enti-

ties are represented as vertex labels and edge labels represent the relationships

between them.

5

2.3 Types of Pattern Matching

In this section, we present the different pattern-matching problems. For each

of them we provide a basic idea on its functionality in order to know how they

perform matches for a given pattern.

2.3.1 Subgraph Isomorphism

In this problem we are looking for precise matches between two given graphs, a

large data graph G, and a small query graph Q. This can be defined as a bijec-

tive function between a query graph Q(V q,Eq, Lq, lq) and a subgraph of a data

graph G(V,E,L, l). Thus G′(V ′, E′, L′, l′) is said to be a subgraph isomorphic

match to Q if

1. V ′ ⊆ V
2. E′ ⊆ E
3. there exists a bijective function f : V q → V ′ such that

(a) A labeled edge e = (u, v) ∈ Eq ⇔ (f(u), f(v)) ∈ E′

(b)∀v ∈ V q, l(v) = l′(f(v))

Ullmann was the first well known algorithm for subgraph isomorphism [5]. It

laid a foundation for other pattern matching algorithms such as DualIso,VF2

and GraphQL. Because this problem is said to be NP-hard there has been much

research going on to reduce the complexity to polynomial time and some of

them will be discussed below. In figure 2.2 we can see an example of subgraph

isomorphism.

6

Figure 2.2: SubGraph Isomorphism.

(a) represents the data graph G, (b) represents the query graph Q and (c) rep-
resents the result match set. We have 4 different match results. For vertex u1,
we have 3 possible values v1,v2 and v8. For vertex u2 we have 3 possible values:
v3, v4 and v7. For vertex u3 we have 2 possible values: v6 and v7.For vertex u4
we have 2 values: v8 and v2

2.3.2 VF2

VF2[3] is an algorithm for graph isomorphism and subgraph isomorphism suited

for dealing with large graphs. In order to select the next query vertex, unlike

Ullmann, VF2 starts with the first vertex and selects a vertex connected from

the already matched query vertices. For the process of refining the candidates,

VF2 uses three pruning rules to prune out data vertex candidates: (1) Prune

out any vertex v in Φ(u) such that v is not connected from already matched

data vertices; (2) Let Mq and Mg be a set of matched query vertices and a set

of matched data vertices, respectively. Let Cq and Cg be a set of adjacent and

not yet-matched query vertices connected from Mq and a set of adjacent and

not-yet-matched data vertices connected fromMg, respectively. Let adj(u) be a

set of adjacent vertices to a vertex u. Then, prune out any vertex v in Φ(u) such

that Cq ∩ adj(u) > Cg ∩ adj(v); (3) prune out any vertex v in Φ(u) such that

adj(u)\Cq\Mq > adj(v)\Cg\Mg.

7

2.3.3 GraphQL

GraphQL[20] is another algorithm for subgraph isomorphism and it tries to

solve this problem with a combination of two techniques: Neighborhood sig-

nature based pruning and the pseudo subgraph isomorphism test based pruning.

Neighborhood signature of a vertex v, denoted as sigGraphQL(v) is a multiset of

labels of adj(v). The neighborhood signature based pruning prunes out a candi-

date vertex v if sigGraphQL(u) 6⊂ sigGraphQL(v) For example, if vertex u has

three children with labels A,A and C; then sigGraphQL(u) is {A,A,C}. If the

multiset of label of v is {A,B,D}; then sigGraphQL(v) is {A,B,D}. Then, v is

pruned since sigGraphQL(u) 6⊂ sigGraphQL(v). The Pseudo isomorphism test

is an iterative algorithm using the depth as a parameter. At first iteration, we

obtain two breadth first search trees Tu and Tv for u and v respectively, where

their depth is 1. Then, we can prune out v if Tu is not contained in Tv. We can

iterate this process by increasing depth by one until depth = r, where r is called

the refinement level. The process of selecting the next query vertex first selects

a query vertex u with the smallest candidate set size ‖Φ(u)‖. In the subsequent

calls, GraphqL selects a query vertex u that is connected already matched query

vertices and that makes the smallest size of intermediate results.

2.3.4 Dual Iso

DualIso[1] is known as Dual based Isomorphism. This algorithm is faster than

VF2 and GraphQL and similar to Ullmann’s subgraph isomorphism algorithm

but provides more effective pruning based on Dual Simulation. It initially finds

all the feasible matches of each vertex in the query. Given a query vertex u, Φ(u)

is created which contains all vertices of the data graph with the same label as

u. Then dual simulation is applied to prune the vertices from the data graph.

It then uses a search algorithm to recursively find the matches in a depth-first

manner. The most important feature of this algorithm is that it can refine both

conditions at the same time. DualIso is able to operate without requiring any

parent list. Because of this feature the runtime is reduced significantly.

2.3.5 Dual Simulation

Dual Simulation is an extension of graph simulation model, but has some ad-

ditional features. It takes into account not only the children of the query ver-

tex but also its parents. Query Graph Q(V q,Eq, Lq, lq) matches data graph

8

G(V,E,L, l), if

A. a match between u ∈ V q and u′ ∈ V is accepted if for each vertex v in

child(u) there is a vertex in V that is present in child(u′)

B. a match beween u ∈ V q and u′ ∈ V is accepeded if for each vetex w in

parent(u) there is a vertex in V that is present in parent(u′)

2.3.6 Strict Simulation

Strict simulation is an extension of Strong simulation introduced by Ma et al.

[13]. Here they add a locality property to dual simulation. They introduce the

concept of a ball to define locality. A ball b in G(V,E), denoted by G′(v, r) is

a subgraph of G such that it contains all the vertices that are not more distant

than a given radius r from a center v ∈ V and the radius is acquired from the

query graph which is the diameter of the query graph. A size of a ball is the

number of vertices it has. In strict simulation, balls are created from the dual

match set rather than the original data graph which reduces the solution.

2.3.7 Tight Simulation

Tight simulation [6] is an advanced modified version of Strict simulation. A

further condition is added to reduce the number of balls. First, before applying

dual simulation on G to find the dual simulation match set, they find the vertex

candidate in Q which decreases the size of the balls and also reduces the number

of balls. In addition to this, the radius of the ball is equal to the radius of the

query graph, not the diameter, of the query graph as in strict simulation.

2.3.8 Cardinality Restriction Simulation

Cardinality restricted or CAR-dual simulation, introduces a condition in which

the number of match children or parents with the same label in the data graph

should not be less than their correspondents in the query. A graph G is said to

be the cardinality match of graph Q if the number of matches of children and

parents with the same label in G is not less than that of the number of children

and parents matches with same labels in Q. Cardinality restriction improves the

accuracy and the quality of the result set. By this condition, experiment results

9

show that many vertices have been pruned to match the query graph and this is

a step towards subgraph isomorphism

2.4 Graph Database Systems

Relational databases store highly structured data in tables with predetermined

columns of certain types and many rows of the same type of information. In

relational databases, references to other rows and tables are indicated by referring

to their primary key attributes via foreign-key columns. This is enforceable

with constraints. Joins are computed at query time by matching primary and

foreign-keys of the many rows of the to-be-joined tables. In order to reduce

these costly operations graph databases were proposed where data is stored in

the form of vertices and their relationship are represented in the form of edges.

Relationships are first-class citizens of the graph data model, unlike relational

databases, which require us to infer connections between entities using foreign

keys. By assembling the simple abstractions of nodes and relationships into

connected structures, graph databases enable us to build sophisticated models

for almost any domain problem.

2.4.1 NEO4J

Neo4j 1 is one of the most popular open source graph databases implemented in

Java. It uses Cypher query language and is a transactional database. In Neo4j,

everything is stored in the form of either an edge, a node, or an attribute. Each

node and edge can have any number of attributes. Both the nodes and edges

can be labelled.

2.4.2 ORIENT DB

OrientDB 2 is an open source NoSQL database management system written in

Java. It is a multi-model database, supporting graph, document, key/value, and

object model. It supports schema-less, schema-full and schema-mixed modes. It

supports querying with Gremlin along with SQL extended for graph traversal.

OrientDB uses several indexing mechanisms based on B-tree and Extendible

hashing.

1http://neo4j.com/developer/graph-database/# what is neo4j
2http://http://orientdb.com/orientdb/

10

2.4.3 Query Processing on Graph Databases

Now that we have reviewed some of the graph pattern matching algorithms, we

can discuss how query processing works on graph databases. Query processing is

a problem of finding small patterns or subgraphs on a graph database. Because

processing graph data is a complex task, it requires efficient algorithms that can

find query graphs on large graph databases. Graph databases can be grouped

into two types. In the first type, the graph database can have very large graphs

like Web of Data, social networks, etc. Query processing for this kind of data base

would be finding the optimum path between the vertices or finding a subgraph in

the data graph that is similar to the query graph. The second type of database

consists of a large set of smaller graphs. An example of this type would be in

the field of bio-informatics. Filtering and verification are two important steps in

query processing [14]. In the filtering phase, the query graph is decomposed into

features and these features are later searched using an index. Each feature is

searched to get a set of graphs. The set of graphs are intersected to get candidate

sets. In the verification phase, the set of graphs are matched using a subgraph

isomorphism algorithm to obtain final result set.

2.5 QUERY LANGUAGES.

2.5.1 SPARQL

SPARQL 3 stands for SPARQL Protocol and RDF(Resource Description Frame-

work) Query Language. It is a graph query language that is used to query

data that is stored in RDF format. Queries are in the form of a triple Subject-

Predicate-Object and queries RDF graph using pattern matching.

2.5.2 CYPHER

Cypher 4 is the query language used by Neo4j database. Cypher allows creation,

deletion and updating of a database, which is applicable to nodes and relation-

ships. This language is powerful because it allows to execute complex queries

with ease. Cypher uses an SQL like structure where certain keywords are being

reused and expressions for pattern matching are inspired by SPARQL.

3https://www.w3.org/TR/rdf-sparql-query/
4https://neo4j.com/developer/cypher/

11

2.5.3 GREMLIN

Developed by Apache Tinkerpop, Gremlin 5 is the graph traversal language and

has been implemented in Java and is open source. Gremlin works for both OLTP-

based graph databases as well as OLAP-based graph processors. Gremlin is a

functional language that enables users to succinctly express complex traversals

on (or queries of) their application’s property graph. Gremlin will work for

any framework or graph database that implements the Blueprints data model.

Blueprints is something similar to JDBC but intended for graph databases.

5http://gremlindocs.spmallette.documentup.com/

Chapter 3

Dual cardinality Algorithms

3.1 Dual Cardinality Simulation

Our algorithm is divided in three parts: Preprocessing the graph and query

graph, Retrieval of feasible matches and Pruning algorithm. This algorithm can

be categorized into tree search base algorithm. The most important difference

is in the preprocessing of the graph G and query graph Q and also the prun-

ing technique based on count sets; this gives the algorithm an increase in its

performance. For each node and different query label we have two lists: one

representing the childs and another representing the parents.

3.1.1 Preprocessing the graph and query graph

Algorithm 1 takes the the array of child (adjacency) vertex sets named ch as

input. Our algorithm starts by mapping each vertex and query label with a two

lists: one representing the childs and another representing the parents . In this

manner for any vertex v and label l, we can know which are the childs or parents

of vertex v with label l. Since this is keep in memory we can access it in a fast

way when applying the pruning technique.

labelCAR contains all the different labels from the query graph Q. For each

vertex from the query or data graph and each label l from labelCAR we obtain

two lists. One representing the children of vertex v with label l; and second list

representing the parents of vertex v with label l. These to lists are added to a

map with vertex v and label l as keys and lists listCh and listPa as values.

12

13

Algorithm 1 Preprocessing G

1: procedure BuildMap(ch)
2: map←Map[(Int, Label), (List[Int]List[Int]))
3: for v ← ch do
4: for l← labelCAR do
5: listCh := getListOfChild(v, l, ch)
6: listPa := getListOfParent(v, l, ch)
7: map :=map + [(v, l)→ (listCh, listPa)]
8: end for
9: end for

10: return map
11: end procedure

3.1.1.1 Profiling based on count sets and bit sets

In order to decrease the number of possible matches for each vertex u in Φ(u)

we have introduced two similar techniques: Count sets for dual cardinality sim-

ulation and bit sets for dual simulation.

Count sets pruning technique is based on the number of children and parent

and their labels. For example if a vertex v has one children with label C and five

parents, two with labels A and three with label B, vertex v will be profiled as

[2,3,1]; this is the count set for labels A,B and C. We refer to this as the count

set for vertex v.

A BitSet represents a collection of small integers as the bits of a larger inte-

ger. For example, the bit set containing 3, 2, and 0 would be represented as the

integer 1101 in binary, which is 13 in decimal. Dual simulation does not take

into account the cardinality so if a vertex v does not have any vertex with label

A as a children or parent, 2 parents with label B and 3 children with label C;

the bit set for vertex v is a BitSet containing 1 and 2 that is represented as 110.

Second and third bit is equal to 1 because we have at least one vertex with label

B and C respectively.

3.1.2 Retrieval of feasible matches

First algorithm starts by obtaining feasible matches. Given a query vertex u,

Φ(u) is created which contains all vertices of the data graph with the same label

as u.Second step is to prune Φ(u) based on the count sets of each vertex. For

example if Φ(u)=v, we will have to check the cardinality restriction for the count

14

set of vertex v and vertex u. If this cardinality restriction fails we remove v from

Φ(u).

3.1.3 Pruning Algorithm

3.1.3.1 Pruning based on Simple Simulation

The concept of graph simulation [12], [16] is adapted for the pruning procedure

for our algorithm. The basic version of graph simulation, simple simulation, is

similar to the procedure used by Ullmann’s algorithm for pruning. The simple

simulation alone fails to reduce large graphs considerably to be used effectively

in obtaining all subgraph isomorphic matches.

3.1.3.2 Pruning on Dual Sim

We adapted the algorithm of Dual Simulation, an extension of simple simulation

above [12], as a pruning technique in our algorithm. While simple simulation

only preserves the child relationship, dual simulation preserves both child and

parent relationship. We used this condition for our cardinality restriction that

says ”A graph G is said to be the cardinality of graph Q if the number of matches

of children and parents with the same label inG is not less than that of the num-

ber of children and parents matches with same labels in Q”.

Algorithm 2 takes one input: funtion Φ. This algorithm starts by looping through

each vertex u of the query graph Q and each element that is present in Φ(u) .

The cardinality check is performed in the includeIn procedure. If this conditions

fails vertex v needs to be removed from Φ(u). The procedure ends when there

is any alteration after one loop.

Algorithm 3 take three inputs: vertex u, vertex v and function Φ. This procedure

includeIn starts by making a list L of children/parents of vc. In order to get

this list first we loop through each child/parents of vertex uc from query graph

Q and each child/parents of vertex vc from data graph G. In every iteration we

check the condition where vc(child/parents of v) is an element of Φ(uc); if this

condition success we add vc to the list L. Lines 10 to 20 describes the algorithm

when the list L is non-empty. In this part we used what we stored in memory

15

Algorithm 2 Pseudocode for the carinality dual simulation

1: procedure DualSimCAR(Φ)
2: alter := true
3: while alter do
4: alter := false
5: for u← qRange do
6: for v ← Φ(u) do
7: res1 := includedIn(u, v,Φ)
8: if res1 = false then
9: remove vfromΦ(u)

10: if Φ = ∅ then
11: return empty Φ
12: end if
13: alter := true
14: end if
15: end for
16: end for
17: end while
18: return Φ
19: end procedure

Algorithm 3 Pseudocode for includedIn procedure

1: procedure includedIn(u,v,Φ)
2: L := ∅
3: for uc ← Q.Adj(u) do
4: for vc ← G.Adj(v) do
5: if Φ(uc) contains vc then L := L+ vc
6: end if
7: end for
8: end for
9: if L 6= ∅ then

10: for uc← Q.Adj(u) do
11: l := Label(uc)
12: size := Map(u, l).size
13: elemts := Map(v, l)
14: intersect := elemts & L
15: if intersect = ∅ then
16: return false
17: end if
18: if size > elemts.size then
19: return false
20: end if
21: end for
22: return true
23: else
24: return false
25: end if
26: end procedure

16

during the preprocessing phase. For every child/parents of uc from the query

graph Q, we get the label l using Label(uc) . Given this label l and u; we can

get the size of elements with u and l as keys. For the data graph G, we can get

the elements elemts, children/parents of v that have label l as its label. The

first condition that we check is if there is some intersection between the list L

and elemts. The second condition checks the size of children/parents of u from

data graph and children/parent of v from query graph with label l. This two

conditions verify cardinality restriction in which the number of match children

or parents with the same label in the data graph should not be less than their

correspondents in the query.

3.2 Dual Cardinality Isomorphism

Algorithm 4 Pseudocode for FIND ISOMORPHISM

1: procedure FINDISOMORPHISM(G,Q)
2: matches := ∅
3: Φ := FEASIBLEMATCHES(G,Q)
4: Φ := DUALSIMCAR(G,Q,Φ)
5: Search(G,Q,Φ, 0)
6: end procedure
7: procedure Search(G,Q,Φ, depth)
8: if depth = Q.size then
9: matches := matches+ Φ

10: else
11: for v ← Φ(depth) do
12: if v /∈ Φ(0)......Φ(depth) then
13: Φ′ := copy of Φ
14: Φ′(depth) := {v}
15: Φ′ := DUALSIMCAR(G,Q,Φ′)
16: if Φ′ is not ∅ then
17: Search(G,Q,Φ, depth + 1)
18: end if
19: end if
20: end for
21: end if
22: end procedure

Dual simulation cardinality algorithm results can contain vertices that are not

in any isomorphic match. For example if we have a cycle for vertices 0 and

1 with labels A and B, respectively. We can find many vertices in the data

graph where the dual cardinality constraint is satisfied but not isomorphism; for

example in the data graph we can have a vertex 1 with label A with one child:

17

vertex 2 with label B. This vertex 2 with label B can have a parent: vertex 3

with label A. Moreover, we have to consider another situation where one vertex

in the data graph maps to more than one vertex in the query graph. FIND

ISOMORPHISM procedure, presented in Algorithm 4, covers these situations to

present only results in isomorphic match.

FIND ISOMORPHISM procedure uses recursive method called search that works

the same way as in Ullmanns and DualIso algorithm. The first step is to invoke

feasibleMatches. After that, dualSimCAR procedure is executed for the first

time. After this first time, the algorithm will prune most of the unwanted ver-

tices. After that, search method is invoked with graph G, query graph Q, the

first result of dualSimCAR and depth equals to zero as input. First, a copy Φ(0)

is made of Φ and a vertex v in Φ(0) is isolated and treated as if it were the only

vertex to match query vertex 0. dualSimCAR is then performed on Φ(0) , which

necessarily removes all vertices in Φ(1), ...,Φ(|V q| - 1) that are not contained in

an isomorphic match with f(0) = v. If Φ is not empty we invoke again the refine

method with a new depth(depth+1). We continue collecting matches until depth

is equal to query size.

Chapter 4

Experimentation

4.1 Introduction

In this chapter we are going to discuss the experimental results to compare

the different subgraph isomorphism that we present in chapter 2 like DualIso,

GraphQL,VF2 and our implementation of the dual cardinality isomorphism algo-

rithm. We also compared the precision and runtime of the differents simulations:

Dual cardinality simulation, Dual Simulation, Tight simulation and Strong Sim-

ulation

The runtime of the different subgraph isomorphism algorithms can be affected

by various factors: the number of vertices in the data graph, the number of

vertices in the query graph, the number of distinct labels and the density of the

graph. Since subgraph isomorphism can be too strict for emerging applications

we have compared the precision and runtime of the different simulations: Dual

Cardinality Simulation, Dual Simulation, Tight simulation and Strict Simulation.

We have used synthetic and real-world data graphs. For synthetic data we have

used up to 3 millions of vertices in the data graph, different number of vertices

in the query graph(4-80) and different number of unique labels(10-200). We

have divided synthetic data in uniform graphs and power law graphs. Power

law graphs contain few vertices with a high out degree and many vertices with

a smaller out degree. For uniform and power law graphs we have used α = 1.2

as used by others [12], [14s], where E= V α. Query graphs are generated by

using BFS search process. It performs a Breadth-First Search until the required

number of specified vertices are found. In this way there is at least one match in

18

19

the data graph. For real-world datasets, we have used amazon-2008 which has

735,323 vertices and 5,158,388 edges and uk-2014-tpd with 1766010 vertices and

18244650 edges.

GraphQL, DualCARIso, DualIso, DualCARSim,TightSim and StrictSim were

written in Scala version 2.12. For the VF2 algorithm, the implementation pro-

vided by JGraphT library was used due to its implementation in Java and be-

cause Java and Scala have very close performance. All experiments were run on

a machine with 128GB RAM, AMD Opteron, IB interconnect having 48 cores.

4.2 Effects that impact the runtime

In chapter 3 we have introduced the concept of count sets for the dual car

simulation and bit sets for the dual simulation. Here we are going to present the

impact of those concepts on the runtime in the DualCARIso algorithm and the

DualIso algorithm. In this part we call DualCARIsoWithSets the algorithm that

implements count sets and DualIsoWithSets the algorithm that implements bit

sets.

4.2.1 Effect of data graph size:

This experiment will test the performance of the differents algorithm with up to

3 million vertices and 60 million edges. As we can see in figure 4.1 the algorithm

scale well as the graph size increases. We keep the number of labels(100) and

the query size constant(10) constant and α = 1.2. In the experiment shown, Du-

alIsoCARWithSets is in average 280 and 7 times faster than VF2 and GraphQL

respectively. The behavior of the runtime is very similar for uniform and power

law graphs. This experiment also shows that there is a good impact in the per-

formance when count sets are implemented in DualIsoCAR. The same does not

happens for DualIso, here bit sets implementation does not decrease the runtime.

20

Figure 4.1: data size effect for uniform graphs

Figure 4.2: data size effect for power law graphs

21

4.2.2 Effect of query size

In this experiment we keep the data graph size constant to 1 million vertices , the

number of labels to 100 and α = 1.2. As we expect, Figure 4.3 shows that the

runtime increases when the query size increases. We did not limit the number of

matches. Uniform and power law graphs have the same behavior of the runtime.

Figure 4.3: query size effect for uniform graphs

Figure 4.4: query size effect for power law graphs

22

4.2.3 Effect of the number of labels

In the previous section we described the method that gets the feasible matches.

This method works based on the labels on the data graph, so if we have more

unique number of labels in the data graph, we will get fewer number of vertices

for each query and when this happens fewer paths will be traversed. Figure 4.5

and figure 4.6 show that behavior where number of labels have a impact on the

runtime. For uniform and power law graphs 1 million vertices was used for data

graph size, 10 for query size and α = 1.2.

Figure 4.7 shows the experiment using the amazon-2008 data sets. This dataset

is a symmetric graph that describes the similarity among books. Query size

equals to 10 and α = 1.2 have been used in this experiment.

Figure 4.8 represents the runtimes for the different algorithms using 200 as the

number of labels and query size equal to 10 and α = 1.2. This experimentation

was performed on the uk-2014 top private domains data set graph.

Figure 4.5: label size effect for uniform graphs

23

Figure 4.6: label size effect for power law graphs

Figure 4.7: label size effect for amazon-2008 dataset

24

Figure 4.8: uk-2014 data set for label=200

25

4.2.4 Effect of the data graph density

Figure 4.9 describes the effect of graph density on query response time. The

number of vertices in the data graph and the number of label was 1 million and

100, respectively. We will have more matches as the density increases. This will

affect the runtime.

Figure 4.9: data graph density effect

26

4.3 Precision and runtime

In this experimentation we test the precision and runtime of the simulations

algorithms presented in chapter 2. Using subgraph isomorphism, particularly

DualIso, we defined precision as the number of vertices in the result set of DualIso

divided by the number of vertices in the result set of each simulation. We consider

DualIso with unlimited matches to have the perfect match; so its precision will

always be 1.

We have run this experiments with different number of vertices in the graph

size, different number of vertices in the query size and different number of labels

for uniform, power law and real graphs. We calculate the precision mean and

runtime mean after 10 iterations for each different parameter value(graph size,

query size and label size)

In figure 4.10 we can see that dual simulation cardinality and the CAR version

of tight simulation have high precision as it checks for cardinality restriction

constraints. Although Tight simulation cardinality has the highest precision,

Figure 4.11 shows it has the worst runtime among all the simulations. Figures

4.12 an 4.13 show the same behavior for power law graphs. Figures 4.14 and 4.15

show the query size effect on the simulations precision and runtime respectively.

Figures 4.16 and 4.17 show the precision and runtime of the different simulations

in the amazon-2008 dataset with different label size. Figures 4.18 and 4.19 show

precision and runtime, respectively for graphs with different density.

Precision and runtime are expressed between 0 and 1. Simulations closer to 1

are faster and more precise. In figure 4.20 we can see that dual cardinality simu-

lation offers good precision with a good enough performance for uniform graphs.

The same behavior is shown in figure 4.21 for power law graphs. In these two

graphs we have used different graph size (1 million,2 million, 3 million). Figure

4.22 represents the precision and runtime for power law graphs with different

query size values (60,80,100). Figure 4.23 show the precision and runtime for

amazon-2008 dataset with different label size (40,60,80). Runtime decreases as

the number of labels increases. Figure 4.24 uses graphs with different density

(1.1, 1.15 ,1.20) to express precision and runtime. In these experiments where

we have tested precision and runtime, dual simulation has the best runtime and

the lowest precision, tight simulation cardinality has the highest precision and

worst runtime and dual simulation cardinality has the second-best performance

and the second highest precision.

27

Figure 4.10: Precision for uniform graphs

Figure 4.11: runtime for uniform graphs

28

Figure 4.12: Precision for power law graphs

Figure 4.13: runtime for power law graphs

29

Figure 4.14: Precision for power law graphs with different query size

Figure 4.15: runtime for power law graphs with different query size

30

Figure 4.16: Precision for amazon-2008 dataset

Figure 4.17: runtime for amazon-2008 dataset

31

Figure 4.18: Precision for graphs with different density

Figure 4.19: runtime for graphs with different density

32

Figure 4.20: Precision vs runtime for uniform graphs

Figure 4.21: Precision vs runtime for power law graphs

33

Figure 4.22: Precision vs runtime for power law graphs with different query
size

Figure 4.23: Precision vs runtime for amazon-2008 dataset with different
label size

34

Figure 4.24: Precision vs runtime for graphs with different density

35

4.3.1 Edge Labeled Graphs

In this part we check the performance of the simulations with edge labeled graphs.

Simulations supporting edge labeled graphs are represented with dashed lines.

As we expected the performance of all the simulations supporting edge labeled

graphs decreased because it has to check the edge labels. Figure 4.25 and Figure

4.26 show the performance with different graph size. Figure 4.27 and figure 4.28

show the effect of edge label size on the runtime. We can see that as the number

of edge label increases the runtime decreases.

Figure 4.25: runtime for edge labeled power law graphs with different graph
size

36

Figure 4.26: runtime for edge labeled power law graphs with different graph
size

37

Figure 4.27: runtime for edge labeled power law graphs with different edge
label size

38

Figure 4.28: runtime for edge labeled power law graphs with different edge
label size

39

4.3.2 Mutable vs Immutable

ScalaTion has two versions of each simulation; one works with mutable collec-

tions and the other uses immutable collections. A mutable collection can be

updated or extended in place while a immutable collection never change. As ex-

pected simulations that work with mutable collections have a better performance

than simulations using immutable colllections. This can be seen in Figure 4.29

and Figure 4.30. 100,000 vertices was used for data graph size, 10 for query size

and α = 1.2.

Figure 4.29: Mutable vs Immutable for uniform graphs

40

Figure 4.30: Mutable vs Immutable for power law graphs

41

4.4 Cardinality in graphs

Dual simulation does not consider cardinality of vertices in the parent or child

relationships. In many real world graphs like online purchasing and social net-

works, many vertices may have the same label. According to the dynamics of

viral marketing[18], the amazon purchasing network is a graph where if a prod-

uct a is frequently purchased with a product b, there is an edge between a and b.

For example we can have a children book and two music cd with the same label.

In this case we will have a children book A connected with two music cd that

share the same label B. Using this idea we have modified the way uniform and

power law graphs are generated in order to benefit the cardinality restriction.

For each data graph, every vertex have at least two children with the same label

and two parents with the same label.

In these experiments we are comparing DualIso that uses DualSim simulation

and DualIsoCAR that uses DualSimCAR simulation. We refer as version 1 to the

regular method to generate graphs and version 2 to the new method to generate

graphs where the cardinality restriction can be applied to any vertex in the data

graph.

In figures 4.15 and 4.16 we have used different data sizes for uniform and power

law graphs respectively. Query size effect is tested in figures 4.17 and 4.18.

Finally, figures 4.19 and 4.20 show the effect of label size for version 1 and

version 2. These experiments tell us that there is average improvement of 33

% in the runtime for DualIsoCAR when we generate graphs using the version 2

method.

42

Figure 4.31: version 1 vs vesion 2 for uniform graphs- graph size effect

Figure 4.32: version 1 vs vesion 2 for power law graphs- graph size effect

43

Figure 4.33: version 1 vs vesion 2 for uniform graphs- query size effect

44

Figure 4.34: version 1 vs vesion 2 for power law graphs- query size effect

45

Figure 4.35: version 1 vs vesion 2 for uniform graphs- label size effect

46

Figure 4.36: version 1 vs vesion 2 for power law graphs- label size effect

Chapter 5

Conclusion and Future Work

In this research project we have implemented the dual cardinality simulation

expecting it to solve the problem of subgraph isomorphism strictness. We have

introduced a new technique called count sets to reduce the number of possible

matches.

The experimentation results show that dual cardinality simulation to be stable

and have demonstrated on both synthetic and real world graphs. Although Dual-

IsoCAR , that uses cardinality simulation algorithm, is not the fastest, it shows a

good average performance better than known algorithms like VF2 and GraphQL.

Moreover, dual cardinality simulation proves it has the best precision and is much

faster than Tight and Strict simulation. Our last experimentation results show

that, when cardinality restriction simulation is applied to graphs where many

vertices have the same label(like the amazon recommendations graph) and there

is always a child or parent relationship for any vertex in the data graph , there

is a improvement of 33 % in the algorithm performance.

Future work can be extended to find an advanced implementation of optimized

search order, extending the algorithm to work with multiple vertex attributes,

multiple edges and edge attributes. Because the bottleneck of our algorithm is

when it checks for the labels cardinality in parents and children, faster ways to

check this restriction would benefit the runtime of the algorithm.

47

48

Another interesting future study can be experimenting with real-life datasets in

various domains, to identify areas in which Dual Cardinlity Simulation is most

effective.

Precision was one of the main experimentation we have done. Finding ways

to improve precision can be beneficial in some areas where high precision is re-

quired. There may be some other areas where high precision is not required, so

implementing Dual Cardinality Simulation with precision as a variable can be

an innovative future work.

Combine other students research projects like graph algebra operations and Reg-

ular expressions for vertex and edge labels with Dual Cardinality Simulation can

be an important future research work.

Bibliography

[1] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy.

Dualiso: An algorithm for subgraph pattern matching on very large labeled

graphs. In Big Data (BigData Congress), 2014 IEEE International Congress

on, pages 498505. IEEE, 2014

[2] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph

matching in pattern recognition. International journal of pattern recognition

and artificial intelligence, 18(03):265298, 2004.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomor-

phism algorithm for matching large graphs. IEEE transactions on pattern

analysis and machine intelligence, 26(10):13671372, 2004.

[4] U. degli studi di Milano. The laboratory for web algorithmics - law.

[5] A. Fard, S. Manda, L. Ramaswamy, and J. A. Miller. Effective caching tech-

niques for accelerating pattern matching queries. In Big Data (Big Data),

2014 IEEE International Conference on, pages 491499. IEEE, 2014.

[6] A. Fard, M. U. Nisar, J. A. Miller, and L. Ramaswamy. Distributed and scal-

able graph pattern matching: Models and algorithms. International Journal

of Big Data (IJBD), 1(1):114, 2014.

[7] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. Saltz. A dis-

tributed vertex-centric approach for pattern matching in massive graphs.

In Big Data, 2013 IEEE International Conference on, pages 403411. IEEE,

2013

[8] A. J. Z. Fard. Subgraph Pattern Matching: Models, Algorithms, and Tech-

niques. PhD thesis, University of Georgia, Athens, GA, 2014.

[9] W.-S. Han, J. Lee, and J.-H. Lee. Turbo iso: towards ultrafast and robust

subgraph isomorphism search in large graph databases. In Proceedings of

49

50

the 2013 ACM SIGMOD International Conference on Management of Data,

pages 337348. ACM, 2013.

[10] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations

on finite and infinite graphs. In Foundations of Computer Science, 1995.

Proceedings., 36th Annual Symposium on, pages 453462. IEEE, 1995.

[11] A. Jain. Parallel Algorithms for Subgraph Pattern Matching. Masters thesis,

University of Georgia, Athens, GA, 2014.

[12] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in graph

pattern matching. Proceedings of the VLDB Endowment, 5(4):310321, 2011.

[13] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Captur-

ing topology in graph pattern matching. ACM Transactions on Database

Systems (TODS), 39(1):4, 2014.

[14] M. U. Nisar, A. Fard, and J. A. Miller. Techniques for graph analytics on

big data. In 2013 IEEE International Congress on Big Data, pages 255262.

IEEE, 2013.

[15] S. Zhang, S. Li, and J. Yang, Summa: subgraph matching in

massive graphs, in Proceedings of the 19th ACM international con-

ference on Information and knowledge management, ser. CIKM 10.

New York, NY, USA: ACM, 2010, pp. 12851288. [Online]. Available:

http://doi.acm.org/10.1145/1871437.1871602

[16] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, Computing simulations

on finite and infinite graphs, in Foundations of Computer Science, 1995.

Proceedings., 36th Annual Symposium on. IEEE, 1995, pp. 453462.

[17] J. R. Ullmann, An algorithm for subgraph isomorphism, Journal of the ACM

(JACM), vol. 23, no. 1, pp. 3142, 1976.

[18] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics

of viral marketing. ACM Trans. Web, 1(1), May 2007.

[19] John Miller. Big Data Simulation using ScalaTion, 2014.

[20] Huahai He, Ambuj K. Singh. Graphs-at-a-time: Query Language and Access

Methods for Graph Databases, 2008

	Acknowledgements
	List of Figures
	1 Introduction
	2 Background
	2.1 Graph representation
	2.2 Subgraph Pattern Matching Problem
	2.3 Types of Pattern Matching
	2.4 Graph Database Systems
	2.5 QUERY LANGUAGES.

	3 Dual cardinality Algorithms
	3.1 Dual Cardinality Simulation
	3.2 Dual Cardinality Isomorphism

	4 Experimentation
	4.1 Introduction
	4.2 Effects that impact the runtime
	4.3 Precision and runtime
	4.4 Cardinality in graphs

	5 Conclusion and Future Work
	Bibliography

