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Abstract

Due to a rapid increase in the amount of available tra�c data, several companies and

research groups are working on tra�c forecasting. Vehicle tra�c forecasting is predicting the

amount of tra�c and the speed of vehicles passing through a point. These data are provided

by various sensors such as loop-inductance, microwave radars, laser sensors, and video cam-

eras. Automated analysis on video live feeds in real time contributes to increased sources

of data and helps as a redundant system for existing systems in case of unexpected device

failures. We present a pipeline for extracting the tra�c data from tra�c videos which can

be capable of �ltering the incoming tra�c from distractions such as non-vehicles, unwanted

camera movements, etc. Calibrating tra�c cameras automatically without explicit inputs

is another important feature of this pipeline. This proposed pipeline will be capable of

observing the count of vehicles passing through a point and their average speed with the

help of pre-trained deep neural networks.

Index words: deep-neural-networks, image-processing, computer-vision, video
analysis, tra�c forecasting systems
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Chapter 1

Introduction

Road tra�c forecasting has been one of the major research �elds for a long time and the fore-

casts play an important role in several places such as tra�c �ow handling, tra�c navigation,

emergency management, and city infrastructure planning. Federal government institutions

such as the Department of Homeland Security were also highly interested in these tech-

nologies which aid for continuous surveillance and mass evacuations in times of emergency

[4]. Basic statistics about road tra�c data involve the number of vehicles passing through

a point and their average speed. These two parameters are a�ected by several conditions

such as accidents, tra�c jams, bad weather or even slow moving vehicles. In order to facili-

tate better rider experience on roads, authorities need to study all the a�ecting parameters

and the reasons causing them. Tra�c monitoring consists of several systems for reporting

each individual e�ect to authorities. Such as, for weather reporting, there were road weather

sensing stations, microwave and infrared sensors for understanding the tra�c �ow, citizen

reporting and emergency services data for information regarding accidents and collisions,

etc. All these systems play an equally important role in everyday tra�c handling tasks such

as congestion handling. The knowledge that can be retrieved from a video about a particular

incident is much more than that of the traditional sensors. The purpose of video cameras

on roads have been limited to tra�c surveillance for a long time but increasing research is

taking place for the extraction of this knowledge from these cameras. Establishing a real-

time video processing pipeline based on live tra�c video feeds can support these systems.

Existing systems in deployment involve calculating the speed from cameras attached with

special laser apparatus but they are costly compared to the traditional cameras.

1
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Information extraction from videos involves dealing with several challenges such as extreme

weather conditions, a wide variety of imaging devices, unusual lighting conditions, unique

geo-spatial scenes, etc. We came up with a series of tasks for solving the majority of these

problems in order to develop a scalable, automatic and adaptive solution. Based on back-

ground subtraction and optical �ow we initially create an image �lter for each camera based

on a two minute video to separate the incoming or outgoing vehicles from the rest of the

objects in the video.

Creating this �lter does not require any explicit inputs or manual e�orts. As the �lter con-

sists of indices of the pixels that are coming towards the camera and going away from the

camera, we can isolate the incoming tra�c in the video frames assuming the direction of

tra�c �ow does not change. We pass these frames through Faster R-CNN which is a deep

neural network capable of object detection and pre-trained on eighty thousand images with

eighty object classes1 from Common Objects in Context (COCO) dataset [5]. The object

classes consist of birds, persons, animals, cars, bikes, trucks, etc. The output of the neural

network consist of object bounding boxes belonging to one of these classes. This helps us

to recognize the vehicles on road. Tracking these vehicles individually over multiple frames

provides us their pixel distances and counts.

In order to estimate the speed of the vehicle, we need to measure the distance traveled over

time. Time taken by a vehicle to move between one point to another can be calculated by the

number of frames it took divided by frames per second (fps). Finding the distance requires

mapping the pixel coordinates to the real world coordinates. There were several mechanisms

for establishing this relation, manually collecting distance between two points that are being

projected in the image, estimating the scale ratio based on the various objects' real-world

dimensions and pixel dimensions, by calculating the intrinsic and extrinsic parameters of the

camera based on vanishing points2, etc. Of all these methods, calibrating the camera based

on vanishing points is shown to be e�ective and requires little or no manual intervention.

1http://cocodataset.org/explore
2A vanishing point is the intersection of several parallel lines in an image.
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We calculate the vanishing points of the frames in the video feed based on Dubská method

[6]. This method is shown to work in multiple geographic locations.

1.1 Purpose of this work

Road tra�c forecasting is one of the major processes in everyday operations of a city or

a state. The government agencies responsible for the smooth functioning of road networks

require huge amounts of data for accessing the on-road situations and making necessary

accommodations.

Our work provides an additional source of information regarding tra�c �ow without any

manual intervention. This automatic process calculates the number of vehicles passing

through a point along with their speed based on the live video feed from internet connected

tra�c cameras. Although there were existing methods which were able to collect this data

for both the incoming and outgoing vehicles simultaneously, we are presently focused on

collecting the data about vehicles moving towards the camera.

1.2 Structure of this work

Initially, we will go through a brief description of techniques, methods, and technologies

that were used in this work in the next chapter. Similar methods which were implemented

towards the goal of our project will be explained in the related work chapter. We later on,

explain di�erent techniques and algorithms used in this work and conclude with the results

of our work.



Chapter 2

Background Work and Related Research

2.1 Background Work

In this section, we will go through a brief description of the procedures and technologies that

are being used in this work.

2.1.1 Background Subtraction

Background subtraction or Foreground extraction is the process of di�erentiating the new

objects from the existing background of a given image scene. In this process, each video

frame is compared with an existing background model which is updated frequently based on

the gradient of pixel values. In this problem domain, identifying an ideal background model

which can be applied for every location is highly unusual. There were several problems such

as sudden illumination changes, moving shadows, slow-moving vehicles, stopped vehicles and

uncontrolled disturbances due to camera pole movements by air, etc.

Several techniques were proposed such as temporal mean �ltering, min-max inter-frame

di�erencing, methods based on Gaussian mixtures, etc [7]. Out of all the available techniques,

the background subtraction based on Gaussian mixture models proposed by Z.Zivkovic in

[8] have been shown to be e�ective and was highly accepted.

2.1.2 Deep Neural Networks (DNN)

Deep neural networks are an advanced implementation of arti�cial neural networks. DNNs

have been widely used in image processing, video processing, natural language processing,

speech recognition, and bioinformatics. In certain applications, some network architectures

4
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have proven to surpass human accuracy standards. Our purpose of using DNN in this work

is for recognizing vehicles on road. We use this knowledge to detect vehicles on the road.

This process is easier and robust compared to traditional blob detection mechanisms. Some

deep neural networks capable of object detection are explained below.

2.1.3 Faster R-CNN

Faster R-CNN network is an advanced regional proposal network. R-CNN is a Regional Pro-

posal Network which depends on region proposal algorithms such as Selective Search1 and

Convolutional Neural Network2 (CNN) showcasing great success in object detection but they

are computationally expensive [3]. Faster R-CNN was able to cut down the heavy computa-

tional costs and achieve near real-time test predictions by using the shared convolutions from

region proposals. This network is capable of taking an image of any input size and output

the proposed object regions as a bounding box. Faster R-CNN has been trained and tested

on multiple image datasets such as COCO and PASCAL VOC3. As a whole, this neural

network attained remarkable accuracies and was trained end-end on several classes.

2.1.4 Mask R-CNN

Mask R-CNN is an object segmentation network developed by researchers at Facebook [9].

This network is an extension to Faster R-CNN. It makes use of the bounding box predictions

from Faster R-CNN to provide a pixel level instance segmentation. Similar to Faster R-CNN,

this is network is also trained on COCO dataset. The pre-trained network is made available

by the author and we make use of this pre-trained network to detect segmentation masks of

1Selective Search algorithm is based on computing hierarchical grouping of similar regions either
based on color,size or shape.

2CNN are a class of deep neural networks which are a regularized version of fully connected
neural networks.

3PASCAL VOC is a dataset of images similar to COCO. Further details can be found at
http://host.robots.ox.ac.uk/pascal/VOC/
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vehicles on road. The purpose of these segmentation masks will further be explained in the

later chapters.

2.1.5 Camera Calibration

For estimating the speed of vehicles on road, their movements are to be tracked over multiple

frames and these movements are converted to real-world distances. Some methods involve

manually collecting the actual distance between points in the image, some methods use

special depth sensors to �nd the distance from the camera to the object and some methods are

based on camera calibration [10]. The methods which require manual intervention or requires

a special apparatus increases the cost and reduce scalability. With camera calibration, a

relationship will be established between the image plane and world coordinate system, the

intrinsic and extrinsic parameters of the camera need to be calculated based on the pin-

hole camera geometry system. The intrinsic parameters such as focal length, principal point,

and skew factor establish a relation between the image plane and image coordinate system

whereas the extrinsic parameters such as rotation and translation map the image coordinate

system to the world coordinate system. Researchers have been studying camera calibration

for a long time, some techniques are based on known intrinsic parameters and some involve

multiple images of the same scene from di�erent views. These methods [11, 12, 13] achieve

camera calibrations based on the known real-world distances such as the length of a road

stripe.

2.1.6 Vanishing Point Estimation

A vanishing point(VP) is a point in the image plane where mutually parallel lines in three-

dimensional space appear to intersect. Vanishing point estimation is performed using the

method proposed in [6]. In this method, the orthogonal vanishing points are detected based

on the trajectories of moving objects. The �rst vanishing point lies in the direction parallel

to the vehicle trajectories. Feature points from each frame are initially detected based on the
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minimum eigenvalue algorithm4. These feature points are tracked over subsequent frames and

the points possessing a signi�cant movement are considered to be the part of moving vehicles.

These points are mapped to parallel coordinates system where each point is represented as

a line connecting two parallel axes. These pixel points are extended as lines to in�nity and

are assumed to be intersecting at a vanishing point. A modi�cation of Cascaded Hough

transform which was proposed in [14] is used to estimate the vanishing point through a

voting mechanism in a pairwise mapping space called the diamond space 5. Estimating the

�rst VP is considered to be the most stable compared to other VPs.

As the �rst vanishing point was calculated, the second vanishing point lies in the direction

perpendicular to the object trajectories or otherwise parallel to the road plane. The diamond

space voting process is again used in estimating the second VP but instead of random feature

points, the edges of the moving vehicles are used. These pixel points which lay on the edges

of the vehicles can be extracted through canny edge detection algorithm6 which further is

based on the background subtraction. Pixel points of the edges of a foreground blob are

mapped to the parallel coordinate system and all the points which are closer to the �rst VP

are eliminated from the voting process. The remaining edge points are used in the voting

process to detect the second vanishing point.

The third vanishing point lies in the direction perpendicular to the �rst two VPs. It can be

calculated based on the �rst two orthogonal VPs and assuming the principal point(optical

center) lies in the center of the frame and calculated focal length.

4It calculates the gradient of pixel values in the image and ranks them using the eigenvalues of
the image matrix.

5Diamond space is formed by combining all the transformations of the parallel coordinate system.
A transformation on the parallel coordinate system results in the change of direction of axes.

6Canny edge detection algorithm �nds the gradients of the image, then applies non-maximum
suppression to remove spurious edges and choosing important edges based on threshold.
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2.2 Related Research

In this section, we will discuss di�erent approaches for tra�c data extraction and camera

calibration.

2.2.1 Video Analysis of Road Traffic Videos

In this section, we discuss some of the existing pipelines in this domain. We initially provide

a brief description of the work in [15]. This work provides a two-stage process for extracting

road tra�c information. The initial stage involves camera calibration based on the vanishing

points chosen manually from the image in order to calculate the intrinsic parameters such

as focal length. Once the vanishing points are chosen the homography matrix7 is calculated

which maps the image plane to a recti�ed plane, this process is called a�ne recti�cation. The

second part of the camera calibration process involves calculating the scale factor by �nding

the pixel distance for a road stripe at two locations in the recti�ed image. A similar process

is followed for �nding the pixel distance for the width of a lane. Mask R-CNN network is

used for the purpose of object detection which recognizes vehicles at di�erent scales. The

bounding boxes are used in tracking and speed estimation. Tracking is performed by Simple

Online Real-time Tracking algorithm (SORT) [16], it uses the Kalman �lter to estimate the

dynamics of target vehicles with a linear Gaussian state-space model. The bottom coordinates

of the bounding box are used in the tracking process. This work also uses DeepSORT8 tracker

which is an another online tracker with competitive performance compared to SORT [17].

A comparison between SORT and DeepSORT shows that the SORT tracking algorithm has

less error rate compared to the DeepSORT. This work is represented in computer vision and

pattern vision workshop for NVIDIA AI city challenge, 2018. The performance of this pipeline

stands in top 7th position in the AI city challenge. We compare our pipeline performance

7Homography matrix is used to map a point in an image plane to a recti�ed plane. This is used
for image recti�cation with know orthogonal vanishing points.

8DeepSORT algorithm is an extension to the SORT algorithm with added deep association
metric.
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with this pipeline's and the comparisons are reported in the results chapter.

The second pipeline we are going to discuss is developed by authors of [6] as an extension to

their camera calibration process. As part of this work the cameras are calibrated based on

vanishing points and the vanishing points are used in constructing 3d bounding boxes around

the vehicles, speed estimation, vehicle classi�cation based on the 3d boxes, etc. Vehicles

are detected from a frame by a continuously updated background subtraction model and

edge detection model based on Hough transform [18]. Once the objects are detected they

are tracked in the upcoming frames and the speed calculations are performed. The major

problem of this process is the vehicle blob detection mechanism which is based on traditional

object detection techniques consists of several problems such as shadows, occlusion, changes

in the illumination conditions, etc. For these reasons the background subtraction model has

to be manually tuned and this further causes problem when it comes to scalability.

2.2.2 Camera Calibration

In this work, the authors calculate the vanishing points based on the activity map. The

activity map of road video consists of location and intensity of vehicle movements, thus

eliminating inactive lines from the process [19]. The line structures are recognized from the

activity map using Canny edge detector and these lines are used along with Hough transform9

to recognize the vanishing point that exists in the direction parallel to the movement of

vehicles. Road lines are drawn from the vanishing point to the end part of the frame, averaging

the activity map values along these lines helps to create a one-dimensional vector which is

mapped to a histogram. The peaks of histogram represent high movement activity which

will be in the middle of the lane and valleys represent the boundaries of the lane. The road

lanes thus recognized are used in calculating the second vanishing point which exists in the

orthogonal direction of the road lanes. Perpendicular lines are drawn from the road lanes

and the point of their intersection is calculated based on least squares method [20]. This

9Hough transform is a feature extraction technique which is used to �nd the instances of objects
using voting procedure.
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intersection point is considered as second vanishing point which lies on the Horizon line

along with the �rst vanishing point. [21] The camera parameters such as focal length can be

calculated from calculated vanishing points and with the known width and distance between

the camera and road, the angle of the camera w.r.t to the road and angle of tilt of the camera

can be calculated. With these known parameters, the scale factor will be calculated based

on the known height of the camera and distance of the camera from the road boundary.

This process calculates the calibration parameters and speed with 90 percent accuracy, but

it requires scene speci�c information such as the distance of the camera from the road, etc.

And one more major problem is that estimating the vanishing points based on the activity

map is feasible only with roads that have a high number of lines and heavy tra�c �ow.



Chapter 3

Data Gathering

Research on tra�c video analysis requires a variety of video datasets. Our aim is to build a

robust pipeline which can be applied in a wide variety of locations with unique geospatial

constraints, this requires a large variety of tra�c videos. Collecting the data was made

possible by Project Open Data[22]. The aim of this project is to implement principles of

transparency, participation, and collaboration of several government agencies to increase

the accessibility of information to the public in open machine-readable formats. Under this

project, the federal government built an online platform(Data.gov) to publicize several federal

datasets and to facilitate other government agencies in doing so. This helped us in gaining

access to historical and live feed data of several cameras on interstates.

3.1 Iowa State Open Data Catalog

Under the open data project, Iowa State was one of the early few states to publicize their

data in education, transportation, health, economy, etc. This catalog provides several kinds

of road tra�c data such as weather, tra�c �ow, construction sites, accidents, etc. Of all

these, we are highly interested in tra�c sensor data and video feeds. Historical video data

will be provided by sending a request form, but the time limit for the videos is only for the

last three days. In order to obtain a variety of videos, this time limit is not very helpful but

they provide a live feed of both sensors and videos through an API endpoint which can be

used to download the required data in required time frames.

The accuracy of the proposed pipeline can be calculated with reference to the ground truth

from the microwave sensors. We group the cameras and sensors by calculating the distance

11
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Figure 3.1: Screenshots from [1, 2] showing the location of cameras and sensors installed in Des
Moines, IA.

between them based on their GPS coordinates. The metadata for the videos consists of an

unique identi�er, GPS coordinates, description of its location, the direction in which the

camera is facing, etc. Sensor live feeds also consist of similar �elds along with tra�c counts,

average speed, total occupancy, etc.



Chapter 4

Pipeline for Information Extraction

This chapter explains the entire process from pre-processing to the �nal data collection.

4.1 Image Noise Filter Creation

In this chapter, we will discuss the process of creating the mask for �ltering the incoming

vehicles from the rest of the video noise. It uses background subtraction and optical �ow to

determine the boundaries of incoming vehicle movements. This process is proposed in a way

to remove any manual intervention and to achieve scalability.

4.1.1 Pixel selection through background subtraction

In this process, we train the background model on a video for a certain time(usually two

minutes) and then start passing the new videos to the model to �nd the pixel indices of

foreground objects. Once the pixel positions are found, their movements are tracked across

several frames to determine the pixels that are moving towards the camera and away from

the camera. The positions of these pixels are recorded throughout the video, on completion

of the entire video we have the clusters of pixel positions.

The vehicle blobs extracted by the object detection process can be categorized to either

incoming or outgoing based on their pixel positions and the masks.

4.2 Automatic Camera Calibration

Camera calibration, it is the process of mapping a relationship between the image plane and

the world coordinates.

13
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Figure 4.1: Original Frame

This image is frame snapshot of a video downloaded from IOWA DOT tra�c cameras.

Figure 4.2: Image Filter created from the Video.

The �gure shows the cluster of pixel points. These points are the positions of pixels consisting of
incoming tra�c.
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4.2.1 Vanishing Point Estimation

Our process involves estimating the orthogonal vanishing points through the technique pro-

posed by Dubska in [6]. The vanishing points tend to become stable with at least four minutes

of video at 15 fps. The calculated vanishing points along with the principal point which is

assumed at the center of the frame will be used to calculate the focal length and the third

vanishing point as provided by [19]. For U,V are the vanishing points and P is the principal

point in the image plane, focal length f can be calculated as

U = (ux, uy) V = (vx, vy) P = (px, py)

f =
√
−(U − P ) · (V − P ) (1)

The calculated focal length along with the known vanishing points can be used to calculate

the world coordinates of the third vanishing point.

U ′ = (ux, uy, f) V ′ = (ux, uy, f) P ′ = (px, py, f)

W ′ = (U ′ − P ′)× (V ′ − P ′) (2)

where U ′, V ′,W ′ are the world coordinates of the vanishing points and P ′ is the world

coordinate of the principal point. Sample screenshots from this process are shown in Figure

4.3, the lines represent the directions of orthogonal vanishing points.

4.2.2 Mapping Image Plane to World coordinates

This process along with the vanishing points require calculating the normal vector corre-

sponding to the ground plane. [23] The normal vector can be calculated based on the third

vanishing point and the focal length. From equation (2), the world coordinates of the third

vanishing point represented as W ′ and that of principal point as P ′ can be used to calculate

the normal vector of the ground plane as W ′ − P ′. The distance between the ground plane

and the camera is unknown, so an arbitrary value is chosen. The actual distance can be

corrected using the scale factor but as we are interested only in the relative distances we
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Figure 4.3: Screenshots from VP estimation at di�erent locations.

Red color lines represent the VP in the direction of vehicle movement, green represents the VP
orthogonal to the movement direction and parallel to the road plane. Blue lines represent the third
VP perpendicular to the road plane.
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will not be doing that. Based on the parameters of the ground plane and the distance d, the

relative distances of the image points can be calculated as provided by [18]. For a point, (x, y)

on image plane represented by X, its world coordinated can be calculated by a function w.

For the road plane represented as ℘, principal point on image plane as O and X ′ = (x, y, f),

w(X) = ℘ ∩ ~OX ′ (3)

4.2.3 Estimating the Scale Factor

The world coordinates of the points on the image plane can be calculated from the equation

(3) and their distance can be calculated as the norm of their di�erence, but it does not have

any measurement units. The relation between the distances and real-world measurements

can be calculated as a ratio between the actual metric length and relative distance. For this

process, we make use of the lengths of vehicles in metric units, as part of the calibration

process the frames are provided as input to the Mask R-CNN which provides the pixel level

segmentation of the vehicle blobs. We project a line l1 from the �rst VP passing through

the minimum column and maximum row value of the blob. Similarly, we project lines from

the second vanishing point passing through the minimum column value corresponding to the

minimum and maximum row values denoted by w1,w2 [18]. We calculate the intersection

points of l1,w1 as P and l1,w2 as Q. The distance r between P and Q represents the length

of a car in relative distances. This can be represented based on equation (3) as below,

r = |w(P )− w(Q)| (4)

We choose the average length of the car in metric units as 5 meters based on the vehicle

registration records from IOWA DOT. The scale factor(λ) can be calculated as,

λ = 5/r (5)

The average length of a car changes from one region to another based on the demographics,

the above-stated number needs to be changed accordingly. Our initial idea was to use trucks
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Figure 4.4: Pixel level segmentation mask of a car.

The image shows the segmentation mask of a car detected using Mask R-CNN network. As part of
pre-processing, similar segmentation masks of all the cars in a video incoming towards the camera
are used for scale factor calculation.

Figure 4.5: Images showing segmentation masks with lines intersecting from VPs.

These images shows the lines that are projected from the vanishing points passing tangential to the
segmentation masks. The di�erence in lines from the two VPs is shown with the thickness of the
lines.
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instead of cars as their length are standardized by the federal regulations, but the segmen-

tation masks of the trucks are a�ected by the position of the camera so a general ground

couldn't be established. For example, the segmentation masks are better for cameras with

higher relative height w.r.t to the road than the ones with less relative height.

Finally, we collect the world coordinate distances of all the cars passing through the lower

third of the frame. We create a histogram of the lengths and choose the length with the

highest counts. The scale factor thus calculated will be used further in calculating the vehicle

traveled distance which will be provided from the tracking process.

4.3 Object Detection

Object detection is the process of recognizing real-world objects from an image or a video

frame. A traditional process involves extracting low-level visual features through a sliding

window process and then mapping these low-level features to form a semantic representation

[24]. The semantic representations are further classi�ed into real-world object classes such

as faces, bikes, persons, etc. This process is prone to errors when dealing with unconstrained

conditions in images such as varying illuminations, the scale of objects, di�erent types of

objects with similar features, etc. In order to overcome these problems, an application speci�c

manual engineering of these pipelines needs to be performed. Convolutional Neural networks

with region feature solved this problem by attaining stable accuracies for a variety of object

types. Further developments of R-CNN such as Fast R-CNN and Faster R-CNN were e�cient

with similar stable accuracies and less computational power requirements.

4.3.1 Faster R-CNN

This network consists of two parts a Regional Proposal Network (RPN) and a Fast R-CNN

detector. The regional proposal network takes an image as an input and provides object

proposals with scores using feature detection algorithms and Convolutional Neural Networks.
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Figure 4.6: Image of Faster R-CNN applied to an image for inference. This image was provided
from [3]

The image shows the object detection process of Faster R-CNN for a single image. In this process,
the object proposals are created by the RPN based on feature maps and the proposals are used
object detector for creating bounding boxes and classifying the objects.

The Fast R-CNN detector shares convolutions with region proposal network to output the

bounding boxes of objects along with con�dence scores and object classes.

4.3.2 Reason for choosing Faster R-CNN

The object detection module is an important part of this pipeline which can a�ect both the

vehicle counts and speed calculations, so we tested our pipeline with three di�erent deep

neural networks namely Mask R-CNN, Faster R-CNN, and Single Shot Detectors(SSD). Our

�rst trail was Single shot detectors, SSDs doesn't involve region proposals which makes them

computationally less costly compared to Faster R-CNN and Mask R-CNN. But the object
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detection fails in videos with a wide angle where the ROI of vehicles are small and are

not recognized until they are very close to the camera. This makes it harder to calculate

speed. Mask R-CNN which provides pixel level segmentation of vehicles along with the

bounding boxes showcased marginally better detection rate than the Faster R-CNN but the

computational cost of the pipeline increases drastically when compared to other networks,

the program keeps running out of memory due to limitations in the availability of better

computational power. With these reasons stated Faster R-CNN becomes a more suitable

option for this application than the rest bearing in mind the detection rates and available

hardware.

4.3.3 Implementation Details

We make use of the Faster R-CNN with Resnet-1011 backbone which is pre-trained on

COCO image dataset. This pre-trained network is made available though Tensor�ow Object

Detection API. The video frames are provided as input to this pre-trained network which

provides bounding boxes of the objects detected on roads. We �lter the bounding boxes based

on its class and choose those the detections which have a con�dence score of more than 60

percent and its class belonging to either cars, trucks or buses. We apply Non-Maximum

suppression 2 to remove duplicate bounding boxes of the same object with more than 50

percent overlap.

4.4 Object Tracking and Speed Estimation

4.4.1 Object Tracking

Pyramidal implementation of the Kanade-Lucas-Thomashi(KLT) tracker is capable of

tracking fast moving objects and has less computational cost compared to other trackers[25].

1Resnet-101 is a convolutional neural network which consists of 101 layers and is trained on more
than a million images. This network is capable of classifying thousands of object classes.

2Non-Maximal suppression algorithm calculates the IoU of bounding boxes of same object class
and �lters the duplicate bounding boxes for which the overlap is more than a threshold.
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Figure 4.7: Sample images of detected vehicles by object detection process.



23

We �nd the centroids of the bounding boxes and pass them to the KLT tracker for tracking

these objects over the subsequent frames. The object detector is not called for every frame,

instead, it called in a certain frequency. We choose the frequency of object detector based

on the fps rate which can be found from the metadata of the video. We track the objects in

the frames for half a second and the tracker object is refreshed with new object detections

from the object detector. This is to avoid the tracker losing track of target movements.

An imaginary line is drawn in the lower third portion of the frame for the road where the

vehicles are either incoming or outgoing. The length of the line will be the width of the

road which can be found from the mask created in the pre-processing step. The width of the

imaginary line is chosen to be 5 pixels. The tracking process provides the history of object

movements for the last half second. When the object passes through this imaginary line the

vehicle count will be incremented.

4.4.2 Speed Estimation

The object detection along with the tracking process provides tracklets representing the

movement of objects for every half second. The tracklets present in between the imaginary

line and the bottom end of the frame are considered for speed measurement. We calculate

the distance of world coordinates of the initial and �nal positions of each tracklet in the

image plane. We then use the scale factor(λ) to measure the distance traveled in meters

using equation (5). The speed can be calculated with distance divided by time(half a second

in this case). We convert the speed in meters per second to miles per hour by multiplying it

with 2.237 and the speeds thus found will be stored in a list. Finally the average speed will

be calculated after the entire video. The sample snapshots of video frames after the object

tracking and speed estimation process are shown in Figure 4.8.
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Figure 4.8: Vehicle passing the imaginary line.

The red color boxes represents the tracking window of the object tracker. The number of vehi-

cles passing through the imaginary line is represented in blue digits. The speed of each vehicle is

represented by a sky-blue color situated above its tracking window.
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4.5 Pre-processing

The pre-processing step consists of mask creation, vanishing point estimation, and camera

calibration. The pre-processing step has to be performed initially for every camera. The mask

creation process usually takes a two-minute video, more vehicles passing through the camera

location creates a better mask. Estimating the vanishing points requires at least four minutes

of video for the VPs to be stable. Focal length and principal points are calculated from the

vanishing points. These parameters are utilized in calculating the scale factor based on the

segmentation masks from the videos.

4.6 Information Extraction

Once the initial mask creation and camera calibration process are completed, the pipeline

will be ready for information extraction. New videos from the video feed are fed to the

pipeline which outputs the tra�c counts and average speed of vehicles.

Since surveillance is the major purpose of the cameras on road, their �eld of view can be

changed by the camera operators with operations such as rotation, zooming in, zooming

out, etc. The pre-processing needs to be re-initialized for creating masks and scale factors

according to the new camera scene.
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Figure 4.9: End-end pipeline image for information extraction.

The overall process of data extraction is shown in this image. The pre-processing step consists of
image noise �lter creation and camera calibration. New videos from the same camera are directly
passed to the object detection module and further on for data extraction.



Chapter 5

Results

This chapter shows the performance of the proposed pipeline. Performance evaluation

relating to multiple video types, comparisons with an existing deep learning based approach

and the computational times will be provided.

5.1 Performance of the Proposed Pipeline

The predicted vehicle count and average speed from the pipeline are compared with data

collected from the microwave sensors. Results from four groups of videos are shown. Each

group consists of ten videos from the same camera, which share similar camera parameters.

Group 1 and 2 consists of low-resolution and groups 3 and 4 consists of high-resolution

videos. The best and worst performance of the pipeline are 3.6 miles per hour and 7.47 miles

per hour. The overall RMSE of the pipeline is 5.23 miles per hour. Percentage of error for the

predicted counts of vehicles for each group are provided in Table 5.1. A bar chart plotted

for error rates is shown in Figure 5.1.

Group RMSE (speed) Counts error(%)
Group1 7.4706 11.3
Group2 6.0592 8.26
Group3 3.6216 5.4
Group4 4.2829 6.07

Table 5.1: Error rate of predictions compared with sensor data.
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Figure 5.1: Error rate of multiple groups of videos compared with sensor data.

The blue color bars represented with respect to the primary y-axis shows the RMSE in speed
estimation. Similarly, the percentage of count error is represented by the orange bar with respect
to the secondary y-axis. The x-axis represents the groups of video, where all the videos in a group
share same camera parameters.
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5.2 Comparison of Performance with Videos of Different Resolution

The resolution of video e�ects the performance of the pipeline. The low-resolution videos in

our dataset are of 480x250 resolution and that of high-resolution is 800x450. Average RMSE

speed of low-resolution videos is 6.87 miles per hour and that of the high-resolution video is

4.03 miles per hour. In case of the percentage of errors in predicted counts is 10.6 percent

for low-resolution videos and 5.6 percent for videos with high resolution. The results of this

comparison are plotted in the bar graph and shown in Figure 5.2.

Figure 5.2: Error rate in Low-resolution videos vs High-resolution videos.

The comparison of the proposed pipeline's performance with videos of di�erent resolutions. The

primary y-axis represents the errors. The secondary y-axis represents the percentage of error in

vehicle counts.

5.3 Performance Evaluation with Existing Pipeline

We compared our work to a similar deep learning pipeline which was based on Mask R-

CNN and follows a semi-automatic procedure for calibrating the cameras [15]. This existing
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pipeline was described in the related research chapter. We tested this pipeline on IOWA DOT

dataset with distance points chosen manually. We report the comparison of performances of

the two pipelines tested on �ve di�erent videos. The RMSE of speed on these �ve videos

for the proposed pipeline is 6.2 mph and that of the alternative pipeline is 4.51 mph. The

predictions from the proposed pipeline and the existing pipeline are provided in Table. 5.2

Video Proposed Pipeline speed Existing Pipeline Speed Ground truth
7806 69.0498 70 72
7120 69.8220 69.5 71
7707 61.0861 63 72
8168 64.8305 65 66.5
7613 60.1187 64.5 68

Table 5.2: Comparison of Proposed and Existing pipelines.

5.4 Computational Time

As part of this project, we have used two systems one with Nvidia K20 GPU which has

an approximate memory of 5.6 Gb. The average speed of computation is 7.4 frames per

second. Our second device is a virtual machine in Microsoft Azure with Nvidia K80 GPU.

The Nvidia K80 has more cores and approximate memory of 12 Gb. We have used this

machine for testing the proposed pipeline and existing pipeline. The computational time

of our proposed pipeline is 15 frames per second whereas for the existing pipeline it is

approximately 1 frame per second. For a video with the frame rate at 30 fps and video time

of 2 minutes, the proposed pipeline takes up to four minutes for execution, whereas existing

pipeline takes up to an hour for execution.



Chapter 6

Conclusion and Future Work

In this chapter, we will summarize our overall research and discuss our goals and results.

6.1 Conclusion

Our major goal of this project is to extract road tra�c information from videos automat-

ically. We have discussed the problems of location-speci�c camera calibrations along with

the advantages of an automatic camera calibration process. We have discussed our approach

from end-end explaining various techniques that were used in this process.

With the proposed pipeline, we have showcased a process which requires very little or no

manual intervention in the data collection process. The overall error rate in speed estimation

is 7 percent compared to the sensor data. Similarly, the overall error in vehicle counts is 8.9

percent.The overall error of the sensor systems for counts is 2.4 percent and for speed it is

1.20 percent as reported by [26], this data was the only available source closest to the ground

truth. In comparison with the existing pipeline, we propose a trade-o� as the di�erence in

error is less than 2 mph and the computational time of the proposed pipeline is 4 minutes

which is way faster than existing pipeline with computational time close to one hour.

Our existing dataset consists of videos from various cameras which are located at multiple

locations. As these videos contribute very few data points about a particular location, we

couldn't create a forecasting model based on the available data. Due to the existing time

constraints, collecting su�cient data for use in forecasting has been pushed to future work.

We thus conclude our work with the proposed pipeline for extracting tra�c data automati-

cally from road tra�c videos which can be used for tra�c forecasting.
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6.2 Future Work

Collecting abundant data based on the proposed pipeline for creating a tra�c forecasting

model. Thus collected data can be used along with the sensor data.

Data collection based on the proposed work consists of signi�cant time lag compared to

real-time data feeds. This time lag e�ects performance of real-time forecasting models. A

potential solution to this problem is �ne-tuning the object detection network which involves

using lightweight deep neural networks such as Single Shot Detectors which are speci�cally

trained on tra�c camera data.

Further developments of this work might involve increasing robustness in various weather

conditions, extracting more information from tra�c videos such as di�erent types of vehicles,

information on lane switching, identi�cation and re-identi�cation of the same vehicle from

multiple cameras, etc.
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Appendix A

Developer Guidelines

This section explains the implementation details of this work.

A.1 Environment Setup Details

This is pipeline is majorly developed in Python programming language. Tensor�ow library

is used for the deep learning networks that were tested in this project. Data collection

was performed using Java classes developed with Java 1.8.111 version. The vanishing point

estimation was performed using the Matlab source code provided by the authors of [6].

A.1.1 Tensorflow Object Detection API

Tensor�ow Object Detection API is an open source deep learning project provided by Google

under the Apache 2.0 license. This project is part of several deep learning models open

sourced by Google. The Object detection project consists of several pre-trained deep neural

networks which are trained on multiple image datasets such as COCO, PASCAL VOC,

etc. Out of all the available pre-trained networks, we make use of Faster R-CNN based on

Resnet101 backbone. This network is trained on COCO dataset which consists of several

classes such as humans, birds, trains, cars, trucks, etc. This network is capable of extracting

vehicle blobs on the road which are used in our process.

A.1.2 Software Packages and Versions

Some of the important packages and their versions are provided in the list below.
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• Python => 3.5.5

• GCC library => 7.3.0

• Anaconda => 2018.12

• Matlab => 2015 b

• Cudnn => 7.3.1

• FFmpeg => 4.0

• Numpy => 1.16

• Protobuf => 3.6.0

• Open CV => 3.4.2

• Scipy => 1.1.0

• Sk-video => 1.1.10

• Tensor�ow => 1.10

A.2 Parallel Implementations

Image Noise Filter creation process of this work was also implemented in Scala language as

part Scalation library. This process is developed based Opencv java API. Script for building

the OpenCV library on Ubuntu OS will also be open sourced along with rest of the work.
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