
Techniques for Graph Analytics on Big Data

M. Usman Nisar, Arash Fard and John A. Miller
Department of Computer Science

University of Georgia,
Athens, GA, USA

Email: {nisar, ar, jam}@cs.uga.edu

Abstract—Graphs enjoy profound importance because of
their versatility and expressivity. They can be effectively used
to represent social networks, web search engines and genome
sequencing. The field of graph pattern matching has been
of significant importance and has wide-spread applications.
Conceptually, we want to find subgraphs that match a pattern
in a given graph. Much work has been done in this field with
solutions like Subgraph Isomorphism and Regular Expression
matching. With Big Data, scientists are frequently running into
massive graphs that have amplified the challenge that this area
poses. We study the speedup and communication behavior of
three distributed algorithms for inexact graph pattern match-
ing. We also study the impact of different graph partitionings
on runtime and network I/O. Our extensive results show that
the algorithms exhibit excellent scalable behavior and min-cut
partitioning can lead to improved performance under some
circumstances, and can drastically reduce the network traffic
as well.

Keywords-graph analytics; big data; graph simulation; par-
allel and distributed algorithms.

I. INTRODUCTION

Graphs are of utmost importance in Computer Science
because of their expressivity and the ability to abstract
a huge class of problems. They have been successfully
used to study and model numerous problems in different
fields. These applications vary from software plagiarism
detection, web search engines, study of molecular bonds to
the modeling of social networks like Facebook, LinkedIn
and Twitter [1].

Graph pattern matching is one of the most important and
widely studied class of problems in graphs. A considerable
amount of research has been put into this area, sprouting
concepts like Subgraph Isomorphism, Regular Expression
matching [2] and Graph Simulation [3]. Conceptually, pat-
tern matching algorithms seek to find subgraphs of a given
graph that are similar to the given query graph [4]. Though,
Subgraph Isomorphism returns the strictest matches for
graph matching in terms of topology [5], the problem is
NP-complete [6], and thus does not scale well.

Graph simulation, on the other hand, provides a prac-
tical alternative to subgraph isomorphism by relaxing the
stringent matching conditions of subgraph isomorphism, and
allowing matches to be found in polynomial time. Some
researchers [7], [8] even argue that graph simulation is

more appropriate than subgraph isomorphism for modern
problems like social network analysis because it yields
matches that are conceptually more meaningful. With the
rapid advent of Big Data, graphs have transformed into huge
sizes and are rapidly getting out of the grasp of conventional
computational approaches. In this paper, we address the
problem of graph pattern matching on such big graphs.

The outline of the paper is as follows: We discuss
the background and a description of the subgraph pattern
matching problem along with its types in next section. We
follow-up with a brief description of three new distributed
algorithms that we proposed in [4]. Then we go through the
implementation of distributed algorithms on two platforms
and briefly compare their pros and cons. We also give run-
time and speed-up graphs of the three distributed algorithms
to study their behavior. In section 6, we study the impact
of graph partitioning along two lines - runtime improvement
and network I/O reduction.

II. BACKGROUND

In this section, we discuss the background and give
motivation for the need of new approaches to deal with large
scale graphs in general and query processing in particular.
Today, Facebook has over 1 billion vertices and the average
degree of each vertex is 1401, Twitter has well over 200
million active users creating over 400 million tweets each
day2. In genome sequencing, recent work [9] attempts to
solve the genome assembly problem by traversing the de
Brujin graph of the read sequence. The de Brujin graph can
contain as many as 4k vertices where k is atleast 20.

To handle the mammoth scale of these graphs, an obvious
approach is to distribute the graphs onto multiple machines
and then run them concurrently to efficiently calculate the
result in parallel. Consequently some of the basic challenges
are the following, (1) how to distribute the graph? (2) how to
come up with an efficient algorithm that runs as concurrently
as possible? (3) how to reduce the communication/traffic
among different machines (in part, a side effect of the top
two)? We go through these questions as we discuss the
problem of Subgraph Pattern Matching in depth.

1http://www.facebook.com/press/info.php?statistics
2http://blog.twitter.com

A. Subgraph Pattern Matching

The problem of subgraph matching is defined as follows:
Let G=(V, E, l) be a graph, where V is the set of vertices,
E is the set of edges, and l is the labelling function that
assigns a label to each vertex in V. Let Q=(Vq , Eq , lq) be
the query (pattern) graph where Vq is the set of vertices, Eq
is the set of edges and lq is the labeling function on Vq .
Intuitively, the goal of subgraph pattern matching is to find
all subgraphs from the data graph G that match the pattern
graph Q. Thus, G′(V ′, E′, l′) is a subgraph of G if and only
if (1) V ′ ⊆ V ; (2) E′ ⊆ E; and (3) ∀u ∈ V ′ : l′(u) = l(u).

In this paper, without loss of generality we assume all
vertices are labeled, all edges are directed, and there are
no multiple edges. We also assume a query graph is a
connected graph because the result of pattern matching for a
disconnected query graph is equal to the union of the results
for its connected components. We use the terms pattern and
query graph interchangeably.

B. Types of Pattern Matching

In this section, we briefly review four different types of
pattern matching. The first one is Subgraph Isomorphism,
the next one is Graph Simulation proposed in [3], and the
last two are Dual and Strong Simulation proposed in [10].
For a detailed survey of algorithms, see [11].

1) Subgraph Isomorphism: Arguably, subgraph isomor-
phism is the most widely studied problem for graph pattern
matching. By definition, subgraph isomorphism describes a
bijective mapping between a query graph Q(Vq, Eq, lq) and
a subgraph of a data graph G(V,E, l), denoted by Q�isoG.
That is, assuming G′(V ′, E′) is a subgraph of G, graph Q
will be subgraph isomorphic to G if there is a bijective
function f from the vertices of Q to the vertices of G′

such that (u, v) is an edge in Q if and only if (f(u), f(v))
is an edge in G′ [12]. It should be noted that function f
ensures that u and f(u) have the same labels. Ullmann’s
algorithm and VF2 algorithm [13] are widely known to solve
the problem of subgraph isomorphism [11]. However, this
problem is NP-hard in general so exact algorithms are not
practical for very large graphs.

2) Graph Simulation: Graph simulation allows a faster al-
ternative to subgraph isomorphism by relaxing some restric-
tions. Pattern Q(Vq, Eq, lq) matches data graph G(V,E, l)
via graph simulation, denoted by Q �sim G, if there is a
binary relation R ⊆ Vq × V such that (1) for every u ∈ Vq
there is a u′ ∈ V such that (u, u′) ∈ R; (2) lq(u) equals
l(u′); (3) for every v ∈ child(u), there is a (v, v′) ∈ R such
that v′ ∈ child(u′) (adapted from [10]). Here, child returns
all the direct children of a given vertex.

Intuitively, graph simulation only captures the child rela-
tionships of vertices. HHK - a quadratic algorithm, was first
proposed in [3] and efficiently computes the match set on
medium-sized graphs, but it is still not efficient enough for
massive graphs.

3) Dual Simulation: Dual simulation extends graph sim-
ulation by also taking into account the parent relationships
of the vertices, thus resulting in a stricter match set. Pattern
Q(Vq, Eq, lq) matches data graph G(V,E, l) via dual simu-
lation, denoted by Q�DsimG, if (1) Q is a graph simulation
match to G with a match relation RD ⊆ Vq × V , and (2)
for every w ∈ parent(u), there is a (w,w′) ∈ R such that
w′ ∈ parent(w′) (adapted from [10]). The method parent
returns all the direct parents of a vertex.

4) Strong Simulation: Strong simulation builds on dual
simulation by introducing a locality condition. The term
ball is coined [10] to capture this aspect of the match. The
ball for a vertex v with radius r contains all the vertices
VB that are within an undirected distance of r from the
vertex v, moreover it has all the edges between those vertices
VB and no more. Pattern Q(Vq, Eq, lq) matches data graph
G(V,E, l) via strong simulation, denoted by Q �Ssim G, if
there exists a vertex v ∈ V such that (1) Q �Dsim Ĝ[v, dQ]
with maximum dual match set RbD in ball b where dQ is the
diameter of Q, and (2) v is member of at least one of the
pairs in RbD. The connected part of the result match graph of
each ball with respect to its RbD which contains v is called
a maximum perfect subgraph of G with respect to Q [4].

C. Models of Computation

With the advent of Big Data computing, computational
models for graph algorithms have been re-examined. Over
the years, a number of ideas have been proposed for effi-
cient and scalable processing of graphs. Since this paper is
focussed on big graphs, we only go through some of the
most important distributed models.

1) MPI-like: Several libraries are developed using MPI
(Message Passing Interface) during the last decade to pro-
vide platforms for distributed graph processing like Parallel
BGL [14] and CGMgraph [15]. However, these libraries do
not support fault tolerance or some other issues that are
important for very large scale distributed systems.

2) MapReduce: Google introduced a system based on
MapReduce model for the processing large data sets [16].
It provides fault tolerance and ease of programming; hence,
some scientists have implemented their parallel graph pro-
cessing package over the MapReduce platform like Pegasus
[17] that is developed for some graph mining algorithms.
However, this model is inherently unsuitable for an iterative
algorithm which is the case for most of graph algorithms.

3) Vertex-Centric BSP: Bulk Synchronous Parallel (BSP)
is a model proposed by Valiant [18] as a computation
model for parallel processing. As it is illustrated in figure
1, computation in this model is a series of supersteps.
Each superstep contains three ordered stages: (1) Concurrent
computation where different processes run concurrently; (2)
Communication where all processes exchange their mes-
sages; (3) Barrier Synchronization in which every process
waits for others to reach to the same state before going to

the next superstep. In the vertex-centric programming model,
each vertex of the data graph is a computing unit which can
be conceptually mapped to a process in the BSP model.

Figure 1: An example for BSP model

Google presented Pregel [19] based on Vertex-centric BSP
model for processing very large graphs. A few other open
source projects are also introduced that have a similar idea,
namely GPS (Graph Processing System) [20], Apache Gi-
raph3, Apache Hama4, and Signal/Collect in its synchronous
mode [21].

4) Vertex-Centric Asynchronous: Although implementing
a system based on BSP model makes the system inherently
free of any deadlock, but its synchronization stage can
introduce a bottleneck because in each superstep all the
workers should wait for the slowest one. Therefore, there
are a few other systems that follow the idea of vertex-
centric asynchronous model; i.e., they enjoy benefits of a
vertex-centric model, but avoid bottlenecks of BSP model.
Examples are GraphLab [22] and Signal/Collect in its asyn-
chronous mode [21].

D. Graph Partitioning

Graph partitioning has extensive applications in many
areas including telephone network design, VLSI design and
task scheduling. The problem is to partition the graph into p
roughly equal parts, such that number of edges connecting
vertices in different parts is minimized [23].

It is important in the context of distributed computing
because we want to partition the graph into pieces such that
each piece is mostly self-contained; i.e., we want to reduce
its communication to other parts as much as possible, thus
in theory resulting in speed-up. However, it is not a trivial
problem. When we partition the graph, we need to take care
of two points:

1) An effort must be made to partition the graph into
equal parts, so every worker gets a fair amount of
load.

2) We want to minimize the number of edges going from
one partition to the other.

3Apache Giraph: http://incubator.apache.org/giraph/
4Apache Hama: http://hama.apache.org/

We term the partitioning that enforces the two conditions
listed above as min-cut partitioning. It is an NP-complete
problem and has been extensively studied in its own right.
It has been successfully used with considerable improvement
in various applications. It must be noted that graph partition-
ing has no guarantees to provide consistent improvements
for all graph algorithms. It will result in good speed-up,
if the communication is mostly between adjacent vertices,
since partitioning tries to co-locate them in a single partition;
however, if that is not the case then communication is
inevitable. Semih [20] was able to achieve 2.2x improvement
in speed by adding min-cut partitioning to the PageRank
algorithm, but in the case of Highly-Connected Component,
Single Source Shortest Path the speed-up was only 1.47 and
1.08, respectively.

III. DISTRIBUTED ALGORITHMS FOR GRAPH, DUAL
AND STRONG SIMULATION

In this section, we give an outline of distributed algorithms
for graph, dual and strong simulation that are designed
for a vertex-centric system. Our implementation of strong
simulation is an optimized version of the original strong
simulation.

Graph Simulation: In the designed distributed algorithm
for graph simulation, the query graph is distributed among
all vertices of the data graph, and then each vertex should
find out its match set among the vertices of the query graph.
Vertex u′ of the data graph matches to vertex u of the query
graph if the two vertices have the same label, and each child
of u has at least one match among the children of u′.

In a vertex-centric system, a vertex initially knows only
about its own label and the id of its children. Therefore,
each vertex needs to communicate with its neighbors to learn
about their labels and status in order to evaluate the child-
relationship condition. A Boolean flag, called match flag, is
dedicated to each vertex which indicates if the vertex has a
potential match among the vertices of the query graph. This
flag is initially false.

In an example displayed in figure 2, all the vertices of
the data graph labeled a, b, and c make their flag true at the
first superstep, and then vertices 1, 2, and 5 send messages
to their children. At the second superstep only vertices 5, 6,
and 7 will reply back to their parents. At the third superstep,
vertices 1, 5, 6, 7, and 8 can successfully validate their match
set, but vertex 2 makes its flag false, because it receives no
message from any child. Therefore, vertex 2 sends a removal
message to vertex 1. This message will be received by vertex
1 at superstep four. It will successfully reevaluate its match
set, and the algorithm will finish at superstep five when every
vertex has voted to halt (there is no further communication).

Dual Simulation: The algorithm for dual Simulation is
very similar to graph Simulation. In addition to child-
relationship, we extend the algorithm to check parent-
relationship as well.

Figure 2: An example for distributed graph simulation

Strong Simulation: A version of strong Simulation is done
in two phases: (1) we run dual simulation to find the match
set R and then (2) for each vertex in R, we create a ball
with a diameter of dq . Once we have all the balls ready, we
run dual simulation on each to compute the final output of
strong simulation.

The biggest challenge we faced in strong simulation was
the creation of balls. Because of the scale of graphs, we may
end up creating balls for many of vertices simultaneously
which could bog down the whole system. Therefore, we
tried two different approaches that we go through below.

1) Depth-First Ball: As the name suggests, the ball
creation process works in a depth-first fashion. In the first
superstep, each vertex left after dual simulation performs
as the center of a ball and sends messages to its adjacent
vertices with the specified ball size. The receiving vertices
reply back with their labels and forward the message to their
adjacent vertices with a decremented ball size. This process
is repeated and these messages are removed from the system
when the ball size reaches zero. Since this approach is very
slow and does not scale well, we have omitted its details,
but an explanation can be found at [24].

Figure 3: A breadth-first ball around vertex X with dq = 2

2) Breadth-First Ball: This approach works on a simple
ping-reply model. In figure 3, let us suppose we want to
create a ball around vertex X of radius 2. Initially, X only
knows its adjacent node ids 1,7 and no label information. It
starts off by sending a ping message to all of its adjacent
nodes. In the second superstep, all the recipient nodes reply

back with their labels and the ids of their children and
parents. Thus, in 3(b), X upon receiving these messages
stores the gathered information about the vertices in its ball;
e.g., labels and ids of its descendants and ascendants. In 3(c),
it sends another ping message to all of its boundary vertices
(vertices at a distance 2 of the center) which reply back
with their labels and the ids of their children and parents,
subsequently saved by the node X in 3(d).

The drawback of this approach is that it results in almost
twice the number of supersteps, yet it is much more efficient
and performs much better than the other approach, therefore
we adopted this approach for our strong simulation tests.

IV. IMPLEMENTATION OF DISTRIBUTED ALGORITHMS

In this section, we implement graph simulation on two
different distributed computing infrastructures and compare
their pros and cons.

A. GPS - Graph Processing System

As mentioned above, because all of the algorithms were
designed with a BSP and vertex-centric model, we decided
to use something akin to Pregel for the implementation.
Of the numerous options available, we picked GPS for our
algorithms since it offers everything that we desire of Pregel
and is available as open-source. It is written in Java and also
gives us an option to write a master.compute() method that
proved to be quite handy in case of strong simulation.

As in Pregel, there are two types of main components in
the system: one master node and k worker nodes. A GPS
job starts off by partitioning the data graph over all the
participating workers. Every worker reads its partition and
then distributes the vertices based on a round-robin scheme,
i.e., vertex v gets assigned to worker W = v.id % k. The
lifecycle of a GPS job can be summarized in following steps:
(a) parse the input graph files, (b) start a new superstep, and
(c) terminate computation when all the vertices have voted
to halt and there are no messages in transit, otherwise go to
(b).

B. Akka

Akka is a toolkit and runtime for building highly concur-
rent, distributed, and fault tolerant event driven applications
on the JVM. It has an extended API that lets you manage ser-
vice failures, load management (back-off strategies, timeouts
and processing-isolation). It also scales well with increases
in the number of cores and/or number of machines5. The
API is available both in Java as well as Scala.

C. GPS vs Akka

GPS delivers on its promise of Pregel. However, to enable
the message passing for the custom types requires substantial
effort that is not only time-consuming, but is also prone to
errors. For example, if the message contains some complex

5http://akka.io/

(a) enwiki-2013, |V | = 4x106 (b) uk-2005, |V | = 3.9x107 (c) Synthesized, |V | = 108, α = 1.2

Figure 4: Running times and speed-up for distributed algorithms, |Vq| = 25, αq = 1.2

types, we need to be very careful with how the message
is serialized at the sending vertex and then deserialized at
the receiving end. Implementation detail of serializer and
deserializer can be cumbersome, hard to maintain and not
so readable.

Akka, unlike GPS is a general purpose toolkit for build-
ing highly concurrent and distributed applications and not
something that is built ground-up only for graphs. It means
there is some work that needs to be done to make Akka
work in a fashion similar to BSP. Perhaps, the biggest edge
that Akka has over other comparable models is its inherent
ability and support for sending messages between actors.
With Akka, the developers do not have to worry about
serializing/deserializing of data. They can send messages
wrapping complex types with extremely concise and terse
syntax.

Figure 5: GPS and Akka on Graph Simulation

We implemented a prototype application for Graph Simu-
lation using Akka. We were surprised by the power and ease
provided by Akka for rapid development. Even with the most
basic implementation, we were able to achieve much better
times as we were getting from a system like GPS. The tests
were conducted on the amazon-2008 [25] dataset and were
run over a cluster of 5 machines. As can be seen in Figure
5, Akka ran almost twice as fast as GPS.

V. EVALUATION OF DISTRIBUTED ALGORITHMS

Just like any other distributed algorithm, speed-up and
efficiency are of significant importance for the scalability of
algorithms discussed above. Here, we try to examine that
behavior by varying the number of workers and how the
algorithms react.

A. Experimental Setup

We have used both synthesized and real-world graphs in
our experiments. Having the number of vertices, the number
of edges in a synthesized data graph is determined by α such
that |E| = |V |α. To study the consistency of results, we ran
the experiments for three different datasets - one synthesized
(|V | = 108, α = 1.2) and two real-life, uk-2005 and enwiki-
2013 [25] (uk-2005 has 39459925 vertices and 936364282
edges whereas enwiki-2013 is relatively smaller but more
dense, with 4206785 vertices and 101355853 edges). For
query graphs, one parameter used is |Vq | indicating the
number of vertices and αq , which if not mentioned otherwise
is kept constant at 1.2. To retrieve a query graph for a
particular data set, we took |Vq| as the input which is the
size of query graph. Then we randomly extract a connected
subgraph from the dataset that adheres to the αq constraint
and has |Vq| number of vertices.

The experiments were conducted using GPS on a cluster
of 12 machines. Each one has a 128GB DDR3 RAM, two
2GHz Intel Xeon E5-2620 CPUs, each with 6 cores. The
ethernet connection is 1Gb. In case of more than 11 workers,
we assigned multiple workers to the same worker node in a
round-robin fashion.

B. Experimental Results

We give the graphs for running times and speed-up in
figure 4. It is clear that all three algorithms exhibit scalable
behavior as we increase the number of workers. The speed-
up with smaller datasets is less because as we increase
the number of workers, each worker gets a small load -
meaning less computational load and more time wasted
in synchronization costs inherent in BSP. Dual simulation

always shows the best speed-up and graph simulation shows
the least speed-up. The reason is because of the duality
condition, each worker has to do almost twice the work for
every vertex as compared to graph simulation, this increased
computational load scales well as we increase the number
of workers and consequently, dual simulation tends to show
better speed-up.

Strong simulation keeps bouncing between the other two
depending upon the distribution of the dual match - if they
are well balanced across all workers, then balls are created
in parallel and we get better speed-up and vice-versa. This is
because ball-creation is a time-consuming process and slight
imbalances can overload some workers, thus negatively
affecting the overall speed-up. It must be noted that for the
synthesized dataset, we could not run the tests on a single
worker due to the size of dataset. Using multiple datasets
and queries, we calculated an average speedup of 1.82 from
one to two workers, thus in the graph we have extrapolated
the values marked by dotted line in figure 4c.

VI. IMPACT OF GRAPH PARTITIONING

We used METIS [23] for graph partitioning, which can
partition an unstructured graph into k parts using either
multilevel recursive bisectioning [26] or multilevel k-way
[27] schemes. Both the models can provide high-quality yet
different partitions so we tried both to study the relative
impact. The algorithms work with a simple goal: edge-
cut which basically tries to minimize the edges that travel
between different well-balanced partitions. After extensive
experiments, k-way partitioning performed better so we only
report its results below.

A. Experimental Setup

We conducted extensive testing of min-cut partitioning
on multiple datasets. We use both a real world dataset and
a synthesized dataset. uk-2002 [25] was used as the real
life dataset, that is a 2002 crawl of the .uk domain. We
also synthesized a random-edge graph with |V | = 107 and
an α of 1.2. Because of space constraints and similarity of
results, we have omitted the results of synthesized [24] from
the paper, however, we do make a mention with explanation
where we deem necessary.

B. Experimental Results

We identify two complexity measures for our tests, (1)
runtime which is the time taken to complete a given job and
(2) network traffic which is the number of bytes sent among
workers to complete a given job.

1) Runtime: To study the impact of min-cut partitioning
on the runtime of algorithms, we compare its times against
the default partitioning round-robin. We compare the times
for both by running them against queries of different sizes.
In figure 6. we see that the runtime for graph and dual
simulation are always faster with min-cut. This is because

both always communicate with their adjacent vertices only
and with min-cut partitioning, there is a higher probability
the adjacent vertices will be on the same worker.

However, strong simulation is different because when it is
in the process of building the ball, it needs to communicate
with vertices that are further away from the center of the
ball. This increases the probability that the vertex will
communicate with a vertex that lies on some other partition,
thus washing away any benefit that we obtained from min-
cut partitioning. That is why, strong simulation appears
mostly unaffected by either type of partitioning. The results
for the synthesized dataset were very similar to this real life
dataset.

2) Network traffic: Another important criteria is the data
that needs to be moved between workers. By reducing the
total network traffic, we increase our chances of reducing
the runtime and any cost associated with them. The effect
of reduced data traffic could be more important when there is
a network-bandwidth limit in the system like geographically
distributed systems. In figure 7, we observe that the network
traffic for all always drop with min-cut partitioning - that is
due to the primary goal of min-cut partitioning which is to
reduce the inter-partition communication. Information pro-
vided in [25] shows the power-law nature of the real-world
datasets that we use in our experiments. This characteristic
of the datasets is a contributive factor to the drastic drop in
the network traffic [28]. Usually, these graphs have a few
vertices that have a much higher connectivity to other ver-
tices, with min-cut partitioning we move these vertices along
with their connections to the same worker, thus resulting
in a drastic drop in the total traffic. A similar pattern is
not present in the synthesized dataset, since connectivity is
uniform.

VII. RELATED WORK

The problem of subgraph pattern matching is a widely
studied topic. Over the years, many different graph pattern
matching techniques have been proposed. There are two
broad categories of matching, exact and inexact algorithms.
Subgraph Isomorphism is one of the most well-renowned yet
NP-complete problem which matches the graph based on the
exact topological structure of a pattern. On the other hand,
a few alternative techniques like p-homomorphism [29] and
bounded simulation [30], that rely on inexact but semantic
matching [5], have been proposed recently.

Although the first practical distributed approach for graph
simulation was introduced in [31], their approach is not
based on a vertex-centric model and uses a modified version
of the HHK [3] algorithm. Also, not all of its stages are
run in parallel and one is strictly serial.The idea of dual and
strong simulation were first introduced in [10]. To best of our
knowledge, no other distributed algorithms are implemented
for these two models prior to our work.

(a) Graph Simulation (b) Dual Simulation (c) Strong Simulation

Figure 6: Partitioning effect on the runtime of dataset uk-2002-hc, αq = 1.2

(a) Graph Simulation (b) Dual Simulation (c) Strong Simulation

Figure 7: Partitioning effect on the network I/O of uk-2002-hc, αq = 1.2

Graph partitioning is another important problem that is
gaining traction with the advent of distributed algorithms.
These algorithms mostly try to work with the goal of mini-
mizing the edge-cut in the graph. METIS [23] is an effective
tool that can employ two techniques to generate high-quality
partitions. The effects of graph partitioning on different
algorithms have been studied by numerous researchers. [20]
talks about the impact of partitioning on algorithms like
PageRank, SSSP, etc. and report an impressive speed-up.

VIII. CONCLUSION

Graph pattern matching has been an important topic
in the field of Computer Science and has been gaining
prominence recently. It has become more challenging with
the rapidly increasing size of graphs. In this paper, we
study the three polynomial time pattern matching techniques
in detail. This paper draws the following conclusions with
regards to the three distributed algorithms we developed for
inexact graph pattern matching: (1) they exhibit scalable
behavior as we increase the number of workers, (2) min-cut
graph partitioning improves the runtime of graph and dual
simulation consistently especially with bigger queries, (3)
min-cut graph partitioning always reduces the network I/O
among workers and (4) we present two different techniques

that can be used to build balls around a vertex in a vertex-
centric setting.

In the future, we intend to look into different ways to
improve the strong simulation running times on GPS and
Akka. It is clear that we need to find out how we can improve
the process of ball-creation. Instead of creating the ball on
every dual-matched vertex, we intend to come up with tech-
niques to reduce the total number of balls created without
compromising the results. We also want to come up with new
algorithms that do not suffer the synchronization bottlenecks
of the BSP model, thus achieving better parallelism.

ACKNOWLEDGMENTS

The authors would like to thank Dr. George Karypis and
Semih Salihoglu for their generous help and assistance with
METIS and GPS, respectively.

REFERENCES

[1] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online so-
cial networks,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 29–
42.

[2] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient
subgraph matching on billion node graphs,” Proceedings of
the VLDB Endowment, vol. 5, no. 9, pp. 788–799, 2012.

[3] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Com-
puting simulations on finite and infinite graphs,” in Founda-
tions of Computer Science, 1995. Proceedings., 36th Annual
Symposium on. IEEE, 1995, pp. 453–462.

[4] A. Fard, U. Nisar, L. Ramaswamy, J. A. Miller, and
M. Saltz, “Distributed algorithms for graph pattern matching,”
http://www.cs.uga.edu/˜ar/abstract.pdf, Tech. Rep., 2013.

[5] B. Gallagher, “Matching structure and semantics: A survey on
graph-based pattern matching,” AAAI FS, vol. 6, pp. 45–53,
2006.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990.

[7] J. Brynielsson, J. Hogberg, L. Kaati, C. Mårtenson, and
P. Svenson, “Detecting social positions using simulation,”
in Advances in Social Networks Analysis and Mining
(ASONAM), 2010 International Conference on. IEEE, 2010,
pp. 48–55.

[8] A. Fard, A. Abdolrashidi, L. Ramaswamy, and J. A. Miller,
“Towards efficient query processing on massive time-evolving
graphs,” in Collaborative Computing: Networking, Applica-
tions and Worksharing (CollaborateCom), 2012 8th Interna-
tional Conference on, oct. 2012, pp. 567 –574.

[9] D. R. Zerbino and E. Birney, “Velvet: algorithms for de
novo short read assembly using de bruijn graphs,” Genome
research, vol. 18, no. 5, pp. 821–829, 2008.

[10] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Capturing
topology in graph pattern matching,” Proceedings of the
VLDB Endowment, vol. 5, no. 4, pp. 310–321, 2011.

[11] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years
of graph matching in pattern recognition,” International jour-
nal of pattern recognition and artificial intelligence, vol. 18,
no. 03, pp. 265–298, 2004.

[12] J. R. Ullmann, “An algorithm for subgraph isomorphism,”
Journal of the ACM (JACM), vol. 23, no. 1, pp. 31–42, 1976.

[13] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 26, no. 10, pp. 1367–1372, 2004.

[14] D. Gregor and A. Lumsdaine, “The parallel BGL: A generic
library for distributed graph computations,” Parallel Object-
Oriented Scientific Computing (POOSC), 2005.

[15] A. Chan, F. Dehne, and R. Taylor, “Cgmgraph/cgmlib: Im-
plementing and testing CGM graph algorithms on pc clusters
and shared memory machines,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 81–
97, 2005.

[16] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[17] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus:
A peta-scale graph mining system implementation and ob-
servations,” in Data Mining, 2009. ICDM’09. Ninth IEEE
International Conference on. IEEE, 2009, pp. 229–238.

[18] L. G. Valiant, “A bridging model for parallel computation,”
Communications of the ACM, vol. 33, no. 8, pp. 103–111,
1990.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-
scale graph processing,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data.
ACM, 2010, pp. 135–146.

[20] S. Salihoglu and J. Widom, “GPS: A graph processing
system,” Tech. Rep., 2012.

[21] P. Stutz, A. Bernstein, and W. Cohen, “Signal/collect: Graph
algorithms for the (semantic) web,” in The Semantic Web–
ISWC 2010. Springer, 2010, pp. 764–780.

[22] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, “Graphlab: A new framework for parallel
machine learning,” arXiv preprint arXiv:1006.4990, 2010.

[23] G. Karypis and V. Kumar, “Metis - unstructured graph parti-
tioning and sparse matrix ordering system, version 2.0,” Tech.
Rep., 1995.

[24] “Supplement for: A comparison of tech-
niques for graph analytics on big data,”
http://www.cs.uga.edu/˜nisar/papersupplement.pdf.

[25] “Laboratory for Web Algorithmics,”
http://law.di.unimi.it/datasets.php.

[26] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[27] ——, “Parallel multilevel series k-way partitioning scheme
for irregular graphs,” SIAM Review, vol. 41, no. 2, pp. 278–
300, 1999.

[28] B. A. Huberman and L. A. Adamic, “Internet: growth dy-
namics of the world-wide web,” Nature, vol. 401, no. 6749,
pp. 131–131, 1999.

[29] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu, “Graph homo-
morphism revisited for graph matching,” Proceedings of the
VLDB Endowment, vol. 3, no. 1-2, pp. 1161–1172, 2010.

[30] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph
pattern matching: from intractable to polynomial time,” Pro-
ceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 264–
275, 2010.

[31] S. Ma, Y. Cao, J. Huai, and T. Wo, “Distributed graph
pattern matching,” in Proceedings of the 21st international
conference on World Wide Web. ACM, 2012, pp. 949–958.

