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ABSTRACT

The need to support large-scale time series data is increasing rapidly. There are emerg-

ing Time Series Databases built with conventional relational databases or newer NoSQL

databases. The ScalaTion Time Series Database is built on top of its column-oriented

in-memory database. ScalaTion is an open-source Scala based big data framework for

simulation, optimization and analytics. This database provides support for large-scale stor-

age, efficient query processing, pattern matching and a variety of forecasting techniques. Its

design goals include the ability to scale up and scale out, and the ability to handle conven-

tional multivariate time series. The database provides an easy way to transform a table into

a matrix (or vector) which may be used as input for other data science/machine-learning

models that are available in ScalaTion. The capabilities are illustrated via a case study of

vehicle traffic forecasting. Multiple experiments are conducted to evaluate the performances

of four databases: ScalaTion, MySQL, SQLite, and SparkSQL.

Index words: Time Series Database; Time Series Analysis; Big Data Analytics;
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CHAPTER 1

INTRODUCTION

As pointed out in [1], research in temporal databases are not focused on time series per

se. Although useful, the support and efficiency of using Temporal Databases (TDB) [2]

for handling and analyzing large scale time series is lacking [3]. Consequently, Time Series

Databases (TSDB) emerged as a new related type of database, starting in the 1990’s. The

data model for such systems are centered around the concept of multivariate time series. A

TSDB consists of both ordered and unordered objects (records). Typically, the objects are

ordered by time and timestampted (e.g., indicating when the data were collected). There are

two main ways that data are collected related to time intervals: discrete-time or discrete-

event. In discrete-time, data are collected periodically (e.g., every five minutes for traffic

counts from sensors). In discrete-event, data are collected upon the occurrence of events

(e.g., traffic accidents that are typically aperiodic).

Research and development of Time Series Databases (TSDB) began in earnest in the early

2000’s. This interest lead to the developemt of tools such as STATStream [4] and iSAX [5]

for handling time series in the past decades. These tools had a great impact on research, but

they were just prototypes to vindicate the research ideas and are no longer maintained. Later,

as part of big data landscape, efforts to handle larger and multimodal time series lead to

advances in compression as well as parallel and distributed processing techniques. Although

static data contribute to the ever exploding amount of data, dynamic data (including time

series) are becoming the real issue for big data. Systems like Boeing 787 Aircraft, Internet

of Things sensors, etc., generate terabytes (TB) of data every minute [6]. A scalable and

efficient TSDB system is needed to cater to the needs of storage and retrieval of such fine-

grained data. Such time series may contain billions of data points. Application programmers

should be able to find trends and patterns in the historic data and store down-sampled data
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points in order to significantly lower the requirements of storage. Traditional databases are

not suitable for this type of task.

To illustrate the capabilities of the ScalaTion TSDB, one case study is presented. The case

study considers short and medium term forecasting of vehicle traffic on roadway systems. The

static data include the roadway system itself, while the dynamic data include traffic counts,

statistics on vehicle speed, weather conditions, accident events, sporting events, concert

events, road repair events, etc. [7, 8]

The main contributions of this paper are as follows: 1) We present the ScalaTion TSDB,

an effective and efficient open-source TSDB that is competitive with existing state-of-the-

art TSDBs; for certain operations such as aggregation, projection, selection, intersection

and union, the ScalaTion TSDB can be significantly faster than many other open-source

databases. 2) The ScalaTion TSDB provides easy integration with a great variety of exist-

ing forecasting models provided by the ScalaTion analytics framework without the need to

rely on external libraries or systems. 3) Three easy-to-use Application Programming Inter-

faces, namely Algebraic Interface, SQL-like Interface, and Functional Interface are provided

in ScalaTion TSDB to accommodate a diverse group of users who may freely choose their

preferred API. 4) ScalaTion TSDB is easy to install and deploy so that researchers may

start analytics quickly.

The rest of the paper is organized as follows: Section II discusses the evolution of Time

Series Databases, starting with their predecessor, Temporal Databases, as well as Spatial-

temporal Databases. The Related Work in Section III highlights the state-of-the-art Time

Series Databases and discusses the support of present day systems for time series analysis.

The architecture and implementation of the ScalaTion Time Series Database with empha-

sis on scaling up and scaling out are discussed in Section IV. Three Programming Interfaces

are presented in Section V. The performance of the ScalaTion Time Series Database on real
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datasets is evaluated and compared with modern day alternatives in Section VI. S Finally,

contributions of this work, conclusions and future work are given in Section VII.
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CHAPTER 2

BACKGROUND

In the late 1980’s, a new type of database systems emerged to support temporal attributes

and enabled users to store temporal data. About two decades worth of research has been

dedicated to make temporal data modeling, storage and querying expressive and efficient

[9]. The efforts in academia [5] and the industry [10, 11, 12] lead to the systems which are

popularly known as Temporal Databases.

2.1 Temporal Databases

Temporal Database (TDB) is a database system which records with associated time ranges,

i.e., start timestamp and end timestamp, which may denote a valid time (time for which a

fact was valid in the real world), a transaction time (time duration for which a fact existed in

the database) or bi-temporal (supports both valid and transaction time). TDBs are designed

to manage historic data, i.e., records with the different versions as opposed to a database

which manages only the current state of its records and to provide a temporal query language

to query such data. However, with the rise of modern Internet of Things sensors and long

sequence of data points generated by them at regular (and typically short) intervals [6], TDBs

need to scale in order to store and process such data. Due to the limitations of underlying

relational model, TDBs generally do not scale well [13]. To address the issues of scalability,

NoSQL Temporal Databases were proposed as an alternative [14, 15].

Time-series data is a special case of temporal data but has its own specific characteristics.

There usually is no specific pattern in the temporal data stored in the traditional temporal

databases where as time series data have seasonal trends, patterns, and are expected to be

timestamped at a constant time gaps. Thereby they open up scope for analytics. Time series

data have specific modeling and functional requirements which are not met by the design
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of traditional TDBs. Even with the NoSQL design, not all TDBs provide efficient ways of

transforming time oriented data by applying mathematical and statistical techniques such

as moving average and other complex transformations [16]. These design issues, scalability

issues, time series analysis requirements motivated the development ScalaTion TSDB.

2.2 Spatial-Temporal Databases

A Spatial-Temporal Database (STDB) can be seen as an extension to the temporal database

with added support for spatial attributes. GPS navigation systems, health monitoring sys-

tems, GIS, etc., need to store and process sequences of billions of data points over time along

with the changes in the objects’ locations/geometry. A traditional RDBMS solution is not

suitable for such needs because the system should be able to scale and capture more than

one dimenion [17].
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CHAPTER 3

Related Work

There are many Time Series Databases available today with varying underlying base tech-

nologies and level of support for time series analysis. Table 3.1 lists a few of them.

Table 3.1: Modern Time Series Databases

Name Organization Base

ScalaTion TSDB UGA Columnar DB

OpenTSDB Yahoo! HBase

InfluxDB InfluxData Inc. TSM Tree

Druid Apache 2.0 Community Columnar DB

Gorilla Facebok ODS

OpenTSDB is based on HBase. InfluxDB data storage model is a custom LSM tree-based

approach called Time Structured Merge (TSM) tree. Gorilla [18] has its own Operational

Data Store (ODS), an important part of the monitoring system at Facebook is built using

HBase. ScalaTion TSDB and Druid are column-oriented databases. While OpenTSDB and

InfluxDB store data on-disk, ScalaTion TSDB, Druid and Gorilla are in-memory systems.

Query execution is slower when performing on data that is on disk than when working on

data in memory. Thus, in-memory systems take advantage of producing faster results.

The systems are accessed with the APIs and interfaces they provide. OpenTSDB, InfluxDB

and Druid provide REST HTTP APIs and GUI/CLI to connect and execute queries. Gorilla

has its own SQL-like interface. ScalaTion TSDB has multiple interfaces and provides APIs

for the Scala language to execute queries. More on the interfaces is discussed in Section V.

Working with large amounts of data requires large amounts of disk space / memory and

querying on these large structures could be time-consuming. Therefore, major TSDBs include

compression techniques in storing the data and support performing operations on compressed

data. OpenTSDB performs compression using the LempelZivOberhumer (LZO) algorithm
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that is included in HBase. Druid uses a bitmap compression algorithm to reduce the size of

data. Gorilla achieves compression using delta encoding on XOR comparisons with previous

values. In ScalaTion TSDB, we use Run Length Encoding to compress the columns of the

relation. This is further discussed in detail in Section IV.

The availability of basic relational algebra operators and aggregate functions, such as, AVG,

COUNT, MAX, MIN, SUM, etc., in the system is helpful in performing tasks on the data.

This reduces the effort of users to write the functions for commonly used operations. More

on relation algebra support in ScalaTion TSDB is discussed in Section V. Table 3.2 shows

support of each of the TSDBs for various queries. π - PROJECT, σ - SELECT, ./ - JOIN,

Φ - aggregate functions.

Table 3.2: Query support in TSDBs

Name π σ ./ Φ

ScalaTion TSDB 3 3 3 3

OpenTSDB 7 3 7 3

InfluxDB 3 3 7 3

Druid 7 3 7 3

Gorilla 7 3 7 7

The frequency (sampling rate) and phase may be used to define the distance between two

timestamps. Data with high sampling rates require huge memory space to store the data.

Popular systems such as OpenTSDB, and Druid can not support a sample rate faster than

1 ms. While, ScalaTion TSDB supports sample rate of 1 ns. All these TSDBs also allow

users to choose the sampling rate depending on the need so that data storage space is reduced.

Studies have shown that for certain cases, using a TSDB yields better result than using a

traditional database [3]. TSDBs also find their use in data mining techniques like search,

classify and clustering. Most of these TSDBs support analytics and metrics on time series

data. The analytics interface in ScalaTion is discussed in Section V. Detailed comparisons
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between major TSDBs and those with selected RDBMSs are discussed in Bader A., et al.

[16].

With the increase in applications using time series data in fields like IoT, IT, monitoring

systems, and many more, multiple time series analytics libraries are being developed for

different statistical platforms. Time Series Analysis of R [19], StatsModels for Python [20],

Spark-TS and Flint for Spark to name few such libraries. Also to notice, most these libraries

are third-party and not in-built in the toolkit. While, The ScalaTion TSDB leverages upon

its underlying libraries, analytical packages and forecasting models provided natively within

the framework.

Platforms such as Spark, R, Python have support for dataframes. Dataframes are table like

structures to store data with equal sized columns and columns can be of different data types.

Like most other platforms, ScalaTion provides dataframes API called as RelationFrame

or RelationF in short [21] and is discussed in Section V. They provide a convenient way of

performing big data analysis.
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CHAPTER 4

THE SCALATION TSDB

The ScalaTion big data framework currently consists of four major modules: scalation mathstat,

scalation database, scalation modeling and scalation models. A fifth, scalation automod

is under development. Within the scalation database module, the ScalaTion TSDB

is in the timeseries db package which is a subpackage of the columnar db package.

There are many modeling techniques in the scalation modeling module that utilize the

timeseries db package. ScalaTion TSDB uses its custom TimeNum class wrapped around

Java’s Instant to store date-time information along with a time-zone [22]. The decision to

select Instant was driven by the need to support a sampling rate as low as nanoseconds, to

store data relative to UTC (Universal Time Coordinated) so that it does not have impact

of Day Light Savings time. Also, storing all the temporal data in the UTC zone makes

the arithmetic operations easier and independent of the user’s local zone, from where the

framework is being used. However, ScalaTion gives flexibility to its users to change the

default time-zone for the current session and then load the temporal data adjusted to that

zone. Instant is a light weight choice as it stores only the epoch seconds and part of the

current second, and uses only 12 bytes per timestamp. So this choice was obvious compared

to heavier APIs such as ZonedDateTime or LocalDateTime which needs 29 and 15 bytes,

respectively, per timestamp.

The ScalaTion TSDB rests on top of the underlying in-memory columnar database. Time-

series data may be huge in size and loading it on-demand from the disk can be very time

consuming. For this, ScalaTion TSDB loads data into relations for the first usage and

then keeps all the loaded relations in-memory for the current session. The ScalaTion

framework provides a SQL-like shell to load, save to disk and query relations. User can write

their custom DDL, DML queries in Scala objects and pass them through this command
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prompt to execute the queries contained within them. Work is on the way to provide the

ScalaTion TSDB as a microservice [23].

4.1 Underlying In-Memory, Columnar Database

Underlying the ScalaTion TSDB is an in-memory, column-oriented database system [21]

that has been designed to support advanced analytics. In analytics, the choice of a columnar

database is natural as Online analytical processing (OLAP) queries rarely need to access

entire rows. Columns in a columnar database database may be efficiently extracted to form

vectors or matrices. In particular, when performing time-series analysis, a columnar ar-

chitecture can provide benefits of processor’s L1, L2 and L3 caches as typical forecasting

techniques, such as ARIMA (Auto-Regressive Integrated Moving Average) needs to access

past data points in a column.

For efficiency, preprocessing of data may be combined with data extraction. Preprocse-

ing techniques include, handling missing values (e.g., through data imputation), converting

strings to integers, removing outliers or even rescaling the data. Once the processed data are

stored in the data structures from the linalgebra package from the scalation mathstat

module, many types of analytics/machine learning algorithms may be applied.

4.2 Compression

Time series data are bulky in size. Columnar architecture can effciently compress data in

columns. Time-series data can have a great scope for compression since, many of the column

values, such as sensor ID, sensor location, etc., do not change over time. These characteris-

tics of the data demand for a compression technique that allows performing analytics on the

compressed data, because the cost of decompression may dominate overall analytics perfor-

mance [24] and decompressed data might be too big to fit in the memory. Time series data

are particularly suitable for compression. The ScalaTion TSDB utilizes the compression

techniques present in the underlyting columnar database [25]. It is a norm to have times-
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tamps at regular intervals, ScalaTion TSDB stores the delta of timestamps to compress

continuosly changing time column. Thus, its underlying Run Length Encoding (RLE) com-

pression can significantly reduce the size of the time column. The actual non-temporal values

can be compressed using RLE or a compression technique presented in [18].

4.3 Scalability

In order to support big data and high performance analytics, ScalaTion provides scaling

up in standalone mode and work on scaling out in cluster mode is ongoing.

4.3.1.0 Scaling Up

As a big data framework, ScalaTion emphasizes ease of installation and use. In standalone

mode, ScalaTion may be simply downloaded and run, for example, using the Simple Build

Tool (SBT) or in the Eclipse/IntelliJ IDE. Performance is provided by careful coding of

algorithms, multithreading and initial support for vector instructions. As an example of

careful coding, matrix multiplcation can be coded to maximize the effectiveness of memory

caches [26]. Starting with the näıve triple loop implementation, we obtained a speed-up of 4

times by taking transpose of the second matrix. We observed further improvement by 20%

when 2D matrices were stored into 1D arrays. In addition, the use of block matrices, increases

the effectiveness of multi-threading. Our näıve implementation block matrix multiplication

improves multicore performance by 50%, while with our optimized SUMMA block matrix

multiplication algorithm [27], we observed, upto 3 times speed over our näıve blocked parallel

implementation. These results are further discussed in detail in the Section VII. We have also

shown how we can optimize our algorithms to make efficient utilization of cache memory. Our

algorithm based on dgemm of BLAS has been implemented and performance of different

block sizes has been evaluated. We observed that, block size should be large to have better

performance as it will ensure more cache hits. However, increasing block size beyond the

cache size causes cache misses and thereby does very little to improve performance. Finally,

the use of vector instructions such as Intel’s AVX-512 instructions is currently provided via
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the blis library as an option. The blis libary is one of the more portable Basic Linear

Algebra System (BLAS) libraries available today [28]. A design goal is to make ScalaTion

a pure JVM solution and not use native libraries such as blis. Unfortunately, the current

JVM does not support Advanced Vector Extensions (AVX) [29], although there appears to

be some work on adding them [30]. In standalone mode, big data is supported in two ways:

The use of efficient data structures in servers/workstations with large main memories, or

out-of-core capabilities through the use of memory-mapped files.

4.3.2.0 Scaling Out

For datasets too large to fit in a single main memory or for which the memory mapped file

are too slow, ScalaTion may be deployed in a cluster. The intent is to keep installation,

deployment and execution relatively simple. Although ScalaTion may use a distributed

file system such as the Hadoop Distributed File System (HDFS), it is designed to rely on

maintaining big data in memory à la Spark [31].

Similar to other big data frameworks, ScalaTion uses message passing for communica-

tion between compute nodes in the cluster. Although Distributed Shared Memory provides

higher abstraction and a more convenient programming environment, performance issues

have kept it from widespead apdoption [32]. Providing reliable and efficient message pass-

ing in a cluster requires sophisticated software. Spark previously used Akka [33], but now

uses ’org.apache.spark.rpc’ [34] which uses Netty and Java NIO and provides a Akka like

interface, but making application development more flexible to the users.

The ScalaTion framework can be made to use the default Akka ActorSystem in order to

provide the dispatcher for each Future’s ExecutionContext. However, any Akka actor system

can be used, including a distributed one via via Akka Cluster [35].
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4.4 Support for Time Series Analysis

Time series data is, usually, collected through small sensor devices. And such data is prone

to have consistency and accuracy issues, such as, irregularities in time-stamps because of

network latency or bad sensors, certain data points might get lost over the network channel

or might get corrupted to value far-off from the actual recorded value or might incorrectly

send the same values for a long continuous time, etc. Junk values produces junk analytical

results. The ScalaTion TSDB provides variety of preprocessing techniques to handle such

data. Time-series data is expected to be received at fixed intervals, however, as mentioned

above, we may have a few or more data points received at an expected time stamp. A time-

series database should be able to align such time stamps with the nearest expected time

stamp. Also, it is highly probable that 2 different time-series data collected from 2 different

types of sensors (say, weather and traffic will not be synchronized on time stamps, either

due to they have a different sampling rate or if they have same sampling rate, they might be

clocked at different instant of time (say, different minutes of hour). The ScalaTion TSDB

provides a convenient API, called as leftJoinApx to handle such cases. It needs to be

called as,

r.leftJoinApx (tPosL, tPosR, s)

where, r and s are Relation objects, which stores time stamps at index tPosL and tPosR

in them, respectively. This function treats two timestamps as equal if they are at certain

threshold distance from each other. ScalaTion supports threshold of as minimum as 1

nanosecond and this threshold can be set before invoking leftJoinApx as,

TimeO.setThreshold(secs.nanos)

Outliers are data values which lie at an unexpectedly greater distance from other values

from the dataset. Analysis performed on data which has outliers may be misleading. As

mentioned above, time series data may have outliers because of bad sensors or values getting
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corrupted over while in transmission. ScalaTion provides a variety of techniques to remove

outliers and mark them as ‘Missing‘. Later, such marked missing values or the missing values

already present in the dataset can be imputed using Imputation methods provided within

the framework. ScalaTion provides flexible APIs for both, removing outiers and imputing

missing values, where users may select framework’s out-of-the-box techniques, such as Linear

Interpolation, Moving Average, for Imputation and Standard Deviation, Percentiles

for Outliers etc., or provide their own method to detect outliers and impute missing values.

Outliers.rmOutliers

(relationObj, column, method)

Imputation.replaceMissingValues

(relationObj, column, MisingValue, method)

Time series data may contain several million to billion data points. It may not be feasible

to store all the data points. Especially, data points from beyond certain past might not be

useful for analysis. Downsampling refers to lowering down the sampling rate of a time series.

ScalaTion provides an easy way to downsample time series data through it downsample

API. It can be used as,

relationObj.downsample (seconds.nanos)

Our TSDB supports, downsampling to as low as a few nanoseconds, i.e., say, if an application

records data points at every 2 nanoseconds then it can be downsampled to a time series with

a sampling rate of 3 or more nanoseconds with this API.

Some domains data analysis may not be able to produce more insights or might not be

interested in certain minutes, hours, days, etc., For example, the traffic forecasting case

study discussed in this paper does not consider weekend data as weekend data has different

pattern that that of weekdays data and also, data from 7:00 PM to 7:00 AM is of relatively

less important since it has less congestion compared to that of rest of the hours in the day.
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ScalaTion TSDB provides removeChrono API, which can be used as follows to remove all

timestamps which has unimportant seconds, minutes, hours, days, etc.,

relationObj.removeTime (ChronoField.FIELD,

Seq (Int Values))

where, ChronoField.FIELD is a constant from the set of fields in Java’s ChronoField enu-

meration and Seq (Int Values) are the Int values of the FIELD under consideration.

It is not uncommon in time series data to come across sensors which are not worth for

analysis because they of the abnormally great number of missing data present sent by them.

Such sensors contribute very little to the analysis and thus, can be discarded. ScalaTion

TSDB provides a flexible API to determine if certain time series is good enough or not. It

can be used as,

relationObj.maxThres

( ColPos, MissingVal, Thresh)
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CHAPTER 5

APPLICATION PROGRAMMING INTERFACES

The ScalaTion TSDB provides Three Application Programming Interfaces (APIs).

5.1 Algebraic Interface

The first API is an extended relational algebra that includes the standard operators of

relational algebra plus those common to column-oriented databases. It consists of the Table

trait and two implementing classes: Relation and MM Relation. Table 5.1 shows the thirteen

operators supported (the first six are considered fundamental). Operator names as well as

Unicode symbols may be used interchangeably (e.g., r union s or r∪ s compute the union of

relations r and s. Note, the extended projection operator eproject (Π) provides a convenient

mechanism for applying aggregate functions. It is often called after the groupby operator,

in which case multiple rows will be returned. Multiple columns may be specified in eproject

as well. There are also several varieties of join operators. As an alternative to using the

Unicode symbol when they are Greek letters, the letter may be written out in English (pi,

sigma, rho, gamma, epi, omega, zeta, unzeta).

5.2 SQL-like Interface

Although the algebraic interface is fully capable, users familiar with SQL, may prefer the

ScalaTion SQL-like interface provided in the RelationSQL class. The following SQL query

retrieves the average traffic count for sensors located on road segment ”rs1”.

select sensorId, sensorName, avg(tcount)

from roadSegment natural join trafficData

where rsName = ’rs1’

group by sensorId

Due to the flexible syntax on Scala, this can be nearly reproduced directed in the language.

16



Table 5.1: Extended Relational Algebra (r = roadSegment, s = sensor, t = trafficData, q = tollRS)

Operator Unicode Example Return

select σ r.σ (”rsName” == ”rs1”) rows of r where rsName == ”rs1”

project π r.π (”rsName”, ”sensorId”) the rsName and sensorId columns of r

union ∪ r ∪ q rows that are in r or q

minus - r − q rows that are in r but not q

product × r × t concatenation of each row of r with those of t

rename ρ r.ρ(”r2”) a copy of r with new name r2

join ./ r ./ t rows in natural join of r and t

intersect ∩ r ∩ q rows that are in r and q

groupby γ t.γ (”sensorId”) rows of t grouped by sensorId

eproject Π t.Π (avg, ”tcount”) the average of the tcount column of t

orderBy ω t.ω (”sensorId”) rows of t ordered by sensorId

compress ζ t.ζ (”tcount”) compress the tcount column of t

uncompress Z t.Z (”tcount”) uncompress the tcount column of t

(roadSegment join trafficData)

.where [String] ((”rsName”, == ”rs1”))

.select (”sensorId”, ”sensorName”)

5.3 Functional Interface

With the increasing popularity of functional programming along with its use in big data

analytics [36] and its excellent support by the Scala language [37], it is straightforward and

useful to provide a functional API to access ScalaTion TSDB databases. The RelationF

class provides the standard map, reduce, fold, filter, groupBy, orderBy and join high

order functions. The same query can be written in functional style as follows:

(roadSegment join trafficData)

.filter [String](”rsName”, == ”rs1”)

.map [Int]( / 10, ”tCount”)
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.reduce [Int]( + , ”tCount”).show()
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CHAPTER 6

PERFORMANCE EVALUATIONS

6.1 Vehicle Traffic Forecasting

Forecasting is the art of taking available information of the past and attempting to make

the best educated guesses of the ever unforeseen future. From the historical data, patterns

can be observed and forecasting models have been developed to capture such patterns. This

case study focuses on forecasting traffic flow in major urban areas and freeways in the city of

Austin, TX using large amounts of data collected from traffic sensors. As an extended study,

we will also be incorporating precipitation data into forecasting models to better predict

traffic flow in rainy weather.

6.2 Test setup

We used UGA’s Sapelo cluster for evaluating the performance of the proposed and discussed

systems. Sapelo is the computing environment provided by the Georgia Advanced Computing

Resource Center (GACRC) 1. The tests were run on compute nodes having 48-core AMD

Opteron processors and 128GB of memory to facilitate parallel processing and handling

large datasets in-memory. For evaluating performance of the database systems discussed,

we used the traffic data provided by City of Austin Transportation Department 2. This

dataset has 15 minutes resolution data collected from several sensors across the city of

Austin, from the June 2017 to the current date. Even higher resolution data, recorded every

minute or 30-seconds, is able to capture the dynamic nature of traffic patterns in major

urban areas and freeways. The Caltrans Performance Measurement System (PeMS) from

the state of California is one such dataset but PeMS does not let users download data

without creating an account. We decided to not use datasets provided by PeMS following

1https://gacrc.uga.edu/
2https://data.austintexas.gov/Transportation-and-Mobility/Travel-Sensors/6yd9-yz29
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the open science philosophy, mentioned in [38]. We used the precipitation data provided

by the Automated Surface Observing System (ASOS) 3, a joint program maintained by

the National Weather Service (NWS) and the Federal Aviation Administration (FAA). The

ASOS sensors are typically placed in airports or air bases. Data are downloaded in hourly

resolution through a convenient web interface 4 provided by the Department of Agronomy

of Iowa State University. Out of the 3 available weather sensors, EDC (Austin Executive

Airport), AUS (AustinBergstrom International Airport) and ATT (ATT Austin Airport),

we selected only the AUS and ATT sensors for the evaluations on traffic forecasting case

study. We decided to not include EDC sensor as it was located about 90 miles from our

traffic sensor. Also, to test our scale-up and scale-out capabilities we have used generated

synthetic data. We have also evaluated database query operators provided by ScalaTion

with the other three popular open source databases, namely, MySQL Server (Version 5.7.20),

SQLite (Version 3.25.0), and, Apache Spark (Version 2.3.1).

6.3 Scale up performance of Linear Algebraic Operations

Matrix multiplication is one of the most frequently used operation in various data analytics

and machine learning models. Years of research has been devoted in optimizing it. With the

advent of multi-core parallel machines and distributed networks to handle larger datasets,

effective algorithms for multiplying matrices and other core linear algebra operations such

as dot product of vectors, with such scale up capabilities are needed. We have presented one

algorithm for multiplying matrices which enhances cache optimization by effectively utilizing

L3 cache memory and one algorithm for blocked matrix multiplication. We have tested this

on square matrices with perfect square size dimensions so that our näıve blocked implemen-

tation can be easily divided into square blocks of size
√
dimension. As can be seen from Fig

1. and from Fig. 2, SUMMA [27], Scalable Universal Matrix Multiplication Algorithm, out-

3https://www.weather.gov/asos/
4 https://mesonet.agron.iastate.edu/request/download.phtml
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performs other other algorithms for larger input sizes. From Fig. 1, we also observed that the

implementation which supports commonly used types of Matrices in ScalaTion through

the use of generics, is about 10 times slower than the same näıve implementations with spe-

cific types. This motivated the need for code generation classes with the support for different

base types. The number of cache misses in the traditional näıve triple loop implementation

can be reduced by taking the transpose of one matrix and then multiplying rows by rows,

instead of rows by columns. As a result, 4-5 times speed up is observed. From Fig. 1 and

Fig. 2, it can also be seen that use of blocks, if done correctly, can increase the performance

for larger matrices. Fig 2. shows the performance of the implementations dicsussed in Fig.

1.We observed similar relative trends among implementations as that in their serial versions.

As we can see, SUMMA is better suited for paraller processing of larger data size. Fig. 3

and Fig. 4, shows the results for the implementations for matrices stored as 1D array. We

have shown speed up of using vector instructions set in C throgh blis library. A standalone

blis by itself gives faster implementation on the lines of BLAS, however this performance

gain is compensated by the JNI overhead in copying the data to and back from the C code,

and loading the native code library into JVM. JNI overhead is linear to the size of the input

and thus it discouraged to use native libraries, if fewer and less complex calculations are

to be performed on greater data. Since, matrix multiplication is a cubic operation, we can

see that blis starts with a 4 times speed up for smaller input and increases it to a 8-10

times speed up when computation costs are much higher than the JNI overhead. We, at the

time of writing, do not have 1D counter part of SUMMA algorithm,however, efficiency of

parallel processing by the use of block matrices for large input sizes can be seen through our

näıve implementation of block matrices. Moreover, a C/ C++ version of implementation of

this code auto-vectorizes itself, so we are sure that when it is introduced in the JVM, we

shall obtain a greater speed up. For readability and better understanding, the actual running
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Fig. 6.1: Running times of serial version of square matrix multiplication

Fig. 6.2: Running times of parallel version of square matrix multiplication

times for scale up performance of matrix multiplication are given the TABLE 7.1, 7.2, and

7.3 in the Appendix.

6.3.1.0 Evaluations of Databases

In this subsection, we evaluate ScalaTion database with other popular open source

databases. We have tested 4 of the common operations in the analytics databases, namely,

Functions, Union, Indexed Join, and Intersect.

We have evaluated sum, average, min, max, etc., aggregate functions on the databases men-

tioned in the Fig 6.5, all of the functions produced similar results. So we decided to take
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Fig. 6.3: Running times of serial version of square matrix multiplication

Fig. 6.4: Running times of parallel version of square matrix multiplication (1D Array)
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Fig. 6.5: Aggregate Functions Performance

avg as a representative function to find average traffic on a lane, a highway or entire city

of Austin. ScalaTion outperforms all the other databases compared by on the small to

medium sized dataset while its performance is comparable to the SparkSQL on the larger

sets.

Then we tested these databases for a Union All query and the results are plotted in 6.6.

Austin traffic data is collected across individual lanes of highway, so a Union query can be

used to aggregate data across lanes of such multi-lane street or highway. As can be observed

from the 6.6, ScalaTion outperforms other databases for medium sized databases and its

performance is comparable to the SparkSQL.

We evaluated an indexed join query as join is one of the most important operation in the

databases, since it is rare to have all the data within only one table. We decided to join

Austin’s traffic sensor data with the nearest weather data, to get insights into correlation

betwen traffic volume and measured precipitation at the same time. From the Fig. 6.7,

we observe that ScalaTion performs better than MySQL and SQLite while it does not

perform as well as SparkSQL. After investigation, we have found that, SparkSQL uses a

custom implementation of OpenHashMap hash-join for their join operation and currently,
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Fig. 6.6: Union Performance

Fig. 6.7: Indexed Join Performance

efforts are being made to provide our own custom implementation of Hash-Map like structure

for improving efficiency of hash-join.

Finally, we compared intersect operator, as it is quite common practice to query the

database, especially in the analytical database, to find common records in multiple relations.

For example, we queried the 2 weather sensors located at 15 miles from each other, to find

what times they both recorded same rain activity. Results in 6.8 shows that ScalaTion

performs better than the row-stores MySQL and SQLite.
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Fig. 6.8: Intersect Performance

It should be noted that, even though Join and Intersect operations are more suited for

traditional row-store RDBMSs, ScalaTion, despite being a column-store, convincingly out-

performs them. Also, since the data were time-stamped at irregular intervals, the com-

pared systems did not give correct joined or intersected result. Spark depends upon external

Spark-TS or Flint library to align such nearby time-stamps [39], [40], where as, ScalaTion

has support for this out-of-the-box.

6.4 Evaluations on Compression

As discussed in the SECTION IV above, time-series datasets can be huge in size and

columnar-store can efficiently provide compression to save on space required for storage.

We used Run Length Encoding (RLE) compression technique provided by ScalaTion to

compress the weather dataset generated by 2 sensors, namely ATT and AUS. As can be seen

from the TABLE 6.1, we have accomplished to compress non-temporal attributes such as, sta-

tion, lat, long tremendously and could compress 1,197,717 values to just 6 values, while other

attributes which does not change frequently over time, such as, visibility, precipitation

are also compressed to 10.88% to 14% of the space for uncompressed raw data. ScalaTion

uses its custom TripletD (value, count, startPos) data-structure to store run length
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encodes. Each TripletD element takes 16 bytes of memory. Space saved in terms of bytes is

shown in the TABLE 6.1.

Table 6.1: Weather Dataset Compression

Column Original After Compression In %

station 399239 2 0.0005009

valid 399239 394378 98.78

lon 399239 2 0.0005009

lat 399239 2 0.0005009

temperature 399239 149256 12.33

dew point 399239 129683 32.48

relative humidity 399239 161320 40.40

wind direction 399239 225323 56.43

wind speed 399239 247029 61.87

precipitation 399239 57162 14.31

visibility 399239 43468 10.88

As can be seen from the TABLE 6.1, we end up wasting space for the compressed time-stamp

column, and it takes almost the double the space as that of the original uncompressed raw

time column. Time-stamps are unique and thus, are not a good candiate to compress using

RLE. We have used only 59.55% of the space for the entire uncompressed weather dataset.

6.5 Evaluation of Traffic Forecasting for Austin City

Traffic data are collected for Austin, Texas 5. Sensors are placed at 86 locations across the

city and data are collected using a single detector per lane. The collected traffic data include

volume, occupancy (% capacity of the lanes) and speed. Forecasting volume is of primary

interest in this case study. Data are generally available from summer/early fall of 2017 and

are being continually collected till the present time. In this case study, the end date is set to

the 1st of July, 2018.

The data are only available in a very raw format and much pre-processing is needed before the

data can be used for analytics. A single data file contains the data for all the detectors, but

the rows in the data file are not in any sorted order. As the first step, the data file is loaded

5https://data.austintexas.gov/Transportation-and-Mobility/Travel-Sensors/6yd9-yz29
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into a RelationSQL object and sorting is performed by Detector ID and then by time stamp.

The data are in 15-minute intervals, but unfortunately a data row may not exist for every 15-

minute interval. To make this dataset more suitable for analytics, an approximate left join is

performed using a RelationSQL object containing only a single column of regular 15-minute

intervals with another RelationSQL object that is produced by a select query based on a

particular Detector ID. The approximate join operation is needed because the original data

file does not always contain regular, perfect 15-minute interval, time stamps. The resulting

RelationSQL object is one with the regular 15-minute time interval but contains essentially

blank rows which are not available in the original data file and must be imputed in a later

step. At this point, certain time series produced by Detector IDs simply contain two many

blank rows. Therefore, any detectors that contain more than 20% of blank rows or contain

only 20% or less observations than the detector with the most observations are removed

from consideration. ScalaTion provides an API to perform any of the above mentioned

things. Furthermore, the remaining time series from different detectors are further filtered

tout based on the number of zeros, which are used to represent missing values in this data file.

Unfortunately, it is impossible to distinguish an actual data value of zero and a missing value

represented by zero in this particular data file. To be on the safe side, all values of zeros are

imputed; all the blank rows, representing the originally missing time stamps, are imputed as

well. As discussed in the previous section 4.4, ScalaTion provides a MissingVal paramter

in the replaceMissingValues API, this parameter can be set to zero or any value which is

to be considered as ‘Missing‘ and will need to be imputed. The presence of outliers is also

checked. Outliers are removed and imputed if any can be found. In the end, time series from

47 detectors out of 86 can be used to perform analytics.

Among the remaining data, only data from weekdays are considered since data from week-

ends are of relatively less interests and they typically exhibit different traffic patterns than

weekdays. This is a commonly found practice, as can be seen in recent work in [41], [42],
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among others. Furthermore, only day time hours from 7:00AM to 7:00PM are considered for

forecasting since traffic patterns during this time can exhibit the greatest congestions. As

dicsussed in the section 4.4 we used our framework’s API removeChrono to remove data of

weekends as well as weekdays’ hours from 7:00 PM to 7:00 AM.

Several commonly used forecasting models are used in this case study, including the ARIMA

(Auto-Regressive Integrated Moving Average) [43] family of models, Exponential Smoothing

[44, 45] and feedforward, fully connected Neural Networks. In the ARIMA family, three

models were used, an ARIMA model whose order is chosen by an automated search using

the AICc (Akaike Information Criterion) criterion as described in [46], a Seasonal ARIMA

(SARIMA) model using a similar automated search for orders and the SARIMA(1, 0, 1) ×

(0, 1, 1) model that has been successfully applied in traffic forecasting in several related work

[47, 41, 8]. The Exponential Smoothing uses additive seasonality, as suggested in Section 7.5

of [48], since no clear multiplicative seasonal pattern is present for traffic data. The Neural

Network structure consists of an input layer of 96 neurons, representing the most recent data

in the previous 24-hour period, two hidden layers of sizes 72 and 48, and an output layer of

size 24, representing 24 steps ahead forecasts. The tanh activation function is used in all the

layers, and the maximum number of epochs is set to 400. If during the training process, the

training SSE continues to increase 8 consecutive times, then the training is terminated early

and the parameters are reverted back to the model that produces minimal SSE. The tanh

function also dictates that the data be normalized since it can only output values from -1

to 1. The training data are normalized in between -0.8 to 0.8 using Min-Max Normalization

in order to leave room for the testing data to contain values greater than or less than the

maximum and minimum values in the training set, respectively. Other important parameters

include the learning rate, size of the mini-batch and the regularization parameter are found

using a grid search on a small sample of data. The learning rate is then set to 0.1, the

mini-batch size is 50 and the regularization parameter is set to 0.5.
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Fig. 6.9: Performance Comparison using MAPE

Fig. 6.10: Performance Comparison using R2

Rolling forecasts are used, in each iteration 12 weeks of data are used for training and

forecasts are produced on 8 weeks of testing data, 24 steps ahead at a time. The metrics

of evaluation include Mean Absolute Percentage Error (MAPE) and Coefficient of Deter-

mination (R2). No imputed values are included in computing the evaluation metrics. An

additional baseline, which is the historical average of the same weekdays at a particular time

in the training set, is included for comparison purposes.
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In both Figure 6.9 and 6.10, ARIMA auto and SARIMA auto are the models that used au-

tomated search in order to find the appropriate orders that optimizes the AICc criterion. In

terms of MAPE, as shown in Figure 6.9, Neural Networks performed the best overall, and

the overall rate of performance degradation seems low. The SARIMA auto performed con-

sistently better than the SARIMA(1, 0, 1)× (0, 1, 1) model, but both exhibit similar trends.

The Exponential Smoothing model performed better than the ARIMA auto model, but both

models only produced satisfactory forecasts in the short terms. The performance degrada-

tion rates for both models seem rather high. In terms of R2, the relative performance of

most models have stayed the same, with the exception of SARIMA auto, which seems to be

competitive with Neural Networks.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this paper, we presented the ScalaTion TSDB, an effective and efficient open-source

TSDB. Our experiments showed that ScalaTion TSDB is competitive with existing state-

of-the-art TSDBs for many of the database operations; for certain operations such as aggre-

gation, projection, select, intersect and union, the ScalaTion TSDB is significantly faster

than its competitors. ScalaTion TSDB provides easy integration with a great variety of ex-

isting forecasting models provided by the ScalaTion analytics framework without the need

to rely on external libraries. We have demonstrated ScalaTion TSDB with one case study;

it can be extended to support other domains too. Three easy-to-use Application Program-

ming Interfaces, namely Algebraic Interface, SQL-like Interface, and Functional Interface,

are provided in ScalaTion TSDB to accommodate a diverse group of users who may freely

choose their preferred API. We discussed factors which determine compression ratio and an-

alytics performance. ScalaTion’s variety of forecasting techniques can be benefited when

combined with the spatial-temporal features. We provide an easy to build/ install framework

with well documented feature rich libraries which can help future researchers and developers

to contribute to their research.

In the future, we plan to introduce temporal indexing to make our algorithms more ef-

ficient. Our TSDB can be extended to implement a spatial-temporal database by adding

spatial attributes. Spatial functions, spatial aggregate functions, spatial operators can also

be implemented. In the future, with the help of spatial information combined with temporal

information, more insights can be gained and more accurate time series analysis can be per-

formed, for example, we may achieve better accuracy in forecasting traffic when precipitation

data, traffic direction, traffic speed, concert events, road accidents, road repair work, etc. are

considered. Dynamic time warping can be implemented to align 2 irregular time-series.
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The JVM does not support vector instructions set as of this writing and JNI calls to native C

code are expensive. We have provided a vectorized algorithm for matrix-matrix multiplication

in Scala; since similar auto-vectorized implementation in native C has shown significant

performance gain. Various Linear Algebra operations can be implemented on similar lines.

Vectorized implementation of such operations is expected to improve the performance of

neural networks in ScalaTion. Currently, our block matrix multiplication algorithm works

for square matrix sizes with perfect square dimensions. Work can be done in this area to

make it available for all sizes of matrices. SUMMA matrix multiplication algorithm does not

have a 1D array version. However, as can be seen from the performance evaluations section

and the tables in the Appendix section, 1D arrays performs better than their 2D versions.

Work can also be done in making 1D implementation of SUMMA parallel.

33



Bibliography

[1] D. Schmidt, A. K. Dittrich, W. Dreyer, and R. Marti, “Time series, a neglected issue

in temporal database research?” in Recent Advances in Temporal Databases. Springer,

1995, pp. 214–232.

[2] R. T. Snodgrass, “Temporal databases,” in IEEE computer. Citeseer, 1986.

[3] L. Deri, S. Mainardi, and F. Fusco, “tsdb: A compressed database for time series,”

in International Workshop on Traffic Monitoring and Analysis. Springer, 2012, pp.

143–156.

[4] X. Zhao, “High performance algorithms for multiple streaming time series,” Ph.D. dis-

sertation, New York University, Graduate School of Arts and Science, 2006.

[5] J. Shieh and E. Keogh, “iSAX: indexing and mining terabyte sized time series,” in

Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, 2008, pp. 623–631.

[6] Dan Worth, “Internet of Things to generate 400 zettabytes of

data by 2018.” [Online]. Available: https://www.v3.co.uk/v3-uk/news/2379626/

internet-of-things-to-generate-400-zettabytes-of-data-by-2018

[7] J. A. Miller, H. Peng, and C. N. Bowman, “Advanced tutorial on microscopic discrete-

event traffic simulation,” in Simulation Conference (WSC), 2017 Winter. IEEE, 2017,

pp. 705–719.

[8] H. Peng, S. U. Bobade, M. E. Cotterell, and J. A. Miller, “Forecasting traffic flow:

Short term, long term, and when it rains,” in International Conference on Big Data.

Springer, 2018, pp. 57–71.

34

https://www.v3.co.uk/v3-uk/news/2379626/internet-of-things-to-generate-400-zettabytes-of-data-by-2018
https://www.v3.co.uk/v3-uk/news/2379626/internet-of-things-to-generate-400-zettabytes-of-data-by-2018


[9] V. J. Tsotras and A. Kumar, “Temporal database bibliography update,” Sigmod Record,

vol. 25, no. 1, pp. 41–51.

[10] C. M. Saracco, M. Nicola, and L. Gandhi, “A matter of time: Temporal data manage-

ment in DB2 10.”

[11] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. P. Pakala,

“Temporal query processing in Teradata,” in Proceedings of the 16th International Con-

ference on Extending Database Technology. ACM, 2013, pp. 573–578.

[12] Jonathan S. Katz, “Range types: Your life will never be the same,” 2012,

accessed: 2018-07-28. [Online]. Available: https://wiki.postgresql.org/images/7/73/

Range-types-pgopen-2012.pdf

[13] N. Leavitt, “Will NoSQL databases live up to their promise?” accessed: 2018-07-28.

[Online]. Available: http://www.leavcom.com/pdf/NoSQL.pdf

[14] A. A. Ouassarah, “Adi : A nosql system for bi-temporal databases,” Ph.D. dissertation,

Universit de Lyon, 2016.

[15] M. Kaveh, “ETL and analysis of iot data using OpenTSDB, Kafka, and Spark,” Master’s

thesis, University of Stavanger, 2015.

[16] A. Bader, O. Kopp, and M. Falkenthal, “Survey and comparison of open source time

series databases,” Datenbanksysteme für Business, Technologie und Web (BTW 2017)-

Workshopband, 2017.

[17] “Spatiotemporal databases - wiki,” accessed: 2018-07-28. [Online]. Available:

https://en.wikipedia.org/wiki/Spatiotemporal database

[18] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veer-

araghavan, “Gorilla: A fast, scalable, in-memory time series database,” Proceedings of

35

https://wiki.postgresql.org/images/7/73/Range-types-pgopen-2012.pdf
https://wiki.postgresql.org/images/7/73/Range-types-pgopen-2012.pdf
http://www.leavcom.com/pdf/NoSQL.pdf
https://en.wikipedia.org/wiki/Spatiotemporal_database


the VLDB Endowment, vol. 8, no. 12, pp. 1816–1827, 2015.

[19] “R project - time series analysis,” accessed: 2018-07-21. [Online]. Available:

https://cran.r-project.org/web/views/TimeSeries.html

[20] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling with

Python,” in 9th Python in Science Conference, 2010.

[21] Y. Fang, “Analytics databases: A comparative study,” Master’s thesis, University of

Georgia, Franklin College of Arts and Sciences, 2018.

[22] Oracle Javadoc Contributors, “Java platform, standard edition 8 API specification.”

[Online]. Available: https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html

[23] A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, and A. Urso, “The database-is-the-

service pattern for microservice architectures,” in International Conference on Informa-

tion Technology in Bio-and Medical Informatics. Springer, 2016, pp. 223–233.

[24] D. Abadi, S. Madden, and M. Ferreira, “Integrating compression and execution in

column-oriented database systems,” in Proceedings of the 2006 ACM SIGMOD inter-

national conference on Management of data. ACM, 2006, pp. 671–682.

[25] V. G. Harish, V. K. Bingi, and J. A. Miller, “A big data platform integrating com-

pressed linear algebra with columnar databases,” in Big Data (Big Data), 2016 IEEE

International Conference on. IEEE, 2016, pp. 2344–2352.

[26] K. Goto and R. van De Geijn, “On reducing TLB misses in matrix multiplication,”

Technical Report TR02-55, Department of Computer Sciences, U. of Texas at Austin,

Tech. Rep., 2002.

[27] “SUMMA: Scalable universal matrix multiplication algorithm, author=Van De Geijn,

Robert A and Watts, Jerrell, journal=Concurrency: Practice and Experience, volume=9,

36

https://cran.r-project.org/web/views/TimeSeries.html
https://docs.oracle.com/javase/8/docs/api/java/time/Instant.html


number=4, pages=255–274, year=1997, publisher=Wiley Online Library.”

[28] F. G. Van Zee and R. A. Van De Geijn, “Blis: A framework for rapidly instantiating blas

functionality,” ACM Transactions on Mathematical Software (TOMS), vol. 41, no. 3,

p. 14, 2015.

[29] J. Nie, B. Cheng, S. Li, L. Wang, and X.-F. Li, “Vectorization for Java,” in IFIP

International Conference on Network and Parallel Computing. Springer, 2010, pp.

3–17.

[30] OpenJDK Contributors, “Vectors for java,” 2018. [Online]. Available: http:

//cr.openjdk.java.net/∼vlivanov/panama/vectors/vectors.html

[31] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory big data man-

agement and processing: A survey,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 27, no. 7, pp. 1920–1948, 2015.

[32] W. Shi, “Heterogeneous distributed shared memory on wide area network,” IEEE Com-

puter Society Technical Committee on Computer Architecture (TCCA) Newsletter, pp.

71–80, 2001.

[33] “Apache spark - issues tracker,” accessed: 2018-07-28. [Online]. Available: https:

//issues.apache.org/jira/browse/SPARK-5293

[34] “Apache spark - github commit log,” accessed: 2018-07-28. [Online]. Available: https:

//github.com/apache/spark/commit/bc1babd63da4ee56e6d371eb24805a5d714e8295

[35] “Akka documentation - cluster usage,” accessed: 2018-07-28. [Online]. Available:

https://doc.akka.io/docs/akka/2.5/cluster-usage.html

[36] Glenn Engstran, “Functional programming and big data,” 2014. [Online]. Available:

http://glennengstrand.info/media/fpbd.pdf

37

http://cr.openjdk.java.net/~vlivanov/panama/vectors/vectors.html
http://cr.openjdk.java.net/~vlivanov/panama/vectors/vectors.html
https://issues.apache.org/jira/browse/SPARK-5293
https://issues.apache.org/jira/browse/SPARK-5293
https://github.com/apache/spark/commit/bc1babd63da4ee56e6d371eb24805a5d714e8295
https://github.com/apache/spark/commit/bc1babd63da4ee56e6d371eb24805a5d714e8295
https://doc.akka.io/docs/akka/2.5/cluster-usage.html
http://glennengstrand.info/media/fpbd.pdf


[37] P. Chiusano and R. Bjarnason, Functional programming in Scala. Manning, 2015.

[38] J. C. Molloy, “The open knowledge foundation: open data means better science,” PLoS

biology, vol. 9, no. 12, p. e1001195, 2011.

[39] “Time series for spark (the spark-ts package),” accessed: 2018-08-01. [Online].

Available: https://github.com/sryza/spark-timeseries

[40] “Flint: A time series library for apache spark,” accessed: 2018-08-01. [Online].

Available: https://github.com/twosigma/flint

[41] M. Lippi, M. Bertini, and P. Frasconi, “Short-Term Traffic Flow Forecasting: An Exper-

imental Comparison of Time-Series Analysis and Supervised Learning,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 14, no. 2, pp. 871–882, 2013.

[42] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic Flow Prediction with Big

Data: A Deep Learning Approach,” IEEE Transactions on Intelligent Transportation

Systems, vol. 16, no. 2, pp. 865–873, 2015.

[43] G. E. Box and G. M. Jenkins, “Time Series Analysis Forecasting and Control,” DTIC

Document, Tech. Rep., 1970.

[44] C. Holt Charles, “Forecasting trends and seasonal by exponentially weighted averages,”

International Journal of Forecasting, vol. 20, no. 1, pp. 5–10, 1957.

[45] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving Averages,” Man-

agement science, vol. 6, no. 3, pp. 324–342, 1960.

[46] R. J. Hyndman, Y. Khandakar et al., Automatic time series forecasting: the forecast

package for R. Monash University, Department of Econometrics and Business Statistics,

2007, no. 6/07.

38

https://github.com/sryza/spark-timeseries
https://github.com/twosigma/flint


[47] S. Shekhar and B. Williams, “Adaptive Seasonal Time Series Models for Forecasting

Short-Term Traffic Flow,” Transportation Research Record: Journal of the Transporta-

tion Research Board, no. 2024, pp. 116–125, 2008.

[48] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts,

2014.

39



APPENDIX

For the TABLE 7.1, 7.2, and 7.3 below, times are given in ms.

Table 7.1: Matrix Multiplication results for 900 * 900 matrix size

Method 2DS 1DS 2DP 1DP

Generic 37474 NA 3648 NA

Näıve 3074 1679 315 87

Optimized 1210 1170 75 65

SUMMA 1796 NA 167 NA

Näıve Block 1210 1229 92 58

blis through JNI NA 424 NA NA

Table 7.2: Matrix Multiplication results for 1800 * 1800 matrix size

Method 2DS 1DS 2DP 1DP

Generic 164302 NA 27376 NA

Näıve 35590 15380 6892 1808

Optimized 7370 7151 1740 1266

SUMMA 5617 NA 289 NA

Näıve Block 6882 7263 1170 978

blis through JNI NA 982 NA NA

Table 7.3: Matrix Multiplication results for 2500 * 2500 matrix size

Method 2DS 1DS 2DP 1DP

Generic 626852 NA 123601 NA

Näıve 135366 51662 23638 9647

Optimized 32240 26268 6276 7460

SUMMA 22243 NA 2658 NA

Näıve Block 35334 27940 6870 4082

blis through JNI NA 2618 NA NA
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Table 7.4: Supported Times Series Analysis Techniques

Name Package Class

Exponential Smoothing forecaster ExpSmoothing

Auto-Regressive forecaster AR

Moving-Average forecaster MA

ARMA forecaster ARMA

ARIMA forecaster ARIMA

SARIMA forecaster SARIMA

SARIMAX forecaster SARIMAX

Dynamic Regression forecaster DynRegression

Functional Smoothing fda Smoothing F

Functional Regression fda Regression F

Fourier Transform calculus FFT

Wavelets calculus Wavelet

Neural Networks analytics NeuralNet 3L

Neural Networks analytics NeuralNet XL

Recurrent Neural Nets analytics RNN Net

Long Short-Term Memory Nets analytics LSTM Net

Convolution Neural Nets analytics CNN Net

Temporal Convolution Nets analytics TCN Net
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