
Semantic Interoperability of Web Services – Challenges and Experiences

Meenakshi Nagarajan, Kunal Verma, Amit P. Sheth, John Miller, Jon Lathem
LSDIS Lab, Department Of Computer Science, University of Georgia, Athens GA, USA

{bala,verma,sheth,jam,lathem}@cs.uga.edu

Abstract

With the rising popularity of Web services, both
academia and industry have invested considerably in Web
service description standards, discovery, and composition
techniques. The standards based approach utilized by
Web services has supported interoperability at the syntax
level. However, issues of structural and semantic
heterogeneity between messages exchanged by Web
services are far more complex and crucial to
interoperability. It is for these reasons that we recognize
the value that schema/data mappings bring to Web
service descriptions. In this paper, we examine challenges
to interoperability; classify the types of heterogeneities
that can occur between interacting services and present a
possible solution for data interoperability using the
mapping support provided by WSDL-S. We present a data
mediation architecture using the extensibility features of
WSDL and the popular SOAP engine, Axis 2.

1. Introduction

The emergence of Web services and service oriented
architectures is leading to new innovative enterprise
solutions based on composition of Web services to realize
business and scientific processes. So far, much of the
research has focused on discovery [43], composition [37],
[20], [47] and execution [5] of Web services. One of the
biggest stumbling blocks in the grand vision proposed by
SOA is data heterogeneity between interoperating
services. By data or message level heterogeneities, we
refer to incompatible formats of messages exchanged by
the services. This is not a new problem. Since the
inception of federated databases [3], interoperability
among databases with heterogeneous schemas has been a
well researched issue [18] [35]. In this paper, we discuss
message level heterogeneities in the Web services domain
and present an approach for resolving these
heterogeneities. This work was done as a part of the
METEOR-S [23] project, which aims to define semantics
for the complete lifecycle of semantic Web processes.

Typically enterprise systems are developed over
several periods of time, by diverse organizations and not
necessarily with the same structures and vocabularies.
This leads to substantial heterogeneity in syntax, structure
and semantics when it comes to interoperation between
these systems. For example, one system may encode
performance as grades A-F, while another may use scores

ranging from 1-100. A recent approach to interoperate
between such systems exposed as Web services has been
semantically representing the functional capabilities of
the services and then using semantic discovery techniques
to find and compose these services into a process. A
common fallacy of such an approach is the assumption
that a semantic match ensures interoperation.

To appreciate this, consider the case of a process that
uses two Web services with heterogeneous message
schemas (i.e., the input and output message schemas are
incompatible) and the output of the first service is
supplied as an input to the second service. The process of
resolving these heterogeneities and transforming one
message format to another is also referred to as data
mediation. A simple solution to achieve data mediation
between the services is to manually create a mapping
from the first service's output to the second service's input
(this is the proposed solution of most enterprise
integration products in Web services). However, this
mapping would have to be created every time services in
the process are changed or upgraded, potentially making
the number of generated mappings very large. An
alternate solution to this problem (which is the approach
we use) is mapping the inputs and outputs of the services
to a conceptual model and using those mappings for
interoperating between the services.

In this paper, we classify impediments to data
interoperability among Web services by adapting
previous work on semantic interoperability in databases
[15]. Our approach uses the support for data mapping
provided in WSDL-S [44], which is a W3C
acknowledged member submission for semantic Web
services. The aim is to provide a solution to the problem
of Web service interoperation by making incremental
changes to Web services tools. Since WSDL-S builds
upon existing Web services standards (WSDL), it also
allows us to use the extensibility support provided by
Axis 2 to implement data mediation. This paper has the
following contributions:
• We present a comprehensive, practical approach for

resolving data heterogeneities between Web services.
• We adapt previous work on schema and database

integration to compile different kinds of
heterogeneities one might encounter during the
interoperation of Web services.

• We present a data mediation architecture that is built
using the extensible elements of existing Web service
standards (WSDL) and tools (Axis 2).

2. Motivating Scenario

To elucidate the need for data interoperability, we
present a simple use case using two real-world Web
services. Consider the process of an auto company that
sends customers special offers and coupons by mail using
the phone numbers that customers provide at the time of
purchase. The process consists of making calls to two
Web services, each from different providers, to get the
information that its marketing analyst needs. The first
Web service is a directory listing Address Lookup service
(available at [39]) that returns an address for a listed
telephone number. The second Web service (available at
[40]) is a Geocode Enhancer service that uses an address
to provide demographic and logistical information. The
collective data from the services is used by the client to
make strategic marketing decisions. The only problem is
that the output of the Address Lookup service is not
compatible with the input required by the Geocode
Enhancer service. Figure 1 shows the process composed
using the two Web services and the message elements
exchanged.

Figure 1 Process showing need for Data Mediation

There are two conceivable approaches to solving this
problem. The first involves using custom rules or
mappings to transform the output of the first service to
the input of the second service. However, in the event that
the auto company decides to change any of the services, it
would have to construct these manual mappings again.
The second approach involves providing mappings to a
generic domain model and utilizing it to do the
conversion of messages. This gives the ability to plug 'n'
play services from different providers as long as they also
provide mappings to the same domain model. If two
services provide mappings to different domain models,
mappings between the domain models can be used to
facilitate interoperation between services. The rest of this
paper discusses a possible solution using the latter
approach.

3. Message-Level Heterogeneities

We define message or data level heterogeneities to exist
between interoperating Web services when the data

elements that have to be passed between the two services
are incompatible. Although SOAP (XML-based
messaging) allows message exchange between services
with heterogeneous message formats, the data itself is
rendered useless or incorrect by the Web service
receiving the message. Data mediation between the
services, i.e., transforming one message format to another
is required.

Our solution for data mediation borrows from the field
of schema/data integration in federated databases.
Conceptually, schema/data integration can be divided into
two parts - schema matching and schema/data mapping.
Finding semantic correspondences between elements of
two schemas is called Matching. Mapping deals with the
physical representation of the matches established by
schema matching and rules for transforming elements of
one schema to that of the other. In this paper, we focus on
data mediation in a Web services based environment
using pre-defined mappings. A discussion on how the
autonomous nature of Web services makes the problem of
matching and mapping more challenging than in the
database domain is presented in Section 8.

In both databases and Web services, automating the
process of matching and mapping is hard due to
heterogeneities at the following levels [36], [35]:
Syntactic heterogeneity - differences in the language used
for representing the elements; Structural heterogeneity -
differences in the types, structures of the elements;
Model/Representational heterogeneity – differences in the
underlying models (database, ontologies) or their
representations (relational, object-oriented, RDF, OWL);
Semantic heterogeneity - where the same real world entity
is represented using different terms (or structures) or vice
versa. Previous work on classifying schematic
heterogeneities in databases [17], [15] include
heterogeneities at all four levels. In the context of Web
services, syntactic and model/representational
heterogeneities between service message elements are not
relevant since the XML based environment automatically
resolves them. Adapting from previous work, we classify
structural and semantic message level heterogeneities as:
(a) Domain level incompatibilities that arise when
semantically similar attributes are modeled using
different descriptions. These include Naming, Data
Representation and Data Scaling conflicts. (b) Entity
definition incompatibilities that arise when semantically
similar entities are modeled using different descriptions.
These include Naming and Schema Isomorphism
conflicts. (c) Abstraction level incompatibilities that
arise when two semantically similar entities or attributes
are represented at different levels of abstraction. These
include Generalization, Aggregation and Attribute Entity
conflicts. Table 1 illustrates each of these conflicts by
using interoperating Web services and suggests how one
might resolve these conflicts using semantic annotations
and/or mappings between the services.

Table 1 Message Level Heterogeneities

In addition to matching and mapping, the

representation of mappings is also of significant
concern. The expressiveness of the mapping language
can dictate to a large extent, the types of heterogeneities
that can be resolved. Some of the past approaches to
representing mappings have been queries or views [7],
XQuery, XSLT; mapping tables [2]; bridging axioms
[19], [8]; as instances in an ontology of mappings [1],
[6]; languages [34], [28], [17], etc. In this work, we use
a popular representation for mappings in Web services,
XQuery and XSLT [46], [27] and use WSDL-S to
associate these mappings with Web service elements.
We believe that most of the mappings that are required
to resolve heterogeneities between Web service
elements can be concisely represented using XQuery or
XSLT. In the event that these do not suffice, the
developer has the flexibility of using any mapping
language since WSDL-S is agnostic to the mapping
representation used. Since our implementation for data
mediation exploits this feature of WSDL-S, it is also
independent of the mapping or conceptual model
representation used.

4. WSDL-S

WSDL-S [44], a W3C member submission for

Semantic Web services provides a mechanism to
annotate the capabilities and requirements of Web
services (described using WSDL) with semantic
concepts defined in an external domain model. Using
XML extensibility elements and attributes, semantic
annotations on WSDL elements (including inputs,
outputs and functional aspects like operations, their
preconditions and effects) are achieved by referencing
semantic concepts from one or more external domain
models (ontology). Externalizing the domain models
allows WSDL-S to take an agnostic view towards
semantic representation languages. This allows
developers to build domain models in any preferred
language or reuse existing domain models. This is an
advantage, since before OWL was popular, quite a few
domain models were developed using RDF/S [32] and
UML [26]. Of the six extensibility elements and
attributes provided in WSDL-S, the modelReference and
schemaMapping extensibility attributes are most

relevant to this work. The modelReference extension
attribute is used to specify the association between a
WSDL element and a concept in some semantic model.
It can be added to a complex type, an element, an
operation and their preconditions and effects. The
schemaMapping extension attribute is added to WSDL
XSD elements and complex types, for handling
structural differences between the schema elements of a
Web service and their corresponding semantic model
concepts.

5. Proposed Data Mediation Approach

Support for data mediation in WSDL-S is provided
by having the developer associate mappings (created
either manually or using semi-automatic tools) using the
'schemaMapping' attribute on Web service message
(input and output) elements. Mappings are created
between the Web service message element and the
ontology concept with which the message element is
semantically associated, as depicted in Figure 2. In
addition to a mapping from the Web service message
element to the ontology concept, also called the 'up
cast', an additional mapping from the ontology concept
to the message element, called the 'downcast', is also
specified. Once the mappings are defined, two Web
services can interoperate by reusing these mappings.
The ontologies now become a vehicle through which
Web services resolve their message level
heterogeneities. For the sake of simplicity, the
ontologies used are created using OWL, although
WSDL-S is agnostic to the domain model representation
language.

Figure 2 'Up cast' and 'Downcast' schemaMappings

Data transformation proceeds in three steps as shown
in Figure 3. In the first step (1), the output message of
Web Service 1 (WS1) is transformed to the OWL
concept to which it is mapped (up cast); next, the OWL
concept is transformed to the input message of Web
service 2 (WS2) (3) (downcast). In the event that
mappings in the two Web services are not provided
using the same ontology, mappings between the
ontology concepts C1 and C2 are required to enable

data mediation (2) (see Section 8 for a discussion on
ontology matching and mapping). As we can see,
although the mappings are defined at the schema level
between the WSDL (XML) and OWL schemas, the
message transformation occurs at the instance level
between the WSDL (XML) and OWL instance.

The current draft of the specification provides only
one 'schemaMapping' attribute for associating mappings
from the Web service element to the ontology concept
(up cast). Since there are cases when the automatic
generation of the reverse 'downcast' mappings (given
only the source and target schemas and the 'up cast'
mapping) might not be possible, we have proposed the
addition of the 'schemaMapping downcast' extension
attribute to WSDL-S. For example, as in Figure 2, the
concatenation of 'streetAddress1' and 'streetAddress2'
(parts of a WSDL message element) to 'streetAddress'
(part of an ontology concept) is quite straightforward
and is shown as an XQuery in the figure, while the
generation of the reverse mapping, i.e., splitting
'streetAddress' into two entities is hard to automate (i.e.,
It is hard to automate where one would split a street
Address to form two streetAddress1 and streetAddress2)

Figure 3 Data transformation using WSDL-S

5.1. System Architecture

The general philosophy of the METEOR-S project, as
outlined in [38], has been to use the extensibility
elements of Web service standards to add semantics to
Web services. An important manifestation of this
approach is of course, WSDL-S. A key motivator for us
to follow this approach was the ease with which we
could incorporate tooling support for Semantic Web
services in existing tools. The system architecture in this
paper is a validation of our philosophical choice, as we
use the extensibility support provided by Axis 2
(specifically the ability to add user modules) to propose
a solution for data mediation. The system architecture
shown in Figure 4 consists of a main METEOR-S
middleware component implemented as modules on an
Axis2 server. The actual METEOR-S middleware
component [23] comprises of several modules (which in
turn consist of handlers) for achieving functionalities
like semantic Web service publishing, discovery,
composition, etc. In the interest of space and clarity, the
system architecture illustrates only an End Point

Resolution (EPR) handler, a Data Mediation (DM)
handler and their functionalities. In this section, we will
describe the two handlers and illustrate how data
mediation is achieved in a process akin to the one in
Figure 1. Before using the METEOR-S data mediation
functionality, the only tasks the developers are required
to perform are the following:
 Web services should be described using WSDL-S by

annotating the WSDL file with semantic concepts
from an ontology (using a tool like [10]). The up
cast and downcast mappings from the Web service
message elements to the semantic concepts should be
created and associated using the 'schemaMapping'
functions.

 The Web services must be deployed and the WSDL-
S files must be accessible. Axis 2 allows deployment
of WSDL-S files.

EPR Handler: The METEOR-S middleware may
reside at any machine. In order for Web service clients
to take advantage of the provided data mediation
support, their SOAP messages must be routed to the
METEOR-S middleware. This is done using a small
client side utility that has two functionalities:
 Change the EPR of the Web service being invoked

to point to the METEOR-S middleware. This new
EPR is called the logical EPR.

 Contact the METEOR-S middleware to register a
mapping of the logical EPR to the actual EPR of the
Web service.

The End Point Resolution (EPR) handler is responsible
for changing the incoming SOAP message by replacing
the logical EPR with the actual/physical EPR of the
service. This allows the appropriate Axis handlers to
redirect the message to the Web service after the data
mediation handler has transformed the message.
DM Handler: The DM handler which is the main
component for facilitating data interoperation works in
cooperation with the EPR handler and a mapping
processing engine to enable data mediation. Each time a
Web service is invoked, the DM handler obtains the
'schemaMapping' functions from the Web service
WSDL-S locations (using the WSDL-S4J API [23]),
performs the up cast and downcast mappings on the
incoming SOAP message using a mapping
processor/engine (SAXON for XQuery and XSLT) and
then updates the SOAP message. Appropriate Axis
handlers then invoke the Web service with the
transformed message. SAXON [16] is an open source
XQuery/XSLT processor that we use to process the
mappings represented using XQuery/XSLT.

5.2. Walk-through Example

In this section, we describe data mediation in a
process with two Web services, where data mediation is
required between the first and the second Web service.

Our implementation is agnostic to how a process is
represented. The evaluations were conducted using
BPEL processes; although users can emulate a process
by chaining invocation of services in Java. Both Web
services are described using WSDL-S and provide the
necessary 'schemaMapping' functions required to
perform data mediation. For the sake of simplicity, let
us assume that both the Web services have been
annotated using the same ontology that has been created
using OWL.

Figure 4 Data Mediation System Architecture

In Figure 4, steps 1a through 1e show the SOAP
messages during the invocation of Web service 1 and
steps 2a through 2e show SOAP messages when Web
service 2 is being invoked. Both steps 1 and 2 show the
use of the EPR handler and the DM handler. Let us now
walk through the figure to understand how data
mediation is achieved.
Steps 1(2) a though 1(2) e: Invoking Web service 1(2)
Every time the client process invokes a partner Web
service, the SOAP message is routed to the METEOR-S
middleware because of the logical EPR setting in the
Web service. In this section, we will trace the SOAP
messages as they are processed by the middleware:
Step 1(2) a: The client generated SOAP message for
invoking Web service 1(2) (shown as SOAP A in the
figure) is now directed to the middleware server and
passes through Axis 2.
Step 1(2) b: The EPR handler changes the SOAP
message by replacing the logical EPR with the physical
EPR of Web service 1(2). The new SOAP message is
shown as SOAP B in the figure.
Step 1(2) c: Step 1c might be optional depending on the
client's message to Web service 1. In this step, we will
elucidate step 2c, when the output of Web service 1
needs to be transformed to the input of Web service 2.
The DM handler uses the SAXON processor to convert
the message intended for Web service 2 via the
following steps (also see Figure 3):
i. Using the namespaces in the SOAP message and the
logical to physical map in the EPR module, the WSDL-

S file is accessed to get the 'schemaMapping up cast'
provided on the output message element of the Web
service (Web service 1) whose output is supplied to the
Web service being invoked (Web service 2).
ii. Using the actual EPR of the Web service to be
invoked, the WSDL-S of the actual Web service is
accessed to get the 'schemaMapping downcast' mapping
provided on the input message element of the Web
service being invoked (Web service 2).
iii. The 'schemaMapping up cast' mapping that converts
an XML message instance to an OWL instance, is used
by SAXON to convert the message obtained from Web
service 1 (SOAP B body content) to the OWL concept
to which it is mapped (enlarged view of DM handler)
iv. The schemaMapping 'downcast' that converts the
OWL instance to an XML message instance, is used by
SAXON to convert the OWL object to an XML
message (SOAP C) of the format that can be used by the
Web service being invoked (enlarged view of DM
handler)
v. The original content in the SOAP body, which was
the message returned by the previously invoked Web
service (Web service 1), is then replaced with the
transformed XML message (shown as SOAPC in the
figure). The transformed SOAP message (SOAP C) is
forwarded to the actual Web service.
Step 1(2) d,e: The service replies back to the
METEOR-S middleware that sends the message back to
the client.

6. Evaluation

In an attempt to evaluate how many real world
services today are perfectly interoperable, we created an
'investment assistant' process with an in-house service
and tried to plug 'n' play real-world Web services. Using
two external services that returned real time stock
quotes and company profile information using a ticker
symbol input, we built a process that takes the output of
these services, additional user information on investing
in this stock and returns the likelihood of a success on
such an investment. The real-world Web services in the
process are shown in grey boxes. The 'investment
helper' service was created by an internal expert familiar
with the finance domain but with no knowledge of the
existing real-world Web service message schemas.

Figure 5 Investment Assistance Process

With this process in place, we tried to plug in real-
world 'stock quote' Web services and evaluate how
many would work without the need for any data
mediation. The registries we used for discovering these
services are popular, commonly used public registries

listed in [12]. Table 2 shows the statistics of this
evaluation. Of the ten semantically relevant services that
we found, none could interoperate with the 'investment
helper' service without the use of data mappings. Three
of the ten services could interoperate with the use of
simple mappings, while one could not interoperate at all
because of insufficient information in the message. The
reader should notice that irrespective of the message
schema of the 'investment helper' service, a majority of
services would need support for data interoperability.

As we can see, this simple evaluation shows the
importance of data mediation in ensuring
interoperability of services. For each of the
incompatible message formats, we were able to define
mappings to a finance ontology (adapted from the
finance domain of the SUMO [42] ontology and
available at [25]) using XQuery and use the proposed
data mediation approach to interoperate between the
services. In the interest of space, we have not shown the
mapping expressions; the list of services used and the
XQuery mappings are available at [25].

7. Related Work and Discussion

In this section, we present recent data mediation
efforts in Web services and discuss past work in the
database domain that contribute to interoperability in
Web services. The approach presented in this paper for
handling message level heterogeneities between
interoperating services is based on creating mappings
from the message elements to conceptual models
(ontologies) and using these mappings for transforming
messages at the instance level. A pre-requisite for
creating such mappings is matching the WSDL (XML)
and ontology schema to identify semantically similar
entities between the two schemas; which presents
syntactic and model/representational heterogeneities
(see Section 3). Past approaches in database integration
like [30], [13] and [11] among others, work with
heterogeneous models by transforming them into a
common representation language and manipulating
models in that representation. Our past work on Web
service annotation [29] accounts for the difference in
expressiveness of XML and ontology schemas by
converting both models to a common graph
representation to facilitate better matching. However,
over a period of time, common representation models or
languages have changed. Additionally, transforming to a
common model can be lossy (going from a more
expressive OWL model to less expressive XML or vice
versa), context-sensitive and time consuming. Efforts
like [21] have focused on developing a generic
infrastructure that abstracts mappings between models
as high level operations which are independent of the
data model and application of interest.

In this paper, we have not focused on the automatic
or semi-automatic process of matching or the generation
of mappings for legitimate reasons. There has been a
plethora of work in schema matching and mapping
transformations [31], [19]. Although the generation of
mappings between semantically equivalent, but
structurally heterogeneous elements is not a trivial task,
it is possible for developers to utilize existing semi-
automatic tools and/or manual techniques to generate
these mappings. If done manually, heterogeneities and
examples defined in Table 1 will hopefully suffice to
guide the mapping generation process.

Additionally, as ontologies become popular, it is
conceivable that mediation is needed between services
that are mapped using two different conceptual models.
(i.e., two services that need to interoperate are mapped
using ontologies created from Rosetta Net PIPs [33] and
ebXML CCD [9]) In such a case, there would be a need
for inter-ontology mappings. Matching and mapping of
ontology schemas is a vast area of research and has seen
plenty of advances that can be used to address this
concern. Among other work in this area, [22], [7] and
[14] discuss this problem in different contexts and
provide useful insights. While we plan to extend our
approach to handle multiple ontology matching and
mapping, our solution is still is useful as number of
popular specifications/ontologies (ebXML, RosettaNet,
OAGIS, etc.) are currently being used for
interoperability between business partners.

While handling data heterogeneities has been a well
researched issue in the context of databases, it has not
been investigated very thoroughly in the Web services
framework. The WSMO project [45] which coined the
term data mediation in the Web services context is most
relevant to our work. However, much of their focus so
far has been on mediation between ontologies [24] and
not on creating mappings for actual WSDL based
services. Some of the recent tools (Oracle, BEA [4],
Stylus Studio [41]) have also focused on creating
XQuery based mappings between individual Web
services. We believe that our approach which specifies
mappings using the available semantics in ontologies
will extend the functionality of such tools.

8. Conclusion

In this work, we present a comprehensive solution

for resolving message level heterogeneities between
interoperating Web services using pre-defined mappings
and extensible elements of existing Web service
standards and tools. Although limited in terms of the
initial one-time effort required from developers to create
and associate mappings, it is important to note that this
approach offers great flexibility in terms of extending
the available semantics to specify mappings, allowing
the re-use of existing tools (Axis 2) and building upon

the WSDL standard that the user community is already
familiar with. Our data mediation architecture shows
how this approach can be integrated into existing Web
service based solutions with minimal effort. We
recognize that data mediation in Web services is a very
challenging problem. This work, albeit not a complete
solution to all data mediation issues, is definitely an
important step towards realizing interoperability
between services. As shown in our evaluation, data
mediation is required in most cases for interoperability
between services. Our plan for future work includes
incorporating a framework for inter-ontology mappings
and creating tools with support for semi-automated
matching and mapping.

9. References

[1] A Maedche, B. Motik, N. Silva and R. Volz, MAFRA.
[2] A. Kementsietsidis, M. Arenas and R. J. Miller.

Mapping Data in Peer-to-Peer Systems: Semantics and
Algorithmic Issues SIGMOD 2003.

[3] A. P. Sheth and J. A. Larson, Federated database
systems for managing distributed, heterogeneous, and
autonomous databases. 1990 ACM Computing Surveys.

[4] BEA AquaLogic
http://www.bea.com/content/news_events/white_papers/BEA_
AQL_Family_ds.pdf

[5] http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/
Business Process Execution Language for Web Services

[6] M. Crub´ezy and M. A. Musen Ontologies in support of
problem solving. Springer, 2003.

[7] D. Calvanese, G. Giacomo and M. Lenzerini. Ontology
of integration and integration of ontologies Description Logic
Workshop 2001, 10-19.

[8] D. Dou, D. McDermott and P. Qi. Ontology translation
on the semantic web ODBASE, 2003.

[9] http://www.ebxml.org/specs/ccDICT.pdf ebXML Core
Component Dictionary

[10] K. Gomadam, K. Verma, D. Brewer, A. P.Sheth and J.
A. Miller, Radiant: A tool for semantic annotation of Web
Services. ISWC, 2005.

[11] H. Do and E. Rahm, COMA - A System for Flexible
Combination of Schema Matching Approaches. 2002 VLDB.
610-621.

[12] Public UDDI registries
http://uddi.microsoft.com;http://uddi.sap.com;www.bindingpo
int.com;www.salcentral.com;http://www.strikeiron.com/;www
.xmethods.net

[13] J. Madhavan, P. Bernstein and E. Rahm, Generic
Schema Matching with Cupid. 27th Int. Conf. on Very Large
Data Bases, 2001.

[14] Y. Kalfoglou and M. Schorlemmer, Ontology mapping:
the state of the art: The Knowledge Engineering Review.
2003, 18(1). 1--31.

[15] V. Kashyap and A. Sheth, Semantic and schematic
similarities between database objects: a context-based
approach. 1996 VLDB Journal.

[16] SAXON - The XSLT and XQuery Processor
http://saxon.sourceforge.net/ M. Kay

[17] W. Kim, I. Choi, S. K. Gala and M. Scheevel., On
Resolving Schematic Heterogeneity in Multidatabase Systems.
1993 Distributed and Parallel Databases.

[18] W. Litwin and A. Abdellatif, Multi-database
Interoperability. 1986 IEEE Computer, 19(12). 10-18.

[19] J. Madhavan, P. Bernstein, P. Domingos and A.
Halevy. Representing and Reasoning about Mappings between
Domain Models, AAAI, Edmonton, Canada, 2002.

[20] B. Medjahed, A. Bouguettaya and A. K. Elmagarmid,
Composing Web services on the Semantic Web. 2003 VLDB
J. 12(4): 333-351.

[21] S. Melnik. Generic Model Management: Concepts and
Algorithms, Ph.D. Dissertation, University of Leipzig,
Springer LNCS 2967, 2004.

[22] E. Mena, V. Kashyap, A. Sheth and A. Illarramendi,
OBSERVER: An Approach for Query Processing in Global
Information Systems based on Interoperation across Pre-
existing Ontologies. CoopIS, 1996.

[23] http://lsdis.cs.uga.edu/projects/meteor-s/ METEOR-S:
Semantic Web Services and Processes

[24] D13.3v0.2. WSMX Data Mediation
http://www.wsmo.org/TR/d13/d13.3/v0.2/20051011/d13.3v0.2
_20051011.pdf

[25] Evaluation - interoperability of Web services
http://lsdis.cs.uga.edu/~meena/ICWS06/Eval.html

[26] OMG, Unified Modeling language (UML)
http://www.omg.org/technology/documents/formal/uml.htm

[27] N. Onose and J. Simeon, XQuery at your web service.
WWW, 2004.

[28] P. Bouquet, F. Giunchiglia, F. van Harmelen, L.
Serafini and H. Stuckenschmidt, C-OWL: Contextualizing
Ontologies. ISWC, 2003, 164--179.

[29] A. Patil, S. Oundhakar, A. Sheth and K. Verma,
METEOR-S Web service Annotation Framework. WWW,
2004, 553-562.

[30] R.J. Miller, M.A. Hernandez, L.M. Haas, L. Yan, C. T.
Howard Ho, R. Fagin and L. Popa, The Clio project:
managing heterogeneity. 2001 SIGMOD 30(1). 78--83.

[31] E. Rahm and P. Bernstein, A survey of approaches to
automatic schema matching. 2001 VLDB Journal.

[32] Resource Description Framework. www.w3.org/RDF
[33] http://www.rosettanet.org/ RosettaNet eBusiness

Standards for the Global Supply Chain
[34] S.B. Davidson, A. Kosky and P. Buneman, Semantics

of Database Transformations: Semantics in Databases. 1995.
[35] A. Sheth, Changing Focus on Interoperability in

Information Systems: From System, Syntax, Structure to
Semantics. 1998 Interop. GIS. 5-30.

[36] A. Sheth and V. Kashyap, So far (schematically) yet so
near (semantically). Conference on Semantics of
Interoperable Database Systems., 1992.

[37] K. Sivashanmugam, J. Miller, A. Sheth and K. Verma,
Framework for Semantic Web Process Composition. 2004
IJEC, Vol. 9(2) pp. 71-106.

[38] K. Sivashanmugam, K. Verma, A. Sheth and J. Miller,
Adding Semantics to Web Services Standards. ICWS, 2003.

[39] http://ws.strikeiron.com/ReversePhoneLookup?WSDL
StrikeIron Reverse Phone Lookup

[40] http://ws.strikeiron.com/USGeocoding?WSDL
StrikeIron US Geocode Information

[41] http://www.stylusstudio.com/ Stylus Studio – XML
Editor, XML Data Integration, XML Tools, Web Services and
XQuery

[42] http://ontology.teknowledge.com/ SUMO - Suggested
Upper Merged Ontology

[43] http://www.uddi.org/about.html Universal Description,
Discovery and Integration

[44] http://www.w3.org/Submission/WSDL-S/ WSDL-S,
Web Service Semantics

[45] WSMO, Web Services Modeling Ontology.
http://www.wsmo.org/

[46] http://www.stylusstudio.com/whitepapers/case_for_
xquery.pdf XML Schema Mapping - Stylus Studio

[47] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam and
Q. Z. Sheng, Quality driven web services composition.
WWW: 411-421, 2003.

Table 2 Web service interoperability - Evaluation

