Supporting Interoperability Using the Discrete-event Modeling Ontology (DeMO)

GREGORY SILVER
KUSHEL RIA BELLPADY
JOHN MILLER
KRYS KOCHUT
WILLIAM YORK
Ontologies

- **Ontology**: a description of concepts and relationships for a particular domain
 - Knowledge sharing and reuse

- **Ontological Commitment**: an agreement to use a vocabulary in a consistent way
 - Agents commit to ontologies in order to share knowledge

- **Domain Ontologies**: developed collaboratively
 - Biomedical
 - Geographical
 - Business

- **Web Ontology Language (OWL)**
Representations of Reality

Ontology

Represents reality by describing concepts and relationships

Focuses primarily on the structure of a domain

Simulation Model

Represents reality by modeling the functions as they occur over time and/or space.

Focuses primarily behavior of a system

Diagram

- **Ontology** diagram showing relationships between Bank, Customer, Employee, Teller, and Loan Officer.
- **Simulation Model** diagram showing interactions between Customers, Teller, Loan Officer, and Exit.
Exploiting Existing Knowledge

Ontological Knowledge

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Relationships</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Realization Knowledge

<table>
<thead>
<tr>
<th>Geometric</th>
<th>Temporal</th>
<th>Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Types of Things
Types of Actions
Types of Processes

Model Formalism
Simulation Model
Model Execution

Modeling Ontology

Narrowing the gap using a modeling ontology
Three Areas of Interoperability

- Domain ontologies and modeling ontologies
- Modeling ontologies and discrete-event simulations
- Simulations using different worldviews
Using Domain Ontologies to Drive Simulation

- ReactO (Reaction Ontology)
 - Ontology instances used to model biochemical pathways

- DeMO (Discrete-event Modeling Ontology)
 - Ontology instances represent simulation components

- Concept Mapping
 - ReactO concepts may be mapped to DeMO concepts

- Ontology Driven Simulation (ODS)

ReactO-based model \[\rightarrow\] transformation \[\rightarrow\] DeMO-based model \[\rightarrow\] generation \[\rightarrow\] Executable model
Phases of Ontology-driven Simulation

- **Domain ontology logically linked to simulation software via modeling ontology**
- **Mapping Phase**
 - Bridge for transferring knowledge from domain ontology to DeMO (syntactically compatible, semantically meaningful)
- **Transformation Phase**
 - Uses transferred knowledge to create DeMO-based model conforming to a particular formalism
- **Generation Phase**
 - Uses DeMO-based model to generate executable simulation
Ontology Modeling vs. Simulation Modeling

<table>
<thead>
<tr>
<th></th>
<th>Ontology Modeling</th>
<th>Simulation Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory Power</td>
<td>Descriptive</td>
<td>Predictive</td>
</tr>
<tr>
<td>Randomness</td>
<td>Typically Deterministic</td>
<td>Often Stochastic</td>
</tr>
<tr>
<td>Time Dependency</td>
<td>Usually Time Independent</td>
<td>Often Time Dependent</td>
</tr>
<tr>
<td>Spatial Specificity</td>
<td>Usually Just Topological</td>
<td>Often Geometric</td>
</tr>
<tr>
<td>Causality</td>
<td>Secondary (if at all)</td>
<td>Central Issue</td>
</tr>
<tr>
<td>Breadth</td>
<td>High to Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Focus</td>
<td>Structure (nouns) and Function (verbs)</td>
<td>Behavior</td>
</tr>
</tbody>
</table>

2. Together they provide a more complete view of reality
3. They can feed off of each other
Research Challenges

• Essential Challenges:
 ○ Transformation and supplementation of ontology models to form simulation models (ontology => simulation) "our focus"
 ○ Extraction of meta-data from simulation models to populate ontologies (simulation => ontology)

• Size and complexity of ontologies make mapping difficult
 ○ Typical ontology alignment techniques not applicable to mapping for ODS
 ○ Implementation of user assisted graphical techniques

• Reuse of mappings for similar scenarios or submodels
• Selecting preferred mappings amongst multiple possibilities
DeMOForge ODS Tool
DeMOForge Mapping Support

- Traditional ontology mapping *is inadequate*
 - Equivalency or subsumption *(automobile = car)*
- ODS ontology mapping *is fundamentally different*
 - Concepts connected as analogs, not synonyms

Biochemical Pathway Example Using ReactO

<table>
<thead>
<tr>
<th>ReactO Ontology class</th>
<th>DeMO Ontology class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway</td>
<td>HybridFunctionalPetriNet</td>
</tr>
<tr>
<td>Reaction</td>
<td>ContinuousTransition</td>
</tr>
<tr>
<td>Molecule</td>
<td>ContinuousPlace</td>
</tr>
<tr>
<td>Enzyme</td>
<td>ContinuousPlace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ReactO Ontology property</th>
<th>DeMO Ontology class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction consumes Molecule</td>
<td>ContinuousInputArc</td>
</tr>
<tr>
<td>Reaction generates Molecule</td>
<td>ContinuousOutputArc</td>
</tr>
<tr>
<td>Reaction ... has-Catalyst Enzyme</td>
<td>ContinuousTestArc</td>
</tr>
</tbody>
</table>
Slideware to show mapping
DemoForge Mapping Support

DeMOForge Graph Based Mapping

ReactO Class: Pathway

Levels: 2

Graph View
- Class Hierarchy
- Properties
- Both

DeMO Class: HybridFunctionalPetriNet

Levels: 3

Graph View
- Class Hierarchy
- Properties
- Both

Mappings:
- pathway --> HybridFunctionalPetriNet
- reaction --> ContinuousTransition
- enzyme --> ContinuousPlace
DemoForge Mapping Support

DeMOForge Graph Based Mapping

ReactO Class: Pathway
Levels: 3

DeMO Class: HybridFunctionalPetriNet
Levels: 3

Mappings:
- Map pathway — HybridFunctionalPetriNet
- reaction — ContinuousTransaction
- enzyme — ContinuousPlace
- UnMap
DemoForge Transformation Phase Support

1. SWRL* queries generated to retrieve ReactO instances representing pathway model
2. Mappings used to create DeMO instances based on ReactO instances.
3. SWRL rules generated based on the DeMO HFPN* class structure
4. Rules from step 3 used to complete the creation of the DeMO-based pathway model

• Semantic Web Rule Language
• Hybrid Functional Petri Net
Transformation Output

- HFPN_N_Glycan_Pathway
 - InputArc_01
 - InputArc_02
 - InputArc_03
 - InputArc_04
 - InputArc_05
 - InputArc_06
 - InputArc_07
 - InputArc_08
 - N_Glycan_Pathway_InputIncidenceFunction
 - N_Glycan_Pathway_OutputIncidenceFunction
 - N_Glycan_Pathway_PlaceSet
 - N_Glycan_Pathway_TransitionSet
 - OutPutArc_01
 - OutPutArc_02
 - OutPutArc_03
 - OutPutArc_04
 - Place_2_GlcNAc_6_Mannose
 - Place_2_GlcNAc_6_Mannose
 - Place_2_GlcNAc_7_Mannose
 - Place_2_GlcNAc_9_Mannose
 - Place_2_GlcNAc_9_Mannose_1_Glucose
 - Place_NM007108
 - Place_NM133981
 - Place_NM145477

- Property assertions: HFPN_N_Glycan_Pathway
 - has-PlaceSet
 - N_Glycan_Pathway_PlaceSet
 - has-ActivitySet
 - N_Glycan_Pathway_TransitionSet
 - has-Incidence-Function
 - N_Glycan_Pathway_OutputIncidenceFunction
 - N_Glycan_Pathway_InputIncidenceFunction

- Description: HFPN_N_Glycan_Pathway
DemoForge Generation Phase Support

- Code generator translates DeMO instances into executable simulation models

3. The OWL API from University of Manchester used to read DeMO instances
4. JSIM models are generated using a category specific code generator that includes a layout manager
5. Scenario management module retrieves additional information needed for simulation run
A HFPN Model of a Biochemical Pathway
Recapitulation: What Was Accomplished?

- Incorporation of ontological knowledge and realization knowledge in the creation of simulation models
- DeMO supports multiple modeling techniques
- Mapping of domain concepts to modeling concepts
 - Size and complexity mandates graphical user assisted techniques
 - Versioning for reuse
- Transformation of domain knowledge into discrete-event models
- Generation of executable simulations using DeMO-based models
- Documentation of the modeling process
Related Work

- Creating Modeling Ontologies
 - Process Interaction Ontology for Discrete Event Simulation (PIMODES) (Lacy 2006)
 - Component Simulation and Modeling Ontology (COSMO) (Teo and Szabo 2008)

- Ontology => Simulation
 - CODES (Teo and Szabo 2007)

- Simulation => Ontology
 - Investigating the role of ontologies in simulation (Taylor 2009)
 - PIMODES (Lacy 2006)

- Interoperability
 - Use of domain ontologies in agent-supported interoperability of simulations (Yilmaz and Paspuleti 2005)
 - Levels of conceptual interoperability (Tolk 2003)
Conclusions

- First complete end-to-end ODS methodology
 - Ontologies utilized to drive key phases of model development
 - Expedites the development of simulation models
 - Facilitates the reuse of application knowledge
 - Utilized Three Distinct Phases
 - Ontology Schema Mapping
 - Domain ontology instances => DeMO instances
 - DeMO instances => Executable simulation model
- Ontology knowledge and realization knowledge incorporated to drive the development simulation models
- Mapping information provides a basis for documenting the model development process.
Future Work

- Enhance the DeMO ontology to support hierarchical modeling
- Add functionality which allows DeMOForge to transform DeMO-based models from one formalism to another
- Enhance the ODS methodology to more formally support the documentation of model development
- Evaluation of the effectiveness of the ODS methodology