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Abstract

In its ideal form, Web-based simulation should allow simulation models as well as simulation results

to be as readily distributable and composable as today’s Web documents. The rapid advances in

Web technology, most notably Java, are helping to make this a possibility. Support for executable

Web content, universal portability, component technology, and standard high-level packages for

accessing databases and producing graphical user interfaces are important enablers of Web-based

simulation. Component-based software can be used to develop highly modular simulation envi-

ronments supporting high reusability of software components. Because of the potentially large

scope of Web-based simulation, greater demands are placed on simulation environments. They

should support rapid visual model development, access to local and remote databases, techniques

for executing models or federations of models in a variety of ways, and embedding of simulation

within larger systems. The use of component technology in the JSIM Web-based simulation envi-

ronment allows simulation models to be treated as components that can be dynamically assembled

to build model federations. It also allows simulation inputs and outputs to be dynamically linked

to database systems, making storage of simulation results easy and flexible.

1 Introduction

Web-based simulation is an important new direction for simulation research and development. In

its ideal form, Web-based simulation should allow simulation models as well as simulation results to

be as readily distributable and composable as today’s Web documents. Clearly, this is easier said

than done. It is easy to hyperlink documents even if authored by different people. Hyperlinking
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simulation models is not so easy. Easier than hyperlinking models is making models widely and

easily accessible over the Web. Executable content (e.g., Java applets) facilitates this type of client

side execution. Expensive or long-running simulations can still be executed on powerful severs.

This can done by having a thin client running on a browser communicate with a server where the

models run as, for example, Java servlets or applications.

Because of the larger scope and scale of Web-based simulation, provision for appropriate sim-

ulation environments takes on a higher level of importance. With the potential of having models

executing all over the world producing simulation results, it would be wasteful not to store these

results. Java Database Connectivity (JDBC) makes it easy to store simulation results in an orga-

nized fashion in relational or object-relational databases. Although JDBC takes care of low level

database connectivity issues, many higher level issues remain. Java also facilitates the construction

of friendly Graphical User Interfaces (GUIs) to present results from databases. Consequently, users

need not know detailed formatting specifications in order to access simulation results stored in

databases all over the Web. For rapid model development, the environment should provide visual

tools for designing simulation models.

Just as a Web document may be hyperlinked to several other Web documents, models may be

linked together to form a model federation. A loosely coupled approach to hyperlinking simulation

models into a federation is suggested in this work. (At present, JSIM is not compliant with the

Department of Defense’s High Level Architecture (HLA) [Page, 1998, Dahmann et al., 1998], so

that JSIM models will not interoperate with HLA federates.) Using component based software, in

this case Java Beans, one model is able to inject entities into another model. Using the forthcoming

Enterprise Java Beans, these two models may be located anywhere on the Web.

This chapter examines several issues pertaining to simulation environments for Web-based sim-

ulation. These issues are illustrated by examining the functional modules in the JSIM Web-based

simulation environment [Nair et al., 1996, Miller et al., 1997, Miller et al., 1998]. The current ver-

sion has evolved to encorporate the newest approach to software development, component-based

technology. If component-based technology succeeds, the long hoped for gains in software develop-

ment productivity may finally be realized. Complex software systems will be built by assembling

components, minimizing the amount of low-level coding required. Systems built with components

should be more extensible and often able to run in distributed and heterogeneous environments.

Typically, component-based software will also run on the Web (e.g., Java Beans and Active X).

JSIM, built using Java and Java Beans, can provide many of the advantages of Web-based simula-
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tion [Fishwick, 1996, Fishwick, 1998b].

In the rest of this chapter, a perspective on research and development in Web-based simulation

is given. A discussion of the importance of software component technology is also presented. To

illustrate these issues, some parts of the JSIM Web-based simulation environment are examined in

detail. JSIM consists of three layered groups of Java packages. The first group, JSIM foundation

packages, has little to do with Web-based simulation, but is necessary for any simulation system.

Its constituent packages are briefly described for completeness. The second group, JSIM engine

packages, are more relevant since simulation models can be manifest as Java beans for distribution

or assembly into model federations. The third group, JSIM environment packages, facilitates the

creation of simulation models, the connection to databases, the controlled execution of models or

model federations, and query driven simulation. This third group will be examined in greater detail.

2 Web-Based Simulation

After starting in 1996 [Fishwick, 1996, Buss and Stork, 1996, Nair et al., 1996], research and devel-

opment work on Web-based simulation has exploded. Users on the Web are familiar with clicking

on hyperlinks to find useful information or run small Web-enabled applications (e.g, applets). It

is only natural that the same could be done for simulation models. While this can be done, for

example, by using Java applets, this is only the beginning step along new dimensions of research

and development for the simulation community. At least three dimensions can be being explored:

(1) Models are being enriched by linking them to Web documents and multimedia (e.g., text to de-

scribe the model and images to connect the models with reality) [Fishwick, 1998a]. (2) Simulations

can be developed by assembling model elements from multiple sites on the Web. They can even

be developed by teams at geographically remote sites. Full exploitation of this requires not only

the use of software component technology, but also collaborative development tools and designers,

model repositories, and mechanisms for data interchange and interoperability. (3) Simulation mod-

els can now be executed on the Web in a variety of ways. The list below considers increasingly

complex ways in which models can be executed on the Web.

• Web-Based Execution. The simplest way to allow simulation models to be executed over

the Web is to include executable content within Web pages. This allows a user to download

and run a simulation model from anywhere in the world. Typically, this done with a Java

applet. Java provides ”universal portability” allowing downloaded applets to run anywhere.
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There are three techniques to ensure that all the necessary files are available for execution:

(i) install a simulation system at each site, (ii) adjust linking (CLASSPATH) information to

include the download site, or (iii) form each model into a self-contained archive file (jar file).

• Thin-to-Thick Clients. Although executable content (e.g., Java applets) provides the most

common approach for model execution in Web-based simulation, it represents one extreme

point on the dimension of client thickness (i.e., Java applets are thick or heavyweight clients).

This is particularly useful if simulation and animation capabilities are tightly coupled. One

could make the client thinner by having the animation run on the client and the simulation

run on the server (e.g., as a Java servlet). If animation is not used, the client can be made

very thin by simply providing a mechanism for users to define inputs and view output results.

In this case, almost all of the computation is performed on the server.

• Distributed Execution. So far, the discussion has addressed the ability to execute mod-

els at appropriate locations on the Web (i.e., anywhere, but at one particular place). The

ever-growing aggregate computational capacity of the Web argues for more. The execution

of models can be distributed in four ways: (i) a user may simultaneously execute multiple

models or scenarios, (ii) multiple replications of a model under a particular scenario may

be simultaneously executed, (iii) loosely-coupled components of a model federation may be

executed simultaneously, or (iv) techniques from parallel simulation may be applied to par-

tition and execute a model in parallel. (In JSIM, the qdsAgency provides the first, while the

second and third are provided by JSIM’s runAgency. For discussions of the final option see

[Ferscha and Richter, 1997, Page et al., 1997]).

• Execution of Dynamic Model Federations. Because of the enormous scope of the Web,

the concept of an individual simulation model is too small scale. Although large and so-

phisticated models may be built hierarchically, the standard laws of causality apply resulting

in the need for global time and synchronization. One approach to allow a large number of

models to interact in a loosely-coupled fashion is to link models through less frequent external

events which are not synchronized with internal events. This is easy to do using Java beans

component technology. If models are implemented as Java beans, they can be easily linked

using a Java visual development tool. These tools allow this linkage to be done dynamically.

Models do not need to be recoded or recompiled to be included in a federation. A model

federation may be assembled graphically and immediately executed. A developer can quickly
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assemble a model federation by browsing one or more model repositories to extract existing

models. The elemental models making up the federation could be drawn from sites all over

the world.

• Embedded Execution. Frequently, simulation users are not principally interested in run-

ning simulation models. Rather simulation models assist them in making decisions. In ad-

dition, simulations may be useful in tuning automated or semi-automated systems. In such

cases, it may be useful to have the simulations simply run behind the scenes. One type of em-

bedding to be discussed later is Query Driven Simulation (QDS) [Miller and Weyrich, 1989].

In this case, simulation is embedded in an information system. Another example, is em-

bedding simulation within workflow technology for the purpose of design improvement and

operational tuning [Miller et al., 1995]. Although embedded simulation is generally useful, a

Web-based and component-based approach makes it easier to assemble and modify the overall

system.

• Agent-Based Execution. As is apparent from the previous discussion, the execution en-

vironment for Web-based simulation may be anywhere from straightforward to enormously

complex. If it is not straightforward, then users (e.g., simulation analysts or business deci-

sion makers) require help to execute the models. Rather than having a fixed way to execute

models, it would be better to have a dialog with the user to determine what s/he wants done.

Once this is known, resources should be enlisted to accomplish what the user wants. Agent

technology facilitates flexible solutions to such complex problems making it particularly useful

for Web-based simulation [Campos and Hill, 1998]. One agent may interact with the user,

and then based upon profiles of other specialized agents, contract with them to perform the

work. The agents collaborate to solve the overall problem.

2.1 Component-Based Simulation Environments

Although Web-based simulation is useful and viable without software component technology, uti-

lization of components increases the potential of Web-based simulation.

During the 1990’s, simulation software has utilized the advantages of Object-Oriented Program-

ming (OOP). The next step in software development is component software. Component software

begins where OOP left off and adds capabilities to maximize software reuse and facilitate rapid de-

velopment through assembling components rather than traditional coding. Graphical/visual design
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tools are typically used in this assembly process.

Component-based software development systems may support some or all the following capa-

bilities:

• Object-Oriented Programming. Under OOP, software is developed as objects consisting

of attributes (data members) and methods (member functions). The advantages of encapsu-

lation, inheritance and polymorphism have been well documented.

• Persistence. Mechanisms are provided to save and restore the state of executing objects

with little or no programming. Traditionally, these operations required a substantial amount

of custom coding.

• Introspection. By following certain coding conventions (design patterns) and by providing

supplementary classes, different software components can be made to interact without any

custom coding. For example, one class may inquire about properties, methods or events of

other classes. Properties are appearance or behavioral attributes that are exposed (e.g., by

get/set methods) to other classes or visual tools.

• Distribution. Although not a requirement, it is useful to be able to have components

work together even if they are not executing on the same machine. This is facilitated by

providing high-level mechanisms for distributed object to object communication, typically

through remote method calls or remote handling of events.

• Platform Independence. While ”Write-Once, Run Anywhere” is not a requirement, it cer-

tainly simplifies the developer’s job. If this is fully supported, any object can be downloaded

to any machine and executed without recoding or even recompiling.

At present, Web-enabled software components may be developed with either ActiveX or Java

Beans. Java Beans have the advantages of platform independence and a simpler programming envi-

ronment (full object-orientation, automatic garbage collection, safe use of memory and a straight-

forward approach to multithreading).

Java and Java Beans technology provide an excellent foundation for Web-based simulation.

Java’s only clear disadvantage, its speed compared to compiled languages like C++ is becoming

less of an issue as Just-In-Time (JIT) and native-code compilers are becoming available.

Much of the current research in Web-based simulation involves the development of simulation

systems and environments implemented in Java:
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• JSIM [Nair et al., 1996, Miller et al., 1997, Miller et al., 1998],

• SimKit [Buss and Stork, 1996],

• SimJava [McNab and Howell, 1996, Page et al., 1997],

• Silk [Healy and Kilgore, 1997], and

• JUST [Pidd and Cassel, 1998].

3 Overview of JSIM

JSIM consists of three layered groups of packages: foundation packages, engine packages and envi-

ronment packages (see figure 1). Each of these layers is briefly described below.

Foundation Layer

Engine Layer

queue

Package

statistic

Package

variate

Package

event

Package Package

process

jmodel

Package

jquery

Package

runAgency

Package

qdsAgency

Package

Environment Layer

Figure 1: Layers of Packages

1. Three Foundation Packages. This bottom layer consists of the queue, statistic and

variate packages. These packages are generally useful in simulation as well as in other

related application domains.
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• The queue package is rooted by the Queue class which is defined as an abstract base

class, from which FIFO Queue, LIFO Queue, PriorityQueue and TemporalQueue are

derived. Splay trees are used to implement priority and temporal queues, and simple

lists are used to implement the FIFO and LIFO queues. Priority and temporal queues

may be used for lines ordered by priority as well as to implement Future Event Lists and

time advance mechanisms.

• The statistic package contains classes to collect statistical information. The Statistic

class is an abstract base class and contains methods to analyze statistical data and aid

in outputting simulation results. The SampleStat and TimeStat classes extend the base

Statistic class. SampleStat is used for collecting sample statistical data (via its tally

method), while the TimeStat class is used to gather time-persistent statistics (via its

accumulate method). The Statistic class has the ability to calculate minimums, maxi-

mums, means, variances, standard deviations, root mean squares and confidence interval

half widths. The package also contains a BatchStatistic class derived from SampleStat

which is used to collect batch statistics. Finally, histograms can be produced using the

Histogram class.

• The variate package provides a wide variety of random variates. The Variate class is

a base class from which all other variates are extended. The Variate class uses JSIM’s

own Linear Congruential Generator called LCGRandom, but this can be changed very

easily to use Java’s Random class by modifying the code of the Variate class. It is

also a simple matter to install yet another random number generator. JSIM has imple-

mentations of fourteen continuous random variate generators and eight discrete random

variate generators. The discrete random variates available in JSIM’s variate pack-

age are Bernoulli, Binomial, DiscreteProb, Geometric, HyperGeometric, NegativeBino-

mial, Poisson, and Randi. The continuous random variates available are Beta, Cauchy,

ChiSquare, Erlang, Exponential, F Distribution, Gamma, HyperExponential, LogNor-

mal, Normal, StudentT, Triangular, Uniform, and Weibull. The algorithms for these

random variate generators may be found in [Law and Kelton, 1982, Pritsker, 1986].

2. Two Engine Packages. This middle layer supports the two most popular simulation world

views or paradigms. The event package supports the construction of event-scheduling type

models, while the process package supports the construction of process-interaction type
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models.

• The event package can be used to build event-scheduling simulation models. The event

package is composed of the classes Event, Entity and Scheduler. The Event class is used

to code event routines, e.g., what happens at an arrival event. The Entity class is used

to maintain information about entities (e.g., customers) in the simulation. Finally, the

Scheduler class is used to schedule future events by putting them into the Future Event

List.

• The process package provides classes that are used to create simulation models follow-

ing the process-interaction paradigm. A simulation model may be encapsulated as a

Java bean. Such bean objects contain several DynamicNodes. Currently, Server, Facil-

ity, Signal, Source and Sink are provided as types of DynamicNodes. These nodes are

connected with edges which Transport entities (SimObjects) between the nodes. A Model

object is used to control the simulation by starting all of the Sources as well as stopping

the simulation. If animation is to be performed, the model creates a ModelCanvas object

in which it displays the animation.

3. Four Environment Packages. This top layer provides a flexible environment for Web-based

simulation.

• The jmodel package provides a visual designer for the process package. The designer’s

rendering of the model may be animated when the simulation is run.

• The jquery package consists of general purpose code enabling models to access databases.

It consists of beans to access databases utilizing JDBC.

• The runAgency package controls the execution of one or more models. The beans in this

package spare users many details of executing models or model federations.

• The qdsAgency package provides a convenient means for accessing/generating simulation

data (i.e., for query driven simulation [Miller and Weyrich, 1989]). This package allows

simulation inputs and outputs to be stored in databases and simulation models to be

launched as a part of query processing, thus providing a simple and unified view of

simulation results whether they exist or not.

The last two packages are referred to as agencies since they include Java beans capable of

collaborating in order to make decisions (i.e., they include agents).
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4 Process-Oriented Simulation and Animation in JSIM

Process-oriented simulations typically are implemented by representing the life-cycle of a simulation

entity as a thread or coroutine. Since Java has built-in support for threads, such implementations

are simplified. Threads modify the simulation state, carry out actions over time, and wait for

resources. The advancement of time as well as the control of execution (which thread(s) gets to

execute), is done most straightforwardly by using (i) a clock keeping track of simulated (or virtual)

time and (ii) a Future Event List (FEL) to determine the order of thread activations. In the JSIM

implementation, at most three threads will be active simultaneously (the virtual scheduler thread,

the animation display thread, and the current simulation thread). Simulation threads may be a

simulation entity (e.g., an ER patient), an entity source or a signal. Since only one simulation thread

can be active at a time, race conditions as well as complex synchronization code can be avoided.

The virtual scheduler loops until the FEL is empty, pulling the next thread activation off the FEL.

Since the virtual scheduler runs at the lowest priority, the activated thread will take control until

it finishes. In addition, the animation display thread wakes up every so many milliseconds, reads

the state of the simulation to display it graphically. This thread operates relatively independently

and in particular never modifies the simulation state. Indeed, the animation could be placed in a

separate package or bean, without too much of an adverse effect on performance.

Animation may be turned off to maximize the speed of the simulation. If animation is used,

virtual time simulation is still too fast for humans to follow the animation in detail. Consequently,

the simulation/animation may be incrementally slowed down to the speed most desirable to the

user. This is done by placing a Thread.sleep method in the main loop of the virtual scheduler.

This Java method will produce a real time sleep of a given number of milliseconds.

It is also possible to use the built-in methods provided by Java (e.g., Thread.start and

Thread.sleep) to control the activation of threads, as opposed to using the FEL. JSIM pro-

vides this option by using Java’s built-in (real time) clock System.currentTimeMillis. Using

this approach, several simulation threads may be active simultaneously. Unfortunately, complex

synchronization code must be added to eliminate race condition (such as entities disappearing for

no reason). Conversion between a virtual time and real time simulation can be done quite easily,

as they are unified by the Clock class which includes a method to toggle between these alternatives.

JSIM’s VirtualScheduler class as well as Java’s Thread class provide the foundation for process-

oriented simulations. JSIM builds several classes on top of these, facilitating concise coding of
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simulation models as well as automatic code generation. JSIM process-oriented models may be

viewed as directed graphs (digraphs) with nodes connected by edges and entities flowing through

the graph. We discuss JSIM models from this point of view in the subsequent subsections.

4.1 SimObject Class

A simulation model based on the process-interaction paradigm needs to define the entities and

their life-cycle within the simulation model. An instance of the SimObject class represents a single

simulation entity or process. The simulation model builder should extend SimObject to create useful

simulation entity types (e.g., Customer or Patient). Precisely, the simulation model builder needs

to specify the functioning or life-cycle of the simulation entity as required by the model. SimObject

extends the Thread class provided by Java. Hence, every entity in a JSIM process-interaction model

is a separate thread. A SimObject’s logic (behavior during its life-time) is defined by the model

builder by coding its run method.

4.2 DynamicNode Class and Its Subclasses

DynamicNode is an abstract class that encapsulates the features common to the classes that appear

as nodes in a JSIM model, currently, Server, Facility, Signal, Source and Sink. Every such node

collects two different types of statistics, namely duration/time data and occupancy/usage data.

Suitable labels are created using the node’s name for display purposes.

• Server Class. A Server acts as a service provider. It initially creates a certain number of

service units as defined by the model builder, thus providing servers to SimObjects requesting

service. SimObjects obtain service by requesting a server and then using the server. If all the

service units are busy, the client entity will be lost. Service may be preempted by invoking

the preempt method. Each server also maintains statistics regarding the usage of its service

units and its clients’ service times.

• Facility Class. A Facility is derived from Server since it is most similar to this class. It

encapsulates a Queue as a private data member. Simulation entities (SimObjects) obtain

service by requesting a facility using the request method. If the facility is not busy, the

simulation entity acquires a server and uses it. However, if the facility is busy, the simulation

entity is enqueued in the facility’s Queue. When the simulation entity finishes its work, it
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releases the server. The queueLength method returns the length of the queue within the

facility.

• Signal Class. A Signal affects the behavior of servers by alternatively increasing or decreasing

the number of service units. For example, a Signal may be used as a traffic light in a simulation

of an intersection of streets. When the signal turns on/green, servers/facilities (representing

traffic lanes) in its control list will have a service unit added (using the Server expand method)

so that traffic can flow. Conversely, when the signal turns off/red, a service unit will be

removed (using the Server contract method) to stop the traffic flow.

• Source Class. A Source is a generator or creator of entities (SimObjects). It creates SimOb-

jects depending on defined parameters such as inter-arrival time or the number of entities to

create. A Source must be created for each entity type. The run method implements the life-

time of the Source class. It has been implemented to create an entity periodically according

to the inter-arrival time distribution.

• Sink Class. A Sink is, conceptually, the opposite of a Source in that a sink phases out or

destroys SimObjects created by a source. SimObjects go to a sink when they complete their

life-times. SimObjects are eliminated at sinks using the capture method.

4.3 Transport Class

Objects from the Transport class form the edges of the simulation model graph, with each connecting

two nodes. Simulation entities or SimObjects travel along transports while moving from one node

to another. A transport has a default constant speed which may be changed using the adjustSpeed

method. After joining a transport, an entity moves along the transport using the move method.

The move method returns false when the end of the transport is reached. Transports have been

implemented as quad curves, so that the model builder can flexibly specify the edge connecting two

nodes. Quad curves are part of the Java 2D API and specify a curve as a quadratic function of x

and y coordinates.

4.4 Model Class

The Model class is derived from (extends) Frame, allowing multiple models to be run simultaneously,

each in a separate window frame. It also implements the Runnable interface and its run method
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starts off all Source objects. Then, until the simulation is over, it periodically wakes up to repaint

the animation canvas. When the simulation is over, it displays statistical summary results.

4.5 Animation

In Java, animations are relatively easy to create, since Java provides high-level graphics/GUI

packages and APIs (e.g., awt, swing, 2D API and 3D API). JSIM designs can be animated by

reusing much of the code used for the visual designer. Animation brings the design diagram to life.

For JSIM, models consist of entities flowing through graphs (or networks). Each node and edge has

fixed coordinates determined by the JMODEL visual designer. (Alternatively, coordinates can be

given in hand-coded constructor calls.) As entities flow, their coordinates are repeatedly updated.

The Model class has a displayThread that wakes up periodically to repaint all the nodes, edges and

entities. Smooth motion is obtained by updating the coordinates of entities sufficiently often. A

Model object initially creates an off-screen graphics buffer of the same size as its actual on-screen

graphics buffer. It then paints this off-screen graphics buffer. After this, it paints the off-screen

buffer onto the screen by copying it onto the on-screen graphics buffer. This technique, referred

to as double buffering, is a good way to reduce flicker in animation. Animation is a useful tool in

checking the correctness of a model. The simulation model builder can track the movements of

simulation entities through the model. It is also useful for clients as well as model builders, since

it is often easiest to understand the simulation model by looking at animations. Currently, JSIM

uses Java’s 2D API to draw/paint shapes onto the screen.

5 The JSIM Simulation Environment

As previously discussed, an environment to support Web-based simulation has greater demands on

it because of the potentially huge scale and scope. In addition, Web users are not inclined to work

with systems that are not easy to use. To deal with this situation, the JSIM simulation environment

currently consist of the four packages: the jmodel, jquery, runAgency and qdsAgency packages.

5.1 The jmodel Package

JSIM provides a visual model designer implemented using the Java swing package. It is a GUI-

based model builder that supplies simulationists with more direct, intuitive means to build a model.

It allows users to position a simulation object on a model-builder canvas by selecting a button from
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the tool-bar and then clicking on a location on the canvas to place the object (e.g., Server node).

Although JSIM is designed to allow models to be rapidly hand coded utilizing JSIM’s extensive

class library, the easiest way to create a model is to use JSIM’s visual designer, JMODEL. JMODEL

provides several buttons to control the construction of a model on a canvas. The control buttons

currently provided are shown in table 1.

Server provides service to entities arriving at the node

Facility inherits from Server and adds a queue to hold waiting entities

Signal alters the number of service units in a server(s)

Source produces entities with random inter-arrival times

Sink consumes entities and records statistics about them

Transport connects two nodes (from, to) together

Move relocates nodes to new positions in the canvas (edges follow)

Delete deletes nodes or edges by clicking on them

Update views/changes the properties of selected nodes

Generate emits Java code implementing the designed model

Table 1: JMODEL’s Control Buttons

Models are built visually by clicking on a button to set the designer mode. Then, when the

mouse is clicked, an action will be performed at its location in the drawing canvas. For example,

if in ”Facility” mode, a new facility will be drawn at the location (see figure 5). To connect two

nodes with a transport, enter ”Transport” mode and then click on the two nodes. This will cause

a straight line to be drawn. To produce a curve, click on a point outside the nodes to serve as a

control point.

The code in the jmodel package was created to be easily extensible. Each node in the graph is

a polygon, so that adding new shapes to represent new types of nodes is easy. Similarly, each edge

in the graph is a quad curves allowing flexible pathways between nodes.

5.2 The jquery Package

The jquery package contains classes and beans making it easy for other components to access

relational (e.g., Mini SQL) and object-relational (e.g., Oracle 8) databases. JSIM can be linked to
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a variety of database management systems because of its reliance on Java Database Connectivity

(JDBC). Typically, this is as easy as changing the connection specification (e.g., to change the

connection specification from Mini SQL to Oracle simply change the url as shown below).

url = "jdbc:msql://orion.cs.uga.edu:1888/jsim";

url = "jdbc:oracle:thin://orion.cs.uga.edu:1521";

In the worst case, the JDBC driver may need to be changed, but this only effects a few lines of

code since the JDBC API is the same in any case.

A couple of important beans in this package are the following.

• DbQuery Bean. The DbQuery bean responds to events that embed SQL queries. Using JDBC

it sends a query to the designated database and places the results in an AbstractTableModel

allowing the results to be readily sent back to the requester or displayed.

• DbUpdate Bean. The DbUpdate bean similarly responds to events that embed SQL updates.

It may be used by model beans in order to store their results in databases. This makes it easy

to run models with or without a database, or switch databases since the association between

the beans is established dynamically.

5.3 The runAgency Package

In JSIM, models may be formed as Java beans so that model federations may be dynamically

formed out of simpler models and immediately executed. In addition, models may be dynamically

associated with beans from the environment. Model beans may be either atomic or composite, and

may be assembled into model federations.

5.3.1 Atomic/Composite Models

The simplest type of model is an atomic model. An atomic model is built as a connected digraph

with a single source and a single sink. The source is the producer of entities (e.g., customers) that

flow through the graph to be consumed by the sink. All other nodes must have both incoming and

outgoing edges.

A composite model consists of two or more models sharing a common environment and dis-

play frame. Since general models may have multiple sources, different types of entities can be

created (e.g., McDonald’s customers and Wendy’s customers). These flows may be independent
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(no shared nodes), competing (shared nodes), or interacting (one playing client role and other

playing server role). Allowing digraphs with multiple sources and sinks introduces complex issues

of well-formedness.

Composite models may be formed by combining two or more simpler existing models. This is

done by loading the two models into the jmodel designer and allowing the user to link them as

appropriate. New code is then generated for this composite model. Note that synthesizing a new

composite model is less dynamic than assembling a new model federation. This is because elements

are more tightly coupled in a composite model (e.g., they share a common Future Event List).

A simple illustration of a composite model is the FoodCourt example. It contains two Sources,

three Facilities and two Sinks forming two digraphs. The top digraph represents a fast food estab-

lishment in which multiple clerks are fed by individual queues (as is done at McDonald’s), while

the bottom digraph represents an establishment in which the multiple clerks are fed by a single

queue (as is done at Wendy’s). A screenshot of the animation of this model is shown in figure 2.

This is a classic comparison of a G/G/2 queue versus two G/G/1 queues.

Figure 2: Screenshot of FoodCourt Animation
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5.3.2 Assembling Models into a Model Federation

Models can be assembled to form a model federation without requiring any traditional program-

ming. Each model may be represented by an icon and implemented as a Java bean. A designer

can select from existing models to dynamically build a model federation. Individual models in the

federation are linked via Java bean events. When an entity in one model reaches a sink, an external

event can be triggered which will be handled in another model. Handling the external event will

cause an entity to be created by a source in that model. Effectively, one model is able to interact

with another model (by injecting an entity). (Currently, we assume that entity injection occurs

”now” in the target model with appropriate method synchronization to prevent race conditions. If

a time, t, is given for entity injection, it is possible t could be in the past for the target model, so

techniques for parallel simulation would be needed.)

Such interactions require that sinks in one model be linked to sources in another model. This

linkage is not designed or coded in, but rather established dynamically using the facilities of visual

development tools like the BeanBox in the Beans Development Kit (BDK), Java Studio or Visual

Cafe, etc.

Consider the following situation (the FoodAndHealth model federation) as one to connect the

two models. Some of the customers leaving the FoodCourt find that they are feeling ill, so with

probability triggerProb they choose to go to a hospital Emergency Room (ER). Patients enter the

ER and wait to see the Triage Nurse, who will decide whether the patient will see the Physician’s

Assistant or one of the ER Doctors. Before this step, the patient must register with the Admit

Clerk. A screenshot of the animation of this model is shown in figure 5. The Signal is used to

periodically change the number of ER Doctors on duty.

The FoodCourt and ER models can be easily assembled into a model federation. For example,

using the BDK bean box one would carry out the following steps:

1. Select the FoodCourt model/bean from the tool box and drag-and-drop it into the bean box.

2. Adjust any of properties using the BDK property editor.

3. Do the same with the ER model/bean.

4. Edit the FoodCourt’s events and connect its EntityEvents to the ER by clicking on the ER’s

icon in the bean box. This will enable the FoodCourt model to feed the ER model.

5. Select the appropriate method from the event target dialog box which pops up.
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The selected method will be executed when these events occur. The events will be constructed

and broadcast when an entity is captured by a Sink in the FoodCourt bean. This will cause the

Source in the ER bean to create and start (i.e., inject) a new entity. Basically, Sink.capture calls

Model.triggerEntityEvent which constructs and broadcasts an EntityEvent to all targets (specified or

linked dynamically and graphically using the BeanBox.) The adaptor class (which is automatically

generated at event linkage time) listens for any EntityEvents. When it hears one, it will call

ER.injectEntity (also established at linkage time). This method then calls Source.startEntity which

injects a new entity into the ER in response to this external stimulus. These injected entities are

in addition to any that the Source would normally (internally) produce.

When the model federation is executed, each model is animated in a separate frame. The

models may run independently, but typically will interact through external events created by one

model being handled by another. The animation of a very complex model is hard to watch in its

totality and make any sense of it. With multi-frame animation, one can easily focus in on parts of

the simulation by bringing the relevant window frames into the foreground of the screen.

A JSIM model federation is run (executed) by beans from the runAgency. The principal agents

controlling the execution are described in the following subsections.

• ModelAgent Beans. A ModelAgent is responsible for executing a JSIM model. It will start

up the model for a certain amount of time/work. The model will report back the results

of this run/batch. The model agent will then, based on the selected output methodology

[Law and Kelton, 1982, Banks et al., 1996, Fishman and Yarberry, 1997], either terminate or

continue the execution (more runs or batchs) of the model. The JSIM approach is very

modular and flexible allowing new model agents to be added at any time, so long as they

follow the rules of the game. Currently, two types of model agents have been implemented -

one implementing the Method of Independent Replications and the other implementing the

Method of Batch Means.

• ScenarioAgent Beans The overall control of the execution of a model federation is the

responsibility of the ScenarioAgent. After collaborating with other agents to choose an

approach to executing the model federation, the scenario agent will inform the model agents

to use an appropriate output analysis methodology (e.g., method of independent replication,

method of batch means) as well as appropriate goals (e.g., confidence levels and relative

precisions).
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Figure 3: Beans in the runAgency

An example of the execution framework for FoodAndHealth model federation is shown in fig-

ure 3. It depicts the arrangement of the FoodCourt and ER beans as well as their relationships in

the bean box.

5.4 The qdsAgency Package

Simulation can be embedded in other systems in several ways. One such approach, referred to

as Query Driven Simulation (QDS), is based on the tenet that simulation analysts as well as

naive users should see a system based upon QDS as a sophisticated information system, one that

uniformly enables the retrieval or generation of information about the behavior of systems under

study [Miller and Weyrich, 1989, Miller et al., 1990, Miller et al., 1991]. This means that the user

must be provided with an easy to use environment where s/he may trigger complex actions by

entering a simple query, for example, on a form.

Simulation is often a computationally intensive and costly exercise. Hence, it only makes sense

that simulation results be stored for future use. Database management systems provide efficient

techniques for the storage, manipulation and retrieval of large amounts of data. Consequently,
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a QDS system should use databases to store simulation results as well as simulation models. In

addition, other information useful for decision making would be stored and associated with the

simulation data.

When a user queries a simulation system based on QDS, the system first tries to locate the

required information in the database, since it might have been stored as the result of an earlier

model execution. If the required data is present, it is simply retrieved and presented to the user.

If it is not present, the QDS system instantiates the relevant model (or models), executes it (or

them) and shows the results of the execution to the user.

The principal agent that facilitates a user’s interaction with the QDS system is the QdsAgent

bean. It is assisted by the ModelBrowser and ResultBrowser beans. A typical session involving a

user and the QDS system can be explained as follows (see figure 4).

1. Start the QdsAgent.

2. Browse or query the available models or model federations. This work is done by the
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ModelBrowser at the request of the QdsAgent.

3. Once the user selects a model or model federation of interest, the QdsAgent allows the user

to browse the corresponding simulation results using the ResultBrowser. Alternatively, the

user may define a scenario of interest for the model or model federation. This is facilitated

by the QdsAgent obtaining the list of model parameters from the database (including default

values).

4. After parameter specification, the QdsAgent checks the database to see if information exists

regarding the prior execution of the selected model or model federation with the given param-

eter values. If the simulation results exist, the QdsAgent retrieves them from the database

via the ResultBrowser. If not, the QdsAgent collaborates with a ScenarioAgent to execute

a model or model federation with the given parameters. Execution will cause the results to

be stored in a database. The results can now be shown using the ResultBrowser.

6 Conclusions

The JSIM Web-based simulation environment provides the following advantages over conventional

simulation environments:

• JSIM supports the distribution of both simulation results and simulation models, since they

can be accessed over the Web. This provides the potential to make simulation analysis much

more widely available.

• JSIM supports universal portability in that models can be run essentially anywhere. The use

of the Java language along with its comprehensive class libraries make this possible. The use

of JDBC makes it easy to switch between several database management systems.

• JSIM supports the dynamic assembly of model federations. By utilizing component-based

technology, in this case Java Beans, the environment is built up from reusable software com-

ponents that can be dynamically assembled using visual development tools. Model beans can

be linked to form model federations and may be linked to environment beans to control their

execution and save their results in databases.

• JSIM provides simple and uniform access to simulation results based on the notion of query

driven simulation. The users simply ask for information and it is up to the system to figure
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out how to get it, e.g., by accessing databases and/or running simulation models.

Besides JSIM’s use as a research testbed for Web-based simulation, it can also be used to teach

simulation (it has been used in the CS 421/621 simulation course at the University of Georgia). In

addition, it has been coded in a very modular and straightforward way, so that it can be readily

extended by others. JSIM is freely available for download at

http://orion.cs.uga.edu:5080/∼jam/jsim.

Future releases of JSIM will exploit the capabilities of new Java APIs, in order to enrich the

visual appearance, the distributed capabilities and the interoperability of the system.

• Java 3D. This API will allow models to have increased visual richness. At the same time, we

will introduce additional types of nodes as well as conditional branching between nodes. The

visual designer currently only supports probabilistic branching.

• Enterprise Java Beans (EJB). This API will allow interacting models to be run on multiple

machines just as easily as they are now run on a single machine. Furthermore, complete

JSIM simulation environments will be run as distributed systems on heterogeneous platforms.

In addition to EJB, Remote Method Invocation (RMI), Java IDL (CORBA) and Servlet

technology will be explored.

• XML for Data Interchange. The eXtensible Markup Language (XML) promises to not only

become the new improved HTML, but will likely become the standard for data interchange

between a variety of systems, tools and applications, thus simplifying interoperability. As

one example, JSIM now uses Java io serialization to save jmodel designs. This binary data

may either be stored in files or databases (e.g., as Binary Large Objects (BLOBs)). Utilizing

work in currently ongoing projects to serialize Java objects as XML documents, JSIM objects

can be directly stored in object-oriented or object-relational databases without any custom

coding.
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