Adding Support for Theory in Open Science Big Data

John A. Miller, Hao Peng and Michael E. Cotterell
Department of Computer Science
University of Georgia
Athens, GA, USA
Outline

- Basic Definitions
- Predictive Analytics
- Using Theory in Model Development
- Representing Theory
Basic Definitions

- **Modeling Technique** – e.g., Regression, SVM
 - ScalaTion currently supports over 40 modeling techniques for prediction and classification
 - ‘caret’ R package currently supports over 200 modeling techniques

- **Model**
 - apply a modeling technique to a dataset
 - select variables
 - estimate parameters

- **Theory**
 - more comprehensive, more explanatory than a model
 - latest initiative for ScalaTion – include theory
Predictive Analytics

- **Regression** – the starting point
 - $y = f(b)(x) + e$
 - where y – response, b – parameter vector, x – predictor vector, e – error/residual
 - **Least Squares**: given m instances of data, minimize Euclidean norm of $e = [y_i - f(b)(x_i)]_{i=1,m}$ or generally a loss function
 - If f is a linear function, $y = b \cdot x + e$, so
 - $e = y - Xb$ where $y = [y]_{i=1,m}$ and $X = [x]_{i=1,m}$
 - Solve for parameter vector b using the **Normal Equations**
 - $X^TXb = X^Ty$ via **Factorization** (Cholesky, QR, SVD)
Theory in Model Development

- **Linear Regression**
 - Selecting *Higher Order* Terms
 - e.g., response y varies with the square of x_2
 - $y = b_0 + b_1x_1 + b_2x_2 + b_3x_2^2$

- **Nonlinear Regression**
 - Selecting *Functional Forms*
 - e.g., *Michaelis-Menten* model for enzyme kinetics
 - $y = b_1x_1 / (b_2 + x_1)$ or
 - $v = V_{\text{max}} [S] / (K_M + [S])$ in biochemical notation
 - one of several equations for a biochemical pathway
Using Theory in Model Development

- **Regularization**
 - $y = f(b)(x) + e$
 - $\min_b \text{loss}_f(b, x) + \lambda \text{reg}(b, x)$
 - where λ is the regularization parameter
 - If $\lambda = 0$, then it is case discussed previously

- If $\text{reg}(b, x) = \|b\|_2^2$ it’s **Ridge** regression
- $\|b\|_1$ it’s **Lasso** regression
- constraints derived from theory
Using Theory in Model Development

- **Functional Data Analysis**
 - Given data sampled at n time points \{ (t_j, y_j) \}
 - y_j is an imprecise measurement at time t_j
 - Measuring a continuous (and differentiable) process
 - x(t) where y_j = x(t_j) + e_j
 - x(t) can be represented as a function
 - Flexible approach: linear combination of basis functions
 - x(t) = c \cdot p(t)
 - where c = vector of coefficients and p = vector of basis functions
Using Theory in Model Development

- **Basis Functions**
 - **B-Splines**, etc.
 - Useful to represent a function using order 4 (cubic) B-Splines
Using Theory in Model Development

- **Smoothing**
 - Although B-Splines can fit all the data perfectly,
 - the goal is to capture the underlying process,
 - not to fit the noise.
 - This can be done by
 - reducing number of knots (fewer parameters)
 - adding a penalty for lack of smoothness

\[
f(c; \lambda) = ||y - Pc||_2^2 + \lambda \int [D^2x(t)]^2 dt
\]

where \(P = [p(t_j)]_{j=1,n} \) column-wise

\[\min_c f(c; \lambda)\]
Using Theory in Model Development

- **Functional Regression**
 - How do *predictor variables* (e.g., z) affect the *response variable* y
 - Many possible cases: both functional, neither functional, etc.

 - Neither functional
 - \(y_i = a + b z_i + e_i \)

 - z functional (e.g., *scalar-on-function* regression)
 - \(y_i = a + \int b(t) \, z_i(t) \, dt + e_i \)
Using Theory in Model Development

- **Principal Differential Analysis**
 - Given $x(t)$ sampled at n time points $\{(t_j, y_j)\}$
 - that is governed by a **differential equation**
 - $Dx(t) - g(b)(x(t)) = 0$
 - where g is the derivative function

- Determine the parameters by **optimizing**
 - $\min_{b,c} \|y - Pc\|_2^2 + \lambda \int (Dx(t) - g(b)(x(t)))^2 dt$
 - Instead of pushing the function towards smoothness,
 - push it towards **compliance with the differential equation/theory**
Representing Theory

- **Represent and Solve**
 - Given observed, noisy data \{t_j, x_j, y_j,\}
 - where x and y represent coordinates, and
 - the process is governed by the laws on pendulum motion (differential equation)
 - \(D^2\theta + \frac{(g/l)}{l} \sin \theta = 0 \)
 - where \(x = l \sin \theta \) and \(y = l(1 - \cos \theta) \),
 - can easily represent the equations in ScalaTion
 - and use Principal Differential Analysis to
 - estimate the parameters g and l
Algorithms in LaTeX

- e.g., Cholesky Factorization

\[
\begin{align*}
&\text{for } i \leftarrow 0 \text{ until } n; \ j \leftarrow 0 \text{ to } i \text{ do} \\
&\quad \text{diff} = a_{ij} - l_i \cdot l_j \\
&\quad l_{ij} = \begin{cases} \\
\text{sqrt} (\text{diff}) & \text{if } i == j \\
\text{diff} / l_{jj} & \text{else}
\end{cases}
\end{align*}
\]

- suitable for inclusion in papers
- can be almost directly translated into
- Unicode supporting ScalaTion
Representing Theory

- Representing First Order ODEs
 - RL Filter
 - \(V = IR + L \frac{DI}{dt} \)
 - \(V = V_R + V_L \)
 - Newton’s Second Law of Motion
 - \(Dx = v \)
 - \(Dv = F/m \)
Representing Theory

Chemical Reaction Network
(www.cs.uga.edu/~thiab/paper25.pdf)

// d[H2]/dt = -kf1 [H2] [O] + kb1 [H] [OH] - kf3 [H2] [OH] + kb3 [H2O] [H]
def dh2_dt (t: Double) = -kf._1*c(0)*c(2) + kb._1*c(3)*c(4) - kf._3*c(0)*c(4) + kb._3*c(5)*c(3)

// d[O2]/dt = -kf2 [H] [O2] + kb2 [O] [OH]
def do2_dt (t: Double) = -kf._2*c(3)*c(1) + kb._2*c(2)*c(4)

Two of eight ODEs in a common pathway.

- Given rate constants kf and kb, use integrator to solve for concentrations c over time
- Given time series data, estimate the rate constants using techniques discussed
Representing Theory

- Use ontology, FOL/HOL, to help select
 - integrator (e.g., RungeKutta, DormandPrince),
 - modeling technique (e.g., Nonlinear Regression, Principal Differential Analysis) and
 - optimization method used in parameter estimation

- Automated Modeling Tool: Pret
 - Describe system behavior using a system of nonlinear differential equations
 - given a dataset
 - various reasoning techniques (e.g., qualitative reasoning, nonlinear parameter estimation reasoning) are used to select models
Questions?