s
2
€
2
]
£
=
K
2
4
3
£
=

Using a CORBA-based, fully distributed process to create scalable,
dynamic systems | KRYS J. KOCHUT, AMIT P. SHETH, AND JOHN A. MILLER

ECOND-GENERATION workflow management systems
need to deal with the heterogeneity of platforms within
and across cooperating enterprises along with legacy
applications and data. At the same time, there is an
increasing demand for advanced features for supporting
mission-critical processes, including adaptability through
dynamic changes and scalability. The enterprise application
development and workflow management system, Managing
End-To-End Operations (METEOR), is based on open systems

This project began as an academic exercise. lts commercial applications
were uncovered as the process continued.

COMPONENT STRATEGIES ¢ www.componentmag.com

and standards, and it utilizes CORBA, Web, and Java. This
allows METEOR to provide high-end workflow management
combined with application and data integration capabilities in
increasingly network-centric environments.

Workflow management is the automated coordination, con-
trol, and communication of work that is required to satisty work-
flow processes.! A Workflow Management System (WMS) is a
set of tools that provide support for the necessary services of
workflow creation (which includes process definition), workflow
enactment, and administration and monitoring of workflow
processes.” The developer of a workflow application relies on
tools for the specification of the workflow process and the data it

45

e

Database & Legacy Integration

EApp Builder "
Workflow Builder
Workflow i
Translator/ }« 4
Generator “

EApp Repository

WEBWork ORBWork
Workflow Workflow
Engine Engine EApp Enactment

Figure 1. METEOR architecture.

manipulates. The specification tools are integrated with the
workflow repository service, which stores workflow definitions.
The workflow process is based on a formalized workflow model
that is used to capture data and control flow between workflow
tasks.

The workflow enactment service (including a workflow
manager and the workflow runtime system) consists of execu-
tion-time components that provide the execution environment

I

METEOR provides open-systems-based,
high-end workflow management, and enterprise
application integration infrastructure

for the workflow process. A workflow runtime system is respon-
sible for enforcing intertask dependencies, scheduling tasks,
managing workflow data, and ensuring a reliable execution envi-
ronment. Administrative and monitoring tools are used for man-
aging user and work group roles, defining policies (e.g., securiy,
authentication), audit management, process monitoring, track-
ing, and reporting data generated during workflow enactment.

A number of applications posing substantial challenges to
the currently available WfMSs are discussed in “Workflow
Applications to Research Agenda: Scalable and Dynamic Work
Coordination and Collaboration Systems.”® The applications
demand that a WfMS be easily scalable and able to handle
dynamic workflows. Moreover, a WfMS must be able to oper-
ate on a wide variety of hardware and software platforms, and
it must be able to incorporate legacy applications and dara
sources within the administered workflows. Such a WfMS must
include suitable design and development tools that can be used
to design a workflow and then introduce changes dynamically
to the whole workflow process definition (schema), or even just
to individual workflow (instances). The system must also
include a flexible enactment system that is capable of support-
ing scalability, where new resources (computers, database
servers, end users, etc.) can be incorporated easily within the
workflow system; and adaptive workflows, where the workflow
specification can be changed or extended, including the addi-
tion or modification of tasks and intertask dependencies.

46

The METEOR project is represented by both the research
system (METEOR), and a suite of commercial offerings—the
METEOR Enterprise Application Suite of tools and services
(EAppS)*—that addresses these challenges by providing an
open-systems-based, high-end workflow management solution
as well as an enterprise application integration infrastructure,
This article focuses on ORBWork, METEOR’s enactment ser-
vice that exploits CORBA, Java, and Web technologies to meet
these challenges.

METEOR Architecture
METEOR’s architecture includes a collection of four services:
EAppBuilder, EAppRepository, ~EAppEnactment, and

EAppManager. EAppEnactment includes two services—
ORBWork and WebWork. Both ORBWork and WebWork use
fully distributed implementations. WebWork,” an entirely Web-
based enactment service, is a comparatively lightweight imple-
mentation that is well suited for a variety of enterprise workflow
process applications that involve limited data exchange and do
not need to be changed dynamically. ORBWork is better suited
for more demanding, mission-critical enterprise applications that
require high scalability, robustness, and dynamic modifications.
The overall architecture of the system is shown in Figure 1.

Workflow Builder Service This service consists of a number of
components that are used to design and specify a workflow
graphically, and in some cases it leaves no extra work after a
designed workflow is converted to a workflow application by the
runtime code generator. Its three main components are used to
specify the entire map of the workflow, the data objects to be
manipulated by the workflow, and the details of task invocation,
respectively. The task design component provides interfaces to
external task development tools (e.g., Microsoft’s FrontPage to
design the interface of a user task, or a rapid application devel-
opment tool). This service supports the modeling of complex
workflows that consist of varied human and auromated tasks in
a conceptual manner with easy-to-use tools. In particular, the
designer of the workflow is shiclded from the underlying details
of the infrastructure or the runtime environment. At the same
time, this service places very few restrictions on the designer
with regard to the specification of the workflow.

The workflow specification created using this service includes
all the predecessor/successor dependencies among the tasks as well
as the data objects that are passed among them. It also includes
definitions of the data objects, and the task invocation details. The
specification may be formatted to be compliant with the
Workflow Management Coalition’s Workflow Process Definition
Language (WPDL).? This service assumes no particular imple-
mentation of the workflow enactment service (i.e., the runtime
system). Its independence from the runtime system supports sep-
arating the workflow definition from the enactment service on
which it will ultimately be installed and used. Workflow process
definitions are stored in the workflow repository.

Detailed information concerning this service (which was
previously referred to as METEOR Designer, or MTDes,) is
given in works by Lin and Zheng.®”

Workflow Repository Service The METEOR Repository Service is

MARCH 1999

Database & Legacy Integration

responsible for maintaining information about workflow defini-
tions and their associated workflow applications. The graphical
tools in the workflow builder service communicate with the repos-
itory service and retrieve, update, and store workflow definitions.
The tools are capable of browsing the contents of the repository
and incorporating fragments (cither subworkflows or individual
tasks) of existing workflow definitions into the one that is current-
ly being created. The repository service is also available to the

ORBWork exploits CORBA, Java, Web,
and emerging interoperability specifications
to manage enterprise applications

enactment service, and it provides it with the information it needs
about workflow applications that are to be started.

The current implementation of the repository service imple-
ments the Interface I AP, as specified by the WMC. A detailed
description of the first design and implementation of this service
is presented in works by Yong.?

Workflow Enactment and Management Services The task of the
enactment service is to provide an execution environment for pro-
cessing workflow instances. At present, METEOR provides two
different enactment services: ORBWork and WebWork. Each of
the two enactment services has a code generator that is suitable for
building workflow applications from the workflow specifications
generated by the building service or from those stored in the
repository. With ORBWork, the code generator outputs specifi-
cations for task schedulers, including task routing information,
task invocation details, data object access information, user inter-
face templates, and other necessary data. The code generator also
outputs the code necessary to maintain and manipulate the data
objects created by the data designer component of the builder.
The task invocation details are used to create the corresponding
“wrapper” code for incorporating legacy applications with relative
ease. Details of code generation for WebWork are presented in
works by Miller, et al.” With WebWork, the management service
supports monitoring and administering workflow instances as
well as configuring and installing the enactment services.

Overview of ORBWork

The current version of ORBWork, the implementation of the
METEOR EAppS enactment services that was designed to
address a variety of shortcomings in today’s workflow systems,
supports the following capabilities:
* It provides an enactment system that is capable of support-
ing dynamic workflows;
* It allows the enactment service to be significantly scalable;
* It supports execution over distributed and heterogeneous
computing environments within and across enterprises;
* It provides developers with the ability to utilize or integrate

* The data integration capability is supported by integrating METEOR's
enactment services with I-Kinetics’ DataBroker/OpenJDBC, a CORBA-
and Java-based middleware for accessing heterogeneous and legacy
data sources.

48

with new and legacy enterprise applications and databases*
in the context of processes;

* It utilizes open standards, such as CORBA, because of its
emergence as the infrastructure of choice for developing dis-
tributed, object-based, interoperable software;

* It utilizes Java for portability and HT TP network accessibility;

* It supports existing and emerging workflow interoperability
standards, such as JELOW and SWAP; and

* It provides standard Web browser-based user interfaces, both
for the workflow end users and participants as well as admin-
istrators of the enactment service and workflows.

In this article, we emphasize two of the features: scalability and
support for adaptive workflows. For brevity, other important
issues, including improved support for exception handling for
robust and survivable execution, are not discussed here.

Scalability The scalability of the enactment system is becoming
increasingly important for enterprises that wish to entrust their
workflow management systems with mission-critical processes.
The number of concurrent workflows, the number of instances
of the workflows processed during a given time period, and the
average number of tasks in a workflow, all have an impact on the
architectural issues.

We have leveraged the functionality offered by IONA’
OrbixWeb and Name Service that allows us to place various
components of the enactment service or other runtime compo-
nents of the workflow instances, such as task schedulers, task
managers, data objects, and even actual tasks on different hosts,
at the same time keeping their locations transparent.

Adaptability and Dynamic Workflows Recently, there has been an
increasing interest in developing WEMSs that are capable of sup-
porting adaptive and dynamic workflows. The majority of cur-
rent work addresses relevant issues at modeling and language
levels,>~'? with few efforts on implementations underway.!*-!>
A different approach to supporting adaptive workflow (work-
flow that is capable of reacting to the changes in local rules and
other conditions) is being developed using the notion of migrat-
ing workflows.'® Related issues of integrating workflow or coor-
dination technologies and collaboration technologies are inves-
tigated in works by Guimaraes and Sheth.!”-18

Developing systems that are able to support dynamic and
adaptable workflow processes stands out as one of the difficult
new challenges in the future evolution of WiMSs. Such systems
must be uniquely sensitive to a rapidly changing process execution
that is triggered by collaborative decision points, context-sensitive
information updates, and other external events. Some research
issues in this area that have been raised in the context of modeling
and specification aspects is discussed Han and Sheth!® and the rel-
evant issues involving organizational changes appear in works by
Ellis and Hermann.'*?° However, literature that addresses some
of the enactment service issues is scarce.

The ORBWork scheduler and its supporting components
have been designed in such a way that the enactment service can
be used to support a variety of dynamic changes both to the
workflow schema and to the individual workflow instances. The
fully distributed scheduler maintains the full workflow specifi-

MARCH 1999

Database & Legacy Integration

ORBWork
Manager

interface. The structure of the scheduler can be
altered by adding more resources, or by migrat-
ing fragments of the scheduler to other hosts,
for example with lower processing loads. Some
METEOR | gchedulers may be replicated, in case the load of
Monitor . . .

workflow instances is too high for a host run-
ning just a single scheduler.

! N\

TASK L TASK
Scheduler Scheduler

TASK TASK
Manager Manager

K,

Workflow Scheduler

ORBWork’s scheduler is composed of a
number of small schedulers, each of which is
responsible for controlling the flow of workflow
instances through a single task. The individual
schedulers are called task schedulers. In this
way, ORBWork implements a fully distributed
scheduler because all of the scheduling func-
tions are spread among the participating task
schedulers that are responsible for scheduling
individual tasks. In this sense, the ORBWork
scheduler is composed of a network of cooper-
ating task schedulers. Each task scheduler con-

figure2. ORBWork organization.

cation. The workflow administrator can modify the workflow
schema easily at runtime by acquiring new information from the
workflow repository, or even by modifying the specification by
interacting directly with the scheduler.

Enactment Services

ORBWork provides a fully distributed, scalable enactment ser-
vice for METEOR. The enactment service has been imple-
mented to support enterprise applications involving workflows
in heterogeneous, autonomous, and distributed (HAD) systems.
It utilizes the World Wide Web to provide a consistent interface

ORBWork implements fully distributed
scheduling and fault-tolerant workflows

to end users and workflow administrators from commonly avail-
able Web browsers, and also utilizes the HTTP protocol to dis-
tribute task definitions and task routing information.

ORBWork Architecture ORBWork’s architecture includes the
scheduler, the workflow specification repository, the workflow
manager, and the monitor. An overview of ORBWork’s organi-
zation is depicted in Figure 2.

The scheduler accesses workflow specifications through the
HTTP protocol, directly from the repository. The monitor
records all of the events for all of the workflows that are being
processed by the enactment service. It provides a user interface
for the workflow administrator, who can access the information
about all of the current workflow instances. The workflow man-
ager is used to install new workflow processes (schemas), modi-
fy the existing processes, and keep track of the activities of the
scheduler. The workflow administrator controls the existing
workflows and the structure of the scheduler using the available

50

trols the scheduling of the associated task for all
of the workflow instances “flowing” through the
task. Fach task scheduler maintains the necessary task routing
information and task invocation details (explained later).

As a workflow instance progresses through its execution,
individual task schedulers create appropriate task managers that
oversee the execution of associated tasks. Each workflow
instance receives its own task manager, unless the task has been
designed to have a worklist, in which case all of the instances are
processed by the same task manager.

A workflow is installed by first creating an appropriate work-
flow context in the Naming Service. (The context is used for stor-
ing the object references for all of the participating components.)
Then the installation continues by activating and configuring all
of the necessary task schedulers and registering them with the
Naming Service. All of the component task managers are also
registered with the Interface Repository of the underlying ORB.

ORBWork Scheduler ORBWork's scheduler is fully distributed in
that the scheduling responsibilities are shared among a number
of participating task schedulers, according to the designed work-
flow map. Each task scheduler receives the scheduling specifica-
tions at startup from the Workflow Repository (currenty, the
repository service sends the specifications via the HTTP proto-
col). Each set of task specifications includes the input depen-
dency (input transitions), output transitions with associated
conditions, and data objects sent into and out of the task. For a
human task (a task that end users perform directly), the specifi-
cations include an HTML template of the end user interface
page(s). For nontransactional automatic tasks (tasks that are typ-
ically performed by a computer program), the specifications also
include a task description and the details of its invocation.
Finally, for a transactional task, the specification includes the
details of accessing the desired database and the database query.

When a task is ready to execute, a task scheduler activates an
associated task manager. The task manager oversees the execution of
the task itself. Figure 3 presents a view of the ORBWork's distrib-
uted scheduler. Note that scheduling components and the associat-
ed tasks and task managers are distributed among four differenc

MARCH 1999

Databhase & Legacy Integration

hosts. The assignment of these compo-
nents to hosts can be modified at run-

time by the workflow administrator.
The partitioning of various com-
ponents (scheduler’s layout), includ-
ing task schedulers, task managers,
and tasks among the participating

TASK

HOST 4
Manager

Scheduler

hosts is flexible. An ORBWork
administrator may move any of the
components from one host to anoth- N
er. In the fully distributed layout, it is v
possible to place all of the workflow
components on different hosts.

Each task scheduler provides a

HOST 1

Y

TASK
Scheduler

/ N\
N / -
TASK »| TASK TASK
Scheduler Scheduler Scheduter

well-constrained subset of the HTTP
protocol, and thus implements a light-
weight, local Web server. This enables
an ORBWork administrator to inter-
act directly with a selected task sched-

TASK

Manager ﬁ

HOST 2 HOST 3

uler and modlfy s schedulmg Sp ccifi- Figue 3. ORBWork’s distributed scheduler.

cations from a common Web browser.
It also enables the end user to access workflow instances residing on
the task’s worklist. This setup naturally supports a mobile user.

Support for Dynamic Workflows One of the design goals of
ORBWork has been to provide an enactment framework that is
suitable for supporting dynamic and adaptive workflows.
However, we must point out that the issues concerning the cor-
rectness of the dynamically introduced changes are handled out-
side of the enactment system by subcomponents of the
METEORs builder services, or by standalone correctness verifi-
cation tools. The ORBWork's enactment system performs only
basic validation of deployed workflows. Nevertheless, the archi-
tecture of the enactment system has been designed to support
dynamic changes easily and serve as a platform for conducting
research in the areas of dynamic and collaborative workfows.

Since ORBWork uses a fully distributed scheduler, it must
be easy to provide the scheduling information to all of the par-
ticipating task schedulers at runtime. Each scheduler receives the
information about the transitions leading into and out of it. In
addition, the scheduling information includes the list of data
objects to be created (a task may originate a data object).

At startup, each task scheduler requests scheduling data and
upon receiving it, it configures itself accordingly. Furthermore, the
configuration of a workflow that has already been deployed is not
fixed and it can be changed dynamically. At any given time, a work-
flow designer, or in some cases an authorized end user, may decide
to alter the workflow. The introduced modifications are then con-
verted into the corresponding changes in the specification files and
stored in the repository. A “reload specification” signal is then sent
to the affected task schedulers. As a result, the schedulers reload their
specifications and update their configurations accordingly, effective-
ly implementing the desired change to the existing workflow.

As one possibility, the changes introduced to a workflow may
include adding a new task and connecting it to an already installed
and active workflow application. Such a change must also include
modifications of output transitions in the predecessor task sched-
ulers and input dependencies in the successor task schedulers.

COMPONENT STRATEGIES Www.componentmag.com

Support for Scalability and Fault Tolerance The fully distributed
architecture of ORBWork yields significant benefits in the area
of scalability. All of the workflow components of a designed and
deployed workflow (this includes individual task schedulers,
task managers, and task programs) may be distributed to differ-
ent hosts. However, in practice it may be sufficient to deploy
groups of less frequently used task schedulers, managers, and

I
ORBWork's administrator may move any
component from one node to another anytime

programs to the same host. At the same time, heavily utilized
tasks may be spread out across a number of available workflow
hosts, allowing for greater load sharing,

The features of ORBWork that were designed to handle
dynamic workflows are also very useful for supporting scalability.
As the load increases, an ORBWork administrator may elect to
move a portion of the currently running workflow to a host (or
hosts) that become available for use in the workflow. The migration
can be performed at the time the deployed workflow is running,
Simply, the workflow administrator may suspend and shut down a
given task scheduler and transfer it to a new host. Because of the
way task schedulers locate their successors, the predecessors of the
moved task scheduler will not notice the changed location of the
task. If the associated task must be executed on a specific host (for
example, if it is a legacy application), the associated task manager
may be left in place while only the scheduler is transferred.

If a group of task schedulers is deployed to the same host,
the ORBWork administrator has the option of combining them
into a single “master” scheduler. A master scheduler controls a
number of individual task schedulers that share the same heavy-
weight process. This allows the administrator to control the uti-
lization of the participating host even further, where having

51

Database & Legacy Integration

val. In this way, certain portions of a large,
distributed workflow (for example those
less frequently used) may become inactive,

Dynamic Object Allows the automatic activation and deactvation of ORBWorK which will reduce the overhead on the host
amic Obj ws the automatic activation and deactivation o or .
Activation components, which reduces the load on the host system(s) systems to the necessary minimum.

Dynamic Invocation Only object references are transferred; data objects are accessed

Interface (DH) dynamically, according to their interfaces

Object Loaders Data objects, task schedulers, and other ORBWork components use

loaders to save and restore state automatically
Naming Service Task schedulers are located by using the Name

Task Schedulers A task scheduler is imple-
mented as a CORBA object. The IDL
interface presented to clients (other task

Service: thisallows ~ Schedulers and other ORBWork compo-

for flexible and transparent placement of the schedulers and their nents) enables them to invoke various

possible migration at runtime

many individual operating system-level processes (task sched-
ulers) could potentially burden the host system.

The distributed design of ORBWork offers no single point of
failure for an ongoing workflow instance. Since the individual task
schedulers cooperate in the scheduling of workflow instances, a fail-

All of the ORBWork components
are implemented as CORBA objects

ure of a single scheduler does not bring the whole system down,
and other existing workflow instances may continue executing,
The error handling and recovery framework for ORBWork
(the initial design has been described in “An Error Handling
Framework for the ORBWork Workflow Enactment Service of
METEOR™®) has also been defined in a scalable manner. All
errors are organized into error class hierarchies by partitioning the
recovery mechanism across local hosts, by encapsulating and
handling errors and failures as close to the point of origination as
possible, and by minimizing the dependence on low-level oper-
ating system-specific functionality of the local processing entities.

ORBWork Implementation

One of the most important considerations in the design of the
ORBWork workflow management system has been its flexible
and easily modifiable distributed architecture. The current ver-
sion of the system has been implemented in Java and OrbixWeb
3.0, IONAs CORBA system with Java binding. In addition,
IONA’s Naming Service has been utilized as a way of providing
location transparency for all of the ORBWork components.

Using CORBA, and especially IONAs OrbixWeb and
Naming Service, as the underlying middleware system offers a
number of advantages for implementing a distributed workflow
enactment system. In addition to the obvious features provided by
CORBA, ORBWork relies on a number of specific services that
proved extremely useful in implementing ORBWork. Table 1
summarizes the features used.

All of the ORBWork components are implemented as
CORBA objects. ORBWork relies on the Orbix Activator to start
the necessary server when its functions are necessary for the activi-
ties of the distributed scheduler, and it also shuts down the servers
once no services have been requested within a specified time inter-

54

scheduling functions according to the

currently loaded specifications. The inter-

face also enables dynamic modifications
to the scheduling specifications by reloading from the specifica-
tion server (repository) or by a direct modification of the specifi-
cation within the task scheduler.

A task scheduler relies on the Orbix Name Service to locate
its successors. This enables the ORBWork administrator to
reconfigure the runtime layout of the scheduler dynamically by
shifting some components between hosts, without introducing
any changes to the remaining task schedulers, or the workflow
instances they administer.

ORBWork uses the object loader capability supported by
OrbixWeb to save and restore the state of a task scheduler. The
state includes the necessary information about forthcoming
instances (those with unfulfilled input dependency) and those
already on the worklist. As the CORBA object representing a
task scheduler is activated (because one of its task predecessors
attempts a transfer of the next workflow instance), the necessary
scheduling data is reloaded automarically.

Task Managers Task managers control the execution of all
nonhuman tasks (human tasks have no associated task man-
agers). Depending on the task type, a task manager is classified as
nontransactional or transactional, and is implemented as a
CORBA object. A task manager’s IDL interface allows it to be
invoked by the corresponding task scheduler. Once it is activated,
the task manager stays active until the task itself completes or it
generates an exception. Once the task has completed or terminat-
ed prematurely with a fault, the task manager notifies its task
scheduler. The task scheduler then continues the flow of the work-
fHow instance.

Orbix Activacor activates the task manager automatically,
only when it is needed. The communication between the task
scheduler and the associated task manager is accomplished by
asynchronous (one-way) method calls.

A transactional task manager uses JDBC to access the
requested data source. Currently, ORBWork provides specific
task managers for accessing Oracle and Mini SQL databases, as
well as one for the Open JDBC driver from I-Kinetics. The last
of the mentioned task managers allows uniform access to a wide
variety of database management systems (including those on
mainframes) from a single task manager.

Data Objects Data objects are implemented as CORBA objects,
and they provide an IDL interface for accessing all of the defined
attributes and methods. As in the case of a task scheduler, the

MARCH 1999

—

Database & Legacy Integration

data object implementation uses the object loader to load and
save the state of each data object. The CORBA server that hosts
the data objects is automatically shut down if no data read/write
requests arrive within a specified time period, and the dynamic
loader saves the state of the object.

Because task schedulers implement the flow of control with-
in a workflow instance, data objects must be made available to
the successor tasks. Instead of sending the whole object, only its
object reference is sent to the task scheduler. When it prepares
to run the task, the task scheduler accesses the necessary data
object(s) (using the Dynamic Invocation Interface) and extracts
the relevant ateribute values.

ORBWork Servers Typically, a single ORBWork host runs a num-
ber of task schedulers, each of which is implemented as a sepa-
rate CORBA object. A CORBA object must reside within a
CORBA server that typically runs as a single operating system
process. To save computer tesources, a group of ORBWork task
schedulers may be placed within a single CORBA server that
functions as an ORBWork server. Each ORBWork server is
designed to control any number of task schedulers.

A workflow installed on the ORBWork enactment system
may utilize any number of heterogeneous hosts (of course,
OrbixWeb must be available on each one of them;
clients/browsers may be used anywhere). Each of the hosts may
have any number of ORBWork servers. However, the most
common approach is to keep the number of ORBWork servers
close to the number of available processors. Nowadays, some of
the available Java virtual machines ate able to take advantage of
the available processors to run threads. Since the implementa-
tion of an ORBWork task scheduler is multithreaded, the ques-
tion of the number of ORBWork servers may be less critical
because if all of the schedulers are placed within a single server,
they will be able to utilize all of the available processors.

ORBWork Manager The ORBWork Manager is used to install
workflows (schemas) and activate all of the necessary task sched-
ulers. In addition to registering with Orbix Name Service, each
task scheduler registers with ORBWork Manager, and notifies it of
its precise location. Also, since each task scheduler provides a sub-
set of the HTTP protocol, the scheduler notifies the ORBWork
Manager of the precise URL address that the end users and the
administrator can use to interact with it directly. The URL is cre-
ated when the scheduler is initially installed and it contains the
port number that has been assigned to the HT TP server.

The manager is implemented as a CORBA object. It has an
IDL interface that allows ORBWork clients to install and
administer a workflow (schema) as well as create workflow
instances. The manager provides an HT'TP protocol, so that the
same administrative functions can be performed via the Web,
from a common browser.

To provide easy access to task schedulers, the ORBWork
Manager also functions as a URL redirector when end users wish
to access their task worklists. This is necessary because the port
number on which the task scheduler's HTTP server is listening is
assigned by the system at the time the task scheduler is activated.
The port number is not fixed and cannot be known beforehand.

It is important to note that the role of the ORBWork

COMPONENT STRATEGIES » www.componentmag.com

Manager is necessary only at the time a new workflow is
installed or modified, or when end users connect to their desig-
nated tasks for the first time. The manager does not participate
in any task scheduling activities.

Conclusion

ORBWork provides a flexible, fully distributed implementation
of the workflow enactment and application integration service
for the METEOR System. The ORBWork scheduler has been
designed and implemented to support dynamic workflows. The
scheduler offers significant potential for scalability, since the
workflow administrator can increase the number of workflow
hosts incrementally, migrating and/or replicating some of the
scheduling functions to the new hosts.

ORBWork has been implemented entirely in Java and is
therefore available on a wide range of computer systems.
(ORBWork has been used to implement a number of workflow

R

We expect to integrate our workflow research
with that of collaboration to develop

a new generation of systems

applications, mainly in the area of health care??), we have used
Sun Solaris and Windows NT as ORBWork hosts. We were able
to integrate disparate distributed and heterogeneous computing
environments with ease.

The current ORBWork implementation has been based on
open standards. It will also provide support for workflow inter-
operability standards (such as SWAP and JFLOW), once they
stabilize. We are currently in the process of creating implementa-
tions to the two mentioned interoperability interfaces. On the
research front, we expect to increasingly integrate our workflow
research with that of collaboration to develop a new generation
of coordination and collaboration system. A

Acknowledgments

We thank IONA Technologies and I-Kinetics for the donation
of all their products to the LSDIS Lab at the University of
Georgia. This research was partially done under a cooperative
agreement with the National Institute of Standards and
Technology Advanced Technology Program (under the HIIT
contract, number 70NANB5H1011) and cosponsored by the
Healthcare Open Systems and Trials, Inc. consortium.

Bibliography
1. Sheth, A, et. al. Report from the NSF Workshop on Workflow and Process
Automation in Information Systems, Technical Report UGA-CS-TR-96-003,
Dept. of Computer Science, University of Georgia, Oct. 1996,
http://Isdis.cs.uga.edu/lib/lib.htm).
2. Workflow Management Coalition Standards,
http://www.aiim.org/wfmc/mainframe htm.

3. Sheth, A, and K. Kochut. “Workflow Applications to Research Agenda:
Scalable and Dynamic Work Coordination and Collaboration Systems,” in
Workflow Management Systems and Interoperability, A. Dogac, L.
Kalinechenko, T. Ozsu, and A. Sheth, Eds., NATO ASI Series F, Vol. 164,
Springer Verlag, 1998.

4. Infocosm home page, http://infocosm.com. continued on page 57

55

